- 08 9月, 2012 6 次提交
-
-
由 Tomi Valkeinen 提交于
Recent commit dca2b152 (OMAPDSS: DSI: Maintain copy of operation mode in driver data) broke DSI for video mode displays. The commit changed the way dssdev->caps are initialized, and the result was that every DSI display is initialized with manual-update and tear-elim caps. The code that sets dssdev->caps is not very good, even when fixed. omapdss driver shouldn't be writing dssdev->caps at all. This patch fixes the problem with video mode displays by moving the initialization of dssdev->caps to the panel driver. The same change is done for RFBI. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Tomi Valkeinen 提交于
Currently the way to configure clocks related to DSI (both DSI and DISPC clocks) happens via omapdss platform data. The reason for this is that configuring the DSS clocks is a very complex problem, and it's impossible for the SW to know requirements about things like interference. However, for general cases it should be fine to calculate the dividers for clocks in the SW. The calculated clocks are probably not perfect, but should work. This patch adds support to calculate the dividers when using DSI command mode panels. The panel gives the required DDR clock rate and LP clock rate, and the DSI driver configures itself and DISPC accordingly. This patch is somewhat ugly, though. The code does its job by modifying the platform data where the clock dividers would be if the board file gave them. This is not how it's going to be in the future, but allows us to have quite simple patch and keep the backward compatibility. It also allows the developer to still give the exact dividers from the board file when there's need for that, as long as the panel driver does not override them. There are also other areas for improvement. For example, it would be better if the panel driver could ask for a DSI clock in a certain range, as, at least command mode panels, the panel can work fine with many different clock speeds. While the patch is not perfect, it allows us to remove the hardcoded clock dividers from the board file, making it easier to bring up a new panel and to use device tree from omapdss. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Tomi Valkeinen 提交于
Add max value of DSI functional clock to dss_features, so that DSI driver can use it. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Tomi Valkeinen 提交于
The HDMI driver requires vdda_hdmi_dac power for operation, but does not enable it. This has worked because the regulator has been always enabled. But this may not always be the case, as I encountered when implementing HDMI device tree support. This patch changes the HDMI driver to use the vdda_hdmi_dac. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Tomi Valkeinen 提交于
TPD12S015A spec says to wait 300us after setting CT_CP_HPD gpio for the 5V power output to reach 90% of the voltage. This patch adds the delay to the driver. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Tomi Valkeinen 提交于
We currently manage HDMI GPIOs in the board files via platform_enable/disable calls. This won't work with device tree, and in any case the correct place to manage the GPIOs is in the HDMI driver. This patch moves the handling of the GPIOs to the HDMI driver. The GPIO handling is moved to the common hdmi.c file, and this probably needs to be revisited when adding OMAP5 HDMI support to see if the GPIO handling needs to be moved to IP specific files. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com> Acked-by: NTony Lindgren <tony@atomide.com>
-
- 22 8月, 2012 8 次提交
-
-
由 Chandrabhanu Mahapatra 提交于
The OMAP3 checks have been removed and replaced by a dss feature FEAT_DPI_USES_VDDS_DSI for cleaner implementation. The patches "OMAP: DSS2: enable VDDS_DSI when using DPI" (8a2cfea8) by Tomi Valkeinen <tomi.valkeinen@nokia.com> and "ARM: omap: fix oops in drivers/video/omap2/dss/dpi.c" (40410715) by Russell King <rmk+kernel@arm.linux.org.uk> had introduced these checks. As it is evident from these patches a dependency exists for some DSS pins on VDDS_DSI which is better shown by dss feature FEAT_DPI_USES_VDDS_DSI. Signed-off-by: NChandrabhanu Mahapatra <cmahapatra@ti.com> Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Chandrabhanu Mahapatra 提交于
OMAP4 checks are removed from VENC to provide it a cleaner interface. These checks were introduced by patches "HACK: OMAP: DSS2: VENC: disable VENC on OMAP4 to prevent crash" (ba02fa37) by Tomi Valkeinen <tomi.valkeinen@ti.com> and "OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4" (cc1d3e03) by Danny Kukawka <danny.kukawka@bisect.de> to prevent VENC from crashing OMAP4 kernel. Signed-off-by: NChandrabhanu Mahapatra <cmahapatra@ti.com> Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Chandrabhanu Mahapatra 提交于
All the cpu_is checks have been moved to dss_init_features function providing a much more generic and cleaner interface. The OMAP version and revision specific initializations in various functions are cleaned and the necessary data are moved to dss_features structure which is local to dss.c. Signed-off-by: NChandrabhanu Mahapatra <cmahapatra@ti.com> Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Chandrabhanu Mahapatra 提交于
Functions dss_calc_clock_rates() and dss_get_clock_div() are removed as these functions have become redundant and no longer used. Signed-off-by: NChandrabhanu Mahapatra <cmahapatra@ti.com> Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Chandrabhanu Mahapatra 提交于
All the cpu_is checks have been moved to dispc_init_features function providing a much more generic and cleaner interface. The OMAP version and revision specific functions and data are initialized by dispc_features structure which is local to dispc.c. Signed-off-by: NChandrabhanu Mahapatra <cmahapatra@ti.com> Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Tomi Valkeinen 提交于
Commit 7849398f introduced a bug, causing the following error to be reported: [ 370.827819] cannot lock PLL [ 370.830749] CFG1 0x1e [ 370.833160] CFG2 0x602004 [ 370.835876] CFG4 0x40000 [ 370.838562] omapdss HDMI: Failed to lock PLL However, HDMI output is still enabled. The problem is that we enable the HDMI video output temporarily when reading EDID or detecting if a HDMI cable is connected (ugh), and the commit above changes the behavior of the driver so that the video timings are not yet configured at the point when EDID is read. This patch fixes the problem by configuring the initial VGA timings at HDMI probe. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Dave Airlie 提交于
So we've had a fair few reports of fbcon handover breakage between efi/vesafb and i915 surface recently, so I dedicated a couple of days to finding the problem. Essentially the last thing we saw was the conflicting framebuffer message and that was all. So after much tracing with direct netconsole writes (printks under console_lock not so useful), I think I found the race. Thread A (driver load) Thread B (timer thread) unbind_con_driver -> | bind_con_driver -> | vc->vc_sw->con_deinit -> | fbcon_deinit -> | console_lock() | | | | fbcon_flashcursor timer fires | console_lock() <- blocked for A | | fbcon_del_cursor_timer -> del_timer_sync (BOOM) Of course because all of this is under the console lock, we never see anything, also since we also just unbound the active console guess what we never see anything. Hopefully this fixes the problem for anyone seeing vesafb->kms driver handoff. v1.1: add comment suggestion from Alan. Cc: stable@vger.kernel.org Signed-off-by: NDave Airlie <airlied@redhat.com>
-
由 Dave Airlie 提交于
So we've had a fair few reports of fbcon handover breakage between efi/vesafb and i915 surface recently, so I dedicated a couple of days to finding the problem. Essentially the last thing we saw was the conflicting framebuffer message and that was all. So after much tracing with direct netconsole writes (printks under console_lock not so useful), I think I found the race. Thread A (driver load) Thread B (timer thread) unbind_con_driver -> | bind_con_driver -> | vc->vc_sw->con_deinit -> | fbcon_deinit -> | console_lock() | | | | fbcon_flashcursor timer fires | console_lock() <- blocked for A | | fbcon_del_cursor_timer -> del_timer_sync (BOOM) Of course because all of this is under the console lock, we never see anything, also since we also just unbound the active console guess what we never see anything. Hopefully this fixes the problem for anyone seeing vesafb->kms driver handoff. Signed-off-by: NDavid Airlie <airlied@redhat.com> Acked-by: NAlan Cox <alan@lxorguk.ukuu.org.uk> Cc: stable@vger.kernel.org Tested-by: NJosh Boyer <jwboyer@gmail.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 8月, 2012 11 次提交
-
-
由 Archit Taneja 提交于
The VENC driver currently relies on the omap_dss_device struct to configure the video output polarity. This makes the VENC interface driver dependent on the omap_dss_device struct. Make the VENC driver data maintain it's own polarity field. A panel driver is expected to call omapdss_venc_invert_vid_out_polarity() before enabling the interface. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The VENC driver currently relies on the omap_dss_device struct to configure the venc type. This makes the VENC interface driver dependent on the omap_dss_device struct. Make the VENC driver data maintain it's own 'venc type' field. A panel driver is expected to call omapdss_venc_set_type() before enabling the interface or changing the type via display sysfs attributes. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The RFBI driver currently relies on the omap_dss_device struct to receive the rfbi specific timings requested by the panel driver. This makes the RFBI interface driver dependent on the omap_dss_device struct. Make the RFBI driver data maintain it's own rfbi specific timings field. The panel driver is expected to call omapdss_rfbi_set_interface_timings() to configure the rfbi timings before the interface is enabled. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The DSI driver currently relies on the omap_dss_device struct to receive the video mode timings requested by the panel driver. This makes the DSI interface driver dependent on the omap_dss_device struct. Make the DSI driver data maintain it's own video mode timings field. The panel driver is expected to call omapdss_dsi_set_videomode_timings() to configure the video mode timings before the interface is enabled. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The struct omap_dss_dsi_videomode_data holds fields which need to be configured for DSI to operate in video mode. Rename the struct to dsi_videomode_timings. One reason to do this is because most of the fields in the struct are timings related. The other reason is to create a generic op for output specific timings. This generic op can be considered as a way to set custom or private timings for the output. In the case of OMAP, DSI and RFBI require some more timings apart from the relgular DISPC timings. The structs omap_dss_videomode_timings and rfbi_timings can be considered as these output specific timings respectively. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The DSI driver currently relies on the omap_dss_device struct to know the mode of operation of the DSI protocol(command or video mode). This makes the DSI interface driver dependent on the omap_dss_device struct. Make the DSI driver data maintain it's own operation mode field. The panel driver is expected to call omapdss_dsi_set_operation_mode() before the interface is enabled. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The SDI driver currently relies on the omap_dss_device struct to configure the number of data pairs as specified by the panel. This makes the SDI interface driver dependent on the omap_dss_device struct. Make the SDI driver data maintain it's own data lines field. A panel driver is expected to call omapdss_sdi_set_datapairs() before enabling the interface. Even though we configure the number of data pairs here, this function would be finally mapped to a generic interface op called set_data_lines. The datapairs argument type has been changed from u8 to int at some places to be in sync with the 'set_data_lines' ops of other interfaces. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The DPI driver currently relies on the omap_dss_device struct to configure the number of data lines as specified by the panel. This makes the DPI interface driver dependent on the omap_dss_device struct. Make the DPI driver data maintain it's own data lines field. A panel driver is expected to call omapdss_dpi_set_data_lines() before enabling the interface. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The RFBI driver currently relies on the omap_dss_device struct to configure the number of data lines as specified by the panel. This makes the RFBI interface driver dependent on the omap_dss_device struct. Make the RFBI driver data maintain it's own data lines field. A panel driver is expected to call omapdss_rfbi_set_data_lines() to configure the pixel format before enabling the interface or calling omap_rfbi_configure(). Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The RFBI driver currently relies on the omap_dss_device struct to receive the desired pixel size of the panel. This makes the RFBI interface driver dependent on the omap_dss_device struct. Make the RFBI driver data maintain it's own pixel format field. A panel driver is expected to call omapdss_rfbi_set_pixel_size() to configure the pixel format before enabling the interface or calling omap_rfbi_configure(). Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The DSI driver currently relies on the omap_dss_device struct to receive the desired pixel format of the panel. This makes the DSI interface driver dependent on the omap_dss_device struct. Make the DSI driver data maintain it's own pixel format field. The panel driver is expected to call omapdss_dsi_set_pixel_format() to configure the pixel format before the interface is enabled. Signed-off-by: NArchit Taneja <archit@ti.com>
-
- 15 8月, 2012 8 次提交
-
-
由 Archit Taneja 提交于
RFBI drivers requires configuration of the update area. Since we don't support partial updates, the size to be configures is the panel size itself. Add a timings field in RFBI's driver data. Apart from x_res and y_res, all the other fields are configured to an initial value when RFBI is enabled. A panel driver is expected to call omapdss_rfbi_set_size() configure the size of the panel. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
Partial update suppport was removed from DISPC and DSI sometime back. The RFBI driver still tries to support partial update without the underlying support in DISPC. Remove partial update support from RFBI, only support updates which span acros the whole panel size. This also helps in DSI and RFBI having similar update ops. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The VENC driver currently relies on the timings in omap_dss_device struct to configure the DISPC and VENC blocks accordingly. This makes the VENC interface driver dependent on the omap_dss_device struct. Make the VENC driver data maintain it's own timings field. The panel driver is expected to call omapdss_venc_set_timings() to set these timings before the panel is enabled. Call omapdss_venc_set_timings() before enabling venc output, this is done to atleast have the venc output configured to the panel's default timings if the DSS user didn't explicitly call the venc panel driver's set_timings op. Make the VENC panel driver configure the new timings is the omap_dss_device struct(dssdev->panel.timings). The VENC driver is responsible for maintaining only it's own copy of timings. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The current venc.c driver contains both the interface and panel driver code. This makes the driver hard to read, and difficult to understand the work split between the interface and panel driver and the how the locking works. This also makes it easier to clearly define the VENC interface ops called by the panel driver. Split venc.c into venc.c and venc_panel.c representing the interface and panel driver respectively. This split is done along the lines of the HDMI interface and panel drivers. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The SDI driver currently relies on the timings in omap_dss_device struct to configure the DISPC accordingly. This makes the SDI interface driver dependent on the omap_dss_device struct. Make the SDI driver data maintain it's own timings field. The panel driver is expected to call omapdss_sdi_set_timings() to set these timings before the panel is enabled. Make the SDI panel driver configure the new timings is the omap_dss_device struct(dssdev->panel.timings). The SDI driver is responsible for maintaining only it's own copy of timings. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
Create function omapdss_sdi_set_timings(). Configuring new timings is done the same way as before, SDI is disabled, and re-enabled with the new timings in dssdev. This just moves the code from the panel drivers to the SDI driver. The panel drivers shouldn't be aware of how SDI manages to configure a new set of timings. This should be taken care of by the SDI driver itself. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The hdmi interface driver exposes functions to the hdmi panel driver to configure the interface timings maintained by the hdmi driver. These timings(stored in hdmi.ip_data.cfg) should be protected by the hdmi lock to ensure they are called sequentially, this is similar to how hdmi enable and disable functions need locking. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The hdmi driver currently updates only the 'code' member of hdmi_config when the op omapdss_hdmi_display_set_timing() is called by the hdmi panel driver. The 'timing' field of hdmi_config is updated only when hdmi_power_on is called. It makes more sense to configure the whole hdmi_config field in the set_timing op called by the panel driver. This way, we don't need to call both functions to ensure that our hdmi_config is configured correctly. Also, we don't need to calculate hdmi_config during hdmi_power_on, or rely on the omap_video_timings in the panel's omap_dss_device struct. The default timings of the hdmi panel are represented in a cleaner form. Since the hdmi output is now configured by it's own copy of timings (in hdmi.ip_data.cfg), the panel driver needs to set it to a valid value before enabling hdmi output. We now call omapdss_hdmi_set_timing() before enabling hdmi output, this is done to atleast have the hdmi output configured to the panel's default timings if the DSS user didn't call panel driver's set_timings() op explicitly. Signed-off-by: NArchit Taneja <archit@ti.com>
-
- 13 8月, 2012 7 次提交
-
-
由 Archit Taneja 提交于
During a command mode update using DISPC video port, we may need to swap the connected overlay manager's width and height when 90 or 270 degree rotation is done via the panel by changing it's address mode. Call dss_mgr_set_timings() in update_screen_dispc() before starting the manager update. The new manager size is updated in the 'timings' field of DSI driver's private data via omapdss_dsi_set_size(). A panel driver is expected to call this when performing rotation. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
DSI command mode panels don't need to configure a full set of timings to configure DSI, they only require the width and the height of the panel in pixels. Use omapdss_dsi_set_size for command mode panels, omapdss_dsi_set_timings is meant for video mode panels. When performing rotation via chaning the address mode of the panel, we would need to swap width and height when doing 90 or 270 rotation. Make sure that omapdss_dsi_set_size() makes the new width and height visible to DSI. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The DSI driver currently relies on the timings in omap_dss_device struct to configure the DISPC and DSI blocks accordingly. This makes the DSI interface driver dependent on the omap_dss_device struct. Make the DSI driver data maintain it's own timings field. A DSI video mode panel driver is expected to call omapdss_dsi_set_timings() to set these timings before the panel is enabled. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The timings maintained in omap_dss_device(dssdev->panel.timings) should be maintained by the panel driver itself. It's the panel drivers responsibility to update it if a new set of timings is to be configured. The DPI interface driver shouldn't be responsible of updating the panel timings, it's responsible of maintianing it's own copy of timings. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The DPI driver currently relies on the timings in omap_dss_device struct to configure the DISPC accordingly. This makes the DPI interface driver dependent on the omap_dss_device struct. Make the DPI driver data maintain it's own timings field. The panel driver is expected to call dpi_set_timings()(renamed to omapdss_dpi_set_timings) to set these timings before the panel is enabled. In the set_timings() op, we still ensure that the omap_dss_device timings (dssdev->panel.timings) are configured. This will later be configured only by the DPI panel drivers. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The generic DPI panel driver doesn't currently have locking to ensure that the display states and the driver data is maintained correctly. Add mutex locking to take care of this. Add a new get_timings driver op to override the default get_timings op. The new driver op contains locking to ensure the correct panel timings are seen when a DSS2 user calls device->driver->get_timings. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The DPI interface driver currently relies on the panel driver to ensure calls like omapdss_dpi_display_enable() and omapdss_dpi_display_disable() are executed sequentially. Also, currently, there is no way to protect the DPI driver data. All DPI panel drivers don't ensure this, and in general, a DPI panel driver should use it's lock to that ensure it's own driver data and omap_dss_device states are taken care of, and not worry about the DPI interface. Add mutex locking in the DPI enable/disable/set_timings ops. Signed-off-by: NArchit Taneja <archit@ti.com>
-