- 12 7月, 2011 25 次提交
-
-
由 Paul Mackerras 提交于
This adds infrastructure which will be needed to allow book3s_hv KVM to run on older POWER processors, including PPC970, which don't support the Virtual Real Mode Area (VRMA) facility, but only the Real Mode Offset (RMO) facility. These processors require a physically contiguous, aligned area of memory for each guest. When the guest does an access in real mode (MMU off), the address is compared against a limit value, and if it is lower, the address is ORed with an offset value (from the Real Mode Offset Register (RMOR)) and the result becomes the real address for the access. The size of the RMA has to be one of a set of supported values, which usually includes 64MB, 128MB, 256MB and some larger powers of 2. Since we are unlikely to be able to allocate 64MB or more of physically contiguous memory after the kernel has been running for a while, we allocate a pool of RMAs at boot time using the bootmem allocator. The size and number of the RMAs can be set using the kvm_rma_size=xx and kvm_rma_count=xx kernel command line options. KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability of the pool of preallocated RMAs. The capability value is 1 if the processor can use an RMA but doesn't require one (because it supports the VRMA facility), or 2 if the processor requires an RMA for each guest. This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the pool and returns a file descriptor which can be used to map the RMA. It also returns the size of the RMA in the argument structure. Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION ioctl calls from userspace. To cope with this, we now preallocate the kvm->arch.ram_pginfo array when the VM is created with a size sufficient for up to 64GB of guest memory. Subsequently we will get rid of this array and use memory associated with each memslot instead. This moves most of the code that translates the user addresses into host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level to kvmppc_core_prepare_memory_region. Also, instead of having to look up the VMA for each page in order to check the page size, we now check that the pages we get are compound pages of 16MB. However, if we are adding memory that is mapped to an RMA, we don't bother with calling get_user_pages_fast and instead just offset from the base pfn for the RMA. Typically the RMA gets added after vcpus are created, which makes it inconvenient to have the LPCR (logical partition control register) value in the vcpu->arch struct, since the LPCR controls whether the processor uses RMA or VRMA for the guest. This moves the LPCR value into the kvm->arch struct and arranges for the MER (mediated external request) bit, which is the only bit that varies between vcpus, to be set in assembly code when going into the guest if there is a pending external interrupt request. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This lifts the restriction that book3s_hv guests can only run one hardware thread per core, and allows them to use up to 4 threads per core on POWER7. The host still has to run single-threaded. This capability is advertised to qemu through a new KVM_CAP_PPC_SMT capability. The return value of the ioctl querying this capability is the number of vcpus per virtual CPU core (vcore), currently 4. To use this, the host kernel should be booted with all threads active, and then all the secondary threads should be offlined. This will put the secondary threads into nap mode. KVM will then wake them from nap mode and use them for running guest code (while they are still offline). To wake the secondary threads, we send them an IPI using a new xics_wake_cpu() function, implemented in arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage we assume that the platform has a XICS interrupt controller and we are using icp-native.c to drive it. Since the woken thread will need to acknowledge and clear the IPI, we also export the base physical address of the XICS registers using kvmppc_set_xics_phys() for use in the low-level KVM book3s code. When a vcpu is created, it is assigned to a virtual CPU core. The vcore number is obtained by dividing the vcpu number by the number of threads per core in the host. This number is exported to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes to run the guest in single-threaded mode, it should make all vcpu numbers be multiples of the number of threads per core. We distinguish three states of a vcpu: runnable (i.e., ready to execute the guest), blocked (that is, idle), and busy in host. We currently implement a policy that the vcore can run only when all its threads are runnable or blocked. This way, if a vcpu needs to execute elsewhere in the kernel or in qemu, it can do so without being starved of CPU by the other vcpus. When a vcore starts to run, it executes in the context of one of the vcpu threads. The other vcpu threads all go to sleep and stay asleep until something happens requiring the vcpu thread to return to qemu, or to wake up to run the vcore (this can happen when another vcpu thread goes from busy in host state to blocked). It can happen that a vcpu goes from blocked to runnable state (e.g. because of an interrupt), and the vcore it belongs to is already running. In that case it can start to run immediately as long as the none of the vcpus in the vcore have started to exit the guest. We send the next free thread in the vcore an IPI to get it to start to execute the guest. It synchronizes with the other threads via the vcore->entry_exit_count field to make sure that it doesn't go into the guest if the other vcpus are exiting by the time that it is ready to actually enter the guest. Note that there is no fixed relationship between the hardware thread number and the vcpu number. Hardware threads are assigned to vcpus as they become runnable, so we will always use the lower-numbered hardware threads in preference to higher-numbered threads if not all the vcpus in the vcore are runnable, regardless of which vcpus are runnable. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
This improves I/O performance for guests using the PAPR paravirtualization interface by making the H_PUT_TCE hcall faster, by implementing it in real mode. H_PUT_TCE is used for updating virtual IOMMU tables, and is used both for virtual I/O and for real I/O in the PAPR interface. Since this moves the IOMMU tables into the kernel, we define a new KVM_CREATE_SPAPR_TCE ioctl to allow qemu to create the tables. The ioctl returns a file descriptor which can be used to mmap the newly created table. The qemu driver models use them in the same way as userspace managed tables, but they can be updated directly by the guest with a real-mode H_PUT_TCE implementation, reducing the number of host/guest context switches during guest IO. There are certain circumstances where it is useful for userland qemu to write to the TCE table even if the kernel H_PUT_TCE path is used most of the time. Specifically, allowing this will avoid awkwardness when we need to reset the table. More importantly, we will in the future need to write the table in order to restore its state after a checkpoint resume or migration. Signed-off-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This adds the infrastructure for handling PAPR hcalls in the kernel, either early in the guest exit path while we are still in real mode, or later once the MMU has been turned back on and we are in the full kernel context. The advantage of handling hcalls in real mode if possible is that we avoid two partition switches -- and this will become more important when we support SMT4 guests, since a partition switch means we have to pull all of the threads in the core out of the guest. The disadvantage is that we can only access the kernel linear mapping, not anything vmalloced or ioremapped, since the MMU is off. This also adds code to handle the following hcalls in real mode: H_ENTER Add an HPTE to the hashed page table H_REMOVE Remove an HPTE from the hashed page table H_READ Read HPTEs from the hashed page table H_PROTECT Change the protection bits in an HPTE H_BULK_REMOVE Remove up to 4 HPTEs from the hashed page table H_SET_DABR Set the data address breakpoint register Plus code to handle the following hcalls in the kernel: H_CEDE Idle the vcpu until an interrupt or H_PROD hcall arrives H_PROD Wake up a ceded vcpu H_REGISTER_VPA Register a virtual processor area (VPA) The code that runs in real mode has to be in the base kernel, not in the module, if KVM is compiled as a module. The real-mode code can only access the kernel linear mapping, not vmalloc or ioremap space. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This adds support for KVM running on 64-bit Book 3S processors, specifically POWER7, in hypervisor mode. Using hypervisor mode means that the guest can use the processor's supervisor mode. That means that the guest can execute privileged instructions and access privileged registers itself without trapping to the host. This gives excellent performance, but does mean that KVM cannot emulate a processor architecture other than the one that the hardware implements. This code assumes that the guest is running paravirtualized using the PAPR (Power Architecture Platform Requirements) interface, which is the interface that IBM's PowerVM hypervisor uses. That means that existing Linux distributions that run on IBM pSeries machines will also run under KVM without modification. In order to communicate the PAPR hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code to include/linux/kvm.h. Currently the choice between book3s_hv support and book3s_pr support (i.e. the existing code, which runs the guest in user mode) has to be made at kernel configuration time, so a given kernel binary can only do one or the other. This new book3s_hv code doesn't support MMIO emulation at present. Since we are running paravirtualized guests, this isn't a serious restriction. With the guest running in supervisor mode, most exceptions go straight to the guest. We will never get data or instruction storage or segment interrupts, alignment interrupts, decrementer interrupts, program interrupts, single-step interrupts, etc., coming to the hypervisor from the guest. Therefore this introduces a new KVMTEST_NONHV macro for the exception entry path so that we don't have to do the KVM test on entry to those exception handlers. We do however get hypervisor decrementer, hypervisor data storage, hypervisor instruction storage, and hypervisor emulation assist interrupts, so we have to handle those. In hypervisor mode, real-mode accesses can access all of RAM, not just a limited amount. Therefore we put all the guest state in the vcpu.arch and use the shadow_vcpu in the PACA only for temporary scratch space. We allocate the vcpu with kzalloc rather than vzalloc, and we don't use anything in the kvmppc_vcpu_book3s struct, so we don't allocate it. We don't have a shared page with the guest, but we still need a kvm_vcpu_arch_shared struct to store the values of various registers, so we include one in the vcpu_arch struct. The POWER7 processor has a restriction that all threads in a core have to be in the same partition. MMU-on kernel code counts as a partition (partition 0), so we have to do a partition switch on every entry to and exit from the guest. At present we require the host and guest to run in single-thread mode because of this hardware restriction. This code allocates a hashed page table for the guest and initializes it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We require that the guest memory is allocated using 16MB huge pages, in order to simplify the low-level memory management. This also means that we can get away without tracking paging activity in the host for now, since huge pages can't be paged or swapped. This also adds a few new exports needed by the book3s_hv code. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
There are several fields in struct kvmppc_book3s_shadow_vcpu that temporarily store bits of host state while a guest is running, rather than anything relating to the particular guest or vcpu. This splits them out into a new kvmppc_host_state structure and modifies the definitions in asm-offsets.c to suit. On 32-bit, we have a kvmppc_host_state structure inside the kvmppc_book3s_shadow_vcpu since the assembly code needs to be able to get to them both with one pointer. On 64-bit they are separate fields in the PACA. This means that on 64-bit we don't need to copy the kvmppc_host_state in and out on vcpu load/unload, and in future will mean that the book3s_hv code doesn't need a shadow_vcpu struct in the PACA at all. That does mean that we have to be careful not to rely on any values persisting in the hstate field of the paca across any point where we could block or get preempted. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Instead of doing the kvm_guest_enter/exit() and local_irq_dis/enable() calls in powerpc.c, this moves them down into the subarch-specific book3s_pr.c and booke.c. This eliminates an extra local_irq_enable() call in book3s_pr.c, and will be needed for when we do SMT4 guest support in the book3s hypervisor mode code. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This arranges for the top-level arch/powerpc/kvm/powerpc.c file to pass down some of the calls it gets to the lower-level subarchitecture specific code. The lower-level implementations (in booke.c and book3s.c) are no-ops. The coming book3s_hv.c will need this. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Doing so means that we don't have to save the flags anywhere and gets rid of the last reference to to_book3s(vcpu) in arch/powerpc/kvm/book3s.c. Doing so is OK because a program interrupt won't be generated at the same time as any other synchronous interrupt. If a program interrupt and an asynchronous interrupt (external or decrementer) are generated at the same time, the program interrupt will be delivered, which is correct because it has a higher priority, and then the asynchronous interrupt will be masked. We don't ever generate system reset or machine check interrupts to the guest, but if we did, then we would need to make sure they got delivered rather than the program interrupt. The current code would be wrong in this situation anyway since it would deliver the program interrupt as well as the reset/machine check interrupt. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Instead of branching out-of-line with the DO_KVM macro to check if we are in a KVM guest at the time of an interrupt, this moves the KVM check inline in the first-level interrupt handlers. This speeds up the non-KVM case and makes sure that none of the interrupt handlers are missing the check. Because the first-level interrupt handlers are now larger, some things had to be move out of line in exceptions-64s.S. This all necessitated some minor changes to the interrupt entry code in KVM. This also streamlines the book3s_32 KVM test. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
In preparation for adding code to enable KVM to use hypervisor mode on 64-bit Book 3S processors, this splits book3s.c into two files, book3s.c and book3s_pr.c, where book3s_pr.c contains the code that is specific to running the guest in problem state (user mode) and book3s.c contains code which should apply to all Book 3S processors. In doing this, we abstract some details, namely the interrupt offset, updating the interrupt pending flag, and detecting if the guest is in a critical section. These are all things that will be different when we use hypervisor mode. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This moves the slb field, which represents the state of the emulated SLB, from the kvmppc_vcpu_book3s struct to the kvm_vcpu_arch, and the hpte_hash_[v]pte[_long] fields from kvm_vcpu_arch to kvmppc_vcpu_book3s. This is in accord with the principle that the kvm_vcpu_arch struct represents the state of the emulated CPU, and the kvmppc_vcpu_book3s struct holds the auxiliary data structures used in the emulation. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Commit 69acc0d3ba ("KVM: PPC: Resolve real-mode handlers through function exports") resulted in vcpu->arch.trampoline_lowmem and vcpu->arch.trampoline_enter ending up with kernel virtual addresses rather than physical addresses. This is OK on 64-bit Book3S machines, which ignore the top 4 bits of the effective address in real mode, but on 32-bit Book3S machines, accessing these addresses in real mode causes machine check interrupts, as the hardware uses the whole effective address as the physical address in real mode. This fixes the problem by using __pa() to convert these addresses to physical addresses. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Scott Wood 提交于
Only look in the 4 entries that could possibly contain the entry we're looking for. Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Liu Yu 提交于
Dynamically assign host PIDs to guest PIDs, splitting each guest PID into multiple host (shadow) PIDs based on kernel/user and MSR[IS/DS]. Use both PID0 and PID1 so that the shadow PIDs for the right mode can be selected, that correspond both to guest TID = zero and guest TID = guest PID. This allows us to significantly reduce the frequency of needing to invalidate the entire TLB. When the guest mode or PID changes, we just update the host PID0/PID1. And since the allocation of shadow PIDs is global, multiple guests can share the TLB without conflict. Note that KVM does not yet support the guest setting PID1 or PID2 to a value other than zero. This will need to be fixed for nested KVM to work. Until then, we enforce the requirement for guest PID1/PID2 to stay zero by failing the emulation if the guest tries to set them to something else. Signed-off-by: NLiu Yu <yu.liu@freescale.com> Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Liu Yu 提交于
Instead of a fully separate set of TLB entries, keep just the pfn and dirty status. Signed-off-by: NLiu Yu <yu.liu@freescale.com> Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Scott Wood 提交于
This is a shared page used for paravirtualization. It is always present in the guest kernel's effective address space at the address indicated by the hypercall that enables it. The physical address specified by the hypercall is not used, as e500 does not have real mode. Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Scott Wood 提交于
This allows large pages to be used on guest mappings backed by things like /dev/mem, resulting in a significant speedup when guest memory is mapped this way (it's useful for directly-assigned MMIO, too). This is not a substitute for hugetlbfs integration, but is useful for configurations where devices are directly assigned on chips without an IOMMU -- in these cases, we need guest physical and true physical to match, and be contiguous, so static reservation and mapping via /dev/mem is the most straightforward way to set things up. Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Scott Wood 提交于
This is in line with what other architectures do, and will allow us to map things other than ordinary, unreserved kernel pages -- such as dedicated devices, or large contiguous reserved regions. Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Scott Wood 提交于
This avoids races. It also means that we use the shadow TLB way, rather than the hardware hint -- if this is a problem, we could do a tlbsx before inserting a TLB0 entry. Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Scott Wood 提交于
Since TLB1 loading doesn't check the shadow TLB before allocating another entry, you can get duplicates. Once shadow PIDs are enabled in a later patch, we won't need to invalidate the TLB on every switch, so this optimization won't be needed anyway. Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Scott Wood 提交于
This is done lazily. The SPE save will be done only if the guest has used SPE since the last preemption or heavyweight exit. Restore will be done only on demand, when enabling MSR_SPE in the shadow MSR, in response to an SPE fault or mtmsr emulation. For SPEFSCR, Linux already switches it on context switch (non-lazily), so the only remaining bit is to save it between qemu and the guest. Signed-off-by: NLiu Yu <yu.liu@freescale.com> Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Scott Wood 提交于
Keep the guest MSR and the guest-mode true MSR separate, rather than modifying the guest MSR on each guest entry to produce a true MSR. Any bits which should be modified based on guest MSR must be explicitly propagated from vcpu->arch.shared->msr to vcpu->arch.shadow_msr in kvmppc_set_msr(). While we're modifying the guest entry code, reorder a few instructions to bury some load latencies. Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
Up until now, Book3S KVM had variables stored in the kernel that a kernel module or the kvm code in the kernel could read from to figure out where some real mode helper functions are located. This is all unnecessary. The high bits of the EA get ignore in real mode, so we can just use the pointer as is. Also, it's a lot easier on relocations when we use the normal way of resolving the address to a function, instead of jumping through hoops. This patch fixes compilation with CONFIG_RELOCATABLE=y. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Stuart Yoder 提交于
When http://www.spinics.net/lists/kvm-ppc/msg02664.html was applied to produce commit b51e7aa7ed6d8d134d02df78300ab0f91cfff4d2, the removal of the conversion in add_exit_timing was left out. Signed-off-by: NStuart Yoder <stuart.yoder@freescale.com> Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 22 5月, 2011 5 次提交
-
-
由 Scott Wood 提交于
Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Scott Wood 提交于
Linux doesn't use USPRG0 (now renamed VRSAVE in the architecture, even when Altivec isn't involved), but a guest might. Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Stuart Yoder 提交于
Convert to microseconds when displaying (with fix from Bharat Bhushan <Bharat.Bhushan@freescale.com>). This reduces rounding error with large quantities of short exits. Signed-off-by: NStuart Yoder <stuart.yoder@freescale.com> Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Scott Wood 提交于
The exit type setting for mfspr/mtspr is moved from 44x to toplevel SPR emulation. This enables it on e500, and makes sure that all SPRs are covered. Exit accounting for tlbwe and tlbsx is added to e500. Signed-off-by: NStuart Yoder <stuart.yoder@freescale.com> Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Scott Wood 提交于
Return the actual host SVR for now, as we already do for PVR. Eventually we may support Qemu overriding PVR/SVR if the situation is appropriate, once we implement KVM_SET_SREGS on e500. Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 20 5月, 2011 2 次提交
-
-
由 Paul Mackerras 提交于
Commits a5d4f3ad ("powerpc: Base support for exceptions using HSRR0/1") and 673b189a ("powerpc: Always use SPRN_SPRG_HSCRATCH0 when running in HV mode") cause compile and link errors for 32-bit classic Book 3S processors when KVM is enabled. This fixes these errors. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Paul Mackerras 提交于
The vcpu->arch.pending_exceptions field is a bitfield indexed by interrupt priority number as returned by kvmppc_book3s_vec2irqprio. However, kvmppc_core_pending_dec was using an interrupt vector shifted by 7 as the bit index. Fix it to use the irqprio value for the decrementer interrupt instead. This problem was found by code inspection. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 11 5月, 2011 1 次提交
-
-
由 Bharat Bhushan 提交于
Following dump is observed on host when clearing the exit timing counters [root@p1021mds kvm]# echo -n 'c' > vm1200_vcpu0_timing INFO: task echo:1276 blocked for more than 120 seconds. "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. echo D 0ff5bf94 0 1276 1190 0x00000000 Call Trace: [c2157e40] [c0007908] __switch_to+0x9c/0xc4 [c2157e50] [c040293c] schedule+0x1b4/0x3bc [c2157e90] [c04032dc] __mutex_lock_slowpath+0x74/0xc0 [c2157ec0] [c00369e4] kvmppc_init_timing_stats+0x20/0xb8 [c2157ed0] [c0036b00] kvmppc_exit_timing_write+0x84/0x98 [c2157ef0] [c00b9f90] vfs_write+0xc0/0x16c [c2157f10] [c00ba284] sys_write+0x4c/0x90 [c2157f40] [c000e320] ret_from_syscall+0x0/0x3c The vcpu->mutex is used by kvm_ioctl_* (KVM_RUN etc) and same was used when clearing the stats (in kvmppc_init_timing_stats()). What happens is that when the guest is idle then it held the vcpu->mutx. While the exiting timing process waits for guest to release the vcpu->mutex and a hang state is reached. Now using seprate lock for exit timing stats. Signed-off-by: NBharat Bhushan <Bharat.Bhushan@freescale.com> Acked-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
- 20 4月, 2011 3 次提交
-
-
由 Paul Mackerras 提交于
This uses feature sections to arrange that we always use HSPRG1 as the scratch register in the interrupt entry code rather than SPRG2 when we're running in hypervisor mode on POWER7. This will ensure that we don't trash the guest's SPRG2 when we are running KVM guests. To simplify the code, we define GET_SCRATCH0() and SET_SCRATCH0() macros like the GET_PACA/SET_PACA macros. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Benjamin Herrenschmidt 提交于
Pass the register type to the prolog, also provides alternate "HV" version of hardware interrupt (0x500) and adjust LPES accordingly We tag those interrupts by setting bit 0x2 in the trap number Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Benjamin Herrenschmidt 提交于
When running in Hypervisor mode (arch 2.06 or later), we store the PACA in HSPRG0 instead of SPRG1. The architecture specifies that SPRGs may be lost during a "nap" power management operation (though they aren't currently on POWER7) and this enables use of SPRG1 by KVM guests. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 18 3月, 2011 1 次提交
-
-
由 Peter Tyser 提交于
Previously SPRGs 4-7 were improperly read and written in kvm_arch_vcpu_ioctl_get_regs() and kvm_arch_vcpu_ioctl_set_regs(); Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NPeter Tyser <ptyser@xes-inc.com> Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com>
-
- 12 1月, 2011 2 次提交
-
-
由 Jan Kiszka 提交于
IA64 support forces us to abstract the allocation of the kvm structure. But instead of mixing this up with arch-specific initialization and doing the same on destruction, split both steps. This allows to move generic destruction calls into generic code. It also fixes error clean-up on failures of kvm_create_vm for IA64. Signed-off-by: NJan Kiszka <jan.kiszka@siemens.com> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
由 Takuya Yoshikawa 提交于
Let's use newly introduced vzalloc(). Signed-off-by: NTakuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp> Signed-off-by: NJesper Juhl <jj@chaosbits.net> Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com>
-
- 06 11月, 2010 1 次提交
-
-
由 Scott Wood 提交于
This was preventing the guest from setting any bits in the hardware MSR which aren't forced on, such as MSR[SPE]. Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-