- 21 12月, 2018 1 次提交
-
-
由 Lan Tianyu 提交于
The patch is to make kvm_set_spte_hva() return int and caller can check return value to determine flush tlb or not. Signed-off-by: NLan Tianyu <Tianyu.Lan@microsoft.com> Acked-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 20 12月, 2018 1 次提交
-
-
由 Christoffer Dall 提交于
vcpu_read_sys_reg should not be modifying the VCPU structure. Eventually, to handle EL2 sysregs for nested virtualization, we will call vcpu_read_sys_reg from places that have a const vcpu pointer, which will complain about the lack of the const modifier on the read path. Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 18 12月, 2018 1 次提交
-
-
由 Mark Rutland 提交于
When we emulate a guest instruction, we don't advance the hardware singlestep state machine, and thus the guest will receive a software step exception after a next instruction which is not emulated by the host. We bodge around this in an ad-hoc fashion. Sometimes we explicitly check whether userspace requested a single step, and fake a debug exception from within the kernel. Other times, we advance the HW singlestep state rely on the HW to generate the exception for us. Thus, the observed step behaviour differs for host and guest. Let's make this simpler and consistent by always advancing the HW singlestep state machine when we skip an instruction. Thus we can rely on the hardware to generate the singlestep exception for us, and never need to explicitly check for an active-pending step, nor do we need to fake a debug exception from the guest. Cc: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: NAlex Bennée <alex.bennee@linaro.org> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 10 12月, 2018 2 次提交
-
-
由 Marc Zyngier 提交于
In order to easily mitigate ARM erratum 1165522, we need to force affected CPUs to run in VHE mode if using KVM. Reviewed-by: NJames Morse <james.morse@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Marc Zyngier 提交于
An SVE system is so far the only case where we mandate VHE. As we're starting to grow this requirements, let's slightly rework the way we deal with that situation, allowing for easy extension of this check. Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Reviewed-by: NJames Morse <james.morse@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 18 10月, 2018 1 次提交
-
-
由 Dongjiu Geng 提交于
Rename kvm_arch_dev_ioctl_check_extension() to kvm_arch_vm_ioctl_check_extension(), because it does not have any relationship with device. Renaming this function can make code readable. Cc: James Morse <james.morse@arm.com> Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NDongjiu Geng <gengdongjiu@huawei.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 03 10月, 2018 2 次提交
-
-
由 Marc Zyngier 提交于
VM tends to be a very overloaded term in KVM, so let's keep it to describe the virtual machine. For the virtual memory setup, let's use the "stage2" suffix. Reviewed-by: NEric Auger <eric.auger@redhat.com> Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Suzuki K Poulose 提交于
So far we have restricted the IPA size of the VM to the default value (40bits). Now that we can manage the IPA size per VM and support dynamic stage2 page tables, we can allow VMs to have larger IPA. This patch introduces a the maximum IPA size supported on the host. This is decided by the following factors : 1) Maximum PARange supported by the CPUs - This can be inferred from the system wide safe value. 2) Maximum PA size supported by the host kernel (48 vs 52) 3) Number of levels in the host page table (as we base our stage2 tables on the host table helpers). Since the stage2 page table code is dependent on the stage1 page table, we always ensure that : Number of Levels at Stage1 >= Number of Levels at Stage2 So we limit the IPA to make sure that the above condition is satisfied. This will affect the following combinations of VA_BITS and IPA for different page sizes. Host configuration | Unsupported IPA ranges 39bit VA, 4K | [44, 48] 36bit VA, 16K | [41, 48] 42bit VA, 64K | [47, 52] Supporting the above combinations need independent stage2 page table manipulation code, which would need substantial changes. We could purse the solution independently and switch the page table code once we have it ready. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Christoffer Dall <cdall@kernel.org> Reviewed-by: NEric Auger <eric.auger@redhat.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 01 10月, 2018 2 次提交
-
-
由 Suzuki K Poulose 提交于
Add support for setting the VTCR_EL2 per VM, rather than hard coding a value at boot time per CPU. This would allow us to tune the stage2 page table parameters per VM in the later changes. We compute the VTCR fields based on the system wide sanitised feature registers, except for the hardware management of Access Flags (VTCR_EL2.HA). It is fine to run a system with a mix of CPUs that may or may not update the page table Access Flags. Since the bit is RES0 on CPUs that don't support it, the bit should be ignored on them. Suggested-by: NMarc Zyngier <marc.zyngier@arm.com> Acked-by: NChristoffer Dall <cdall@kernel.org> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Suzuki K Poulose 提交于
Allow the arch backends to perform VM specific initialisation. This will be later used to handle IPA size configuration and per-VM VTCR configuration on arm64. Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Christoffer Dall <cdall@kernel.org> Reviewed-by: NEric Auger <eric.auger@redhat.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 15 9月, 2018 1 次提交
-
-
由 Will Deacon 提交于
When running without VHE, it is necessary to set SCTLR_EL2.DSSBS if SSBD has been forcefully disabled on the kernel command-line. Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 07 9月, 2018 2 次提交
-
-
由 Steven Price 提交于
The lock has never been used and the page tables are protected by mmu_lock in struct kvm. Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NSteven Price <steven.price@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com>
-
由 Marc Zyngier 提交于
kvm_unmap_hva is long gone, and we only have kvm_unmap_hva_range to deal with. Drop the now obsolete code. Fixes: fb1522e0 ("KVM: update to new mmu_notifier semantic v2") Cc: James Hogan <jhogan@kernel.org> Reviewed-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com>
-
- 21 7月, 2018 3 次提交
-
-
由 James Morse 提交于
The get/set events helpers to do some work to check reserved and padding fields are zero. This is useful on 32bit too. Move this code into virt/kvm/arm/arm.c, and give the arch code some underscores. This is temporarily hidden behind __KVM_HAVE_VCPU_EVENTS until 32bit is wired up. Signed-off-by: NJames Morse <james.morse@arm.com> Reviewed-by: NDongjiu Geng <gengdongjiu@huawei.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Dongjiu Geng 提交于
For the migrating VMs, user space may need to know the exception state. For example, in the machine A, KVM make an SError pending, when migrate to B, KVM also needs to pend an SError. This new IOCTL exports user-invisible states related to SError. Together with appropriate user space changes, user space can get/set the SError exception state to do migrate/snapshot/suspend. Signed-off-by: NDongjiu Geng <gengdongjiu@huawei.com> Reviewed-by: NJames Morse <james.morse@arm.com> [expanded documentation wording] Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
When running on a non-VHE system, we initialize tpidr_el2 to contain the per-CPU offset required to reach per-cpu variables. Actually, we initialize it twice: the first time as part of the EL2 initialization, by copying tpidr_el1 into its el2 counterpart, and another time by calling into __kvm_set_tpidr_el2. It turns out that the first part is wrong, as it includes the distance between the kernel mapping and the linear mapping, while EL2 only cares about the linear mapping. This was the last vestige of the first per-cpu use of tpidr_el2 that came in with SDEI. The only caller then was hyp_panic(), and its now using the pc-relative get_host_ctxt() stuff, instead of kimage addresses from the literal pool. It is not a big deal, as we override it straight away, but it is slightly confusing. In order to clear said confusion, let's set this directly as part of the hyp-init code, and drop the ad-hoc HYP helper. Reviewed-by: NJames Morse <james.morse@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 21 6月, 2018 1 次提交
-
-
由 Dave Martin 提交于
Commit e6b673b7 ("KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing") attempts to restore the configuration of userspace SVE trapping via a call to fpsimd_bind_task_to_cpu(), but the logic for determining when to do this is not correct. The patch makes the errnoenous assumption that the only task that may try to enter userspace with the currently loaded FPSIMD/SVE register content is current. This may not be the case however: if some other user task T is scheduled on the CPU during the execution of the KVM run loop, and the vcpu does not try to use the registers in the meantime, then T's state may be left there intact. If T happens to be the next task to enter userspace on this CPU then the hooks for reloading the register state and configuring traps will be skipped. (Also, current never has SVE state at this point anyway and should always have the trap enabled, as a side-effect of the ioctl() syscall needed to reach the KVM run loop in the first place.) This patch instead restores the state of the EL0 trap from the state observed at the most recent vcpu_load(), ensuring that the trap is set correctly for the loaded context (if any). Fixes: e6b673b7 ("KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing") Signed-off-by: NDave Martin <Dave.Martin@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 02 6月, 2018 1 次提交
-
-
由 Marc Orr 提交于
The kvm struct has been bloating. For example, it's tens of kilo-bytes for x86, which turns out to be a large amount of memory to allocate contiguously via kzalloc. Thus, this patch does the following: 1. Uses architecture-specific routines to allocate the kvm struct via vzalloc for x86. 2. Switches arm to __KVM_HAVE_ARCH_VM_ALLOC so that it can use vzalloc when has_vhe() is true. Other architectures continue to default to kalloc, as they have a dependency on kalloc or have a small-enough struct kvm. Signed-off-by: NMarc Orr <marcorr@google.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 01 6月, 2018 2 次提交
-
-
由 Marc Zyngier 提交于
Now that all our infrastructure is in place, let's expose the availability of ARCH_WORKAROUND_2 to guests. We take this opportunity to tidy up a couple of SMCCC constants. Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Marc Zyngier 提交于
In order to offer ARCH_WORKAROUND_2 support to guests, we need a bit of infrastructure. Let's add a flag indicating whether or not the guest uses SSBD mitigation. Depending on the state of this flag, allow KVM to disable ARCH_WORKAROUND_2 before entering the guest, and enable it when exiting it. Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 25 5月, 2018 4 次提交
-
-
由 Dave Martin 提交于
Now that the host SVE context can be saved on demand from Hyp, there is no longer any need to save this state in advance before entering the guest. This patch removes the relevant call to kvm_fpsimd_flush_cpu_state(). Since the problem that function was intended to solve now no longer exists, the function and its dependencies are also deleted. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Reviewed-by: NAlex Bennée <alex.bennee@linaro.org> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Dave Martin 提交于
This patch adds SVE context saving to the hyp FPSIMD context switch path. This means that it is no longer necessary to save the host SVE state in advance of entering the guest, when in use. In order to avoid adding pointless complexity to the code, VHE is assumed if SVE is in use. VHE is an architectural prerequisite for SVE, so there is no good reason to turn CONFIG_ARM64_VHE off in kernels that support both SVE and KVM. Historically, software models exist that can expose the architecturally invalid configuration of SVE without VHE, so if this situation is detected at kvm_init() time then KVM will be disabled. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Reviewed-by: NAlex Bennée <alex.bennee@linaro.org> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Dave Martin 提交于
This patch refactors KVM to align the host and guest FPSIMD save/restore logic with each other for arm64. This reduces the number of redundant save/restore operations that must occur, and reduces the common-case IRQ blackout time during guest exit storms by saving the host state lazily and optimising away the need to restore the host state before returning to the run loop. Four hooks are defined in order to enable this: * kvm_arch_vcpu_run_map_fp(): Called on PID change to map necessary bits of current to Hyp. * kvm_arch_vcpu_load_fp(): Set up FP/SIMD for entering the KVM run loop (parse as "vcpu_load fp"). * kvm_arch_vcpu_ctxsync_fp(): Get FP/SIMD into a safe state for re-enabling interrupts after a guest exit back to the run loop. For arm64 specifically, this involves updating the host kernel's FPSIMD context tracking metadata so that kernel-mode NEON use will cause the vcpu's FPSIMD state to be saved back correctly into the vcpu struct. This must be done before re-enabling interrupts because kernel-mode NEON may be used by softirqs. * kvm_arch_vcpu_put_fp(): Save guest FP/SIMD state back to memory and dissociate from the CPU ("vcpu_put fp"). Also, the arm64 FPSIMD context switch code is updated to enable it to save back FPSIMD state for a vcpu, not just current. A few helpers drive this: * fpsimd_bind_state_to_cpu(struct user_fpsimd_state *fp): mark this CPU as having context fp (which may belong to a vcpu) currently loaded in its registers. This is the non-task equivalent of the static function fpsimd_bind_to_cpu() in fpsimd.c. * task_fpsimd_save(): exported to allow KVM to save the guest's FPSIMD state back to memory on exit from the run loop. * fpsimd_flush_state(): invalidate any context's FPSIMD state that is currently loaded. Used to disassociate the vcpu from the CPU regs on run loop exit. These changes allow the run loop to enable interrupts (and thus softirqs that may use kernel-mode NEON) without having to save the guest's FPSIMD state eagerly. Some new vcpu_arch fields are added to make all this work. Because host FPSIMD state can now be saved back directly into current's thread_struct as appropriate, host_cpu_context is no longer used for preserving the FPSIMD state. However, it is still needed for preserving other things such as the host's system registers. To avoid ABI churn, the redundant storage space in host_cpu_context is not removed for now. arch/arm is not addressed by this patch and continues to use its current save/restore logic. It could provide implementations of the helpers later if desired. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Reviewed-by: NAlex Bennée <alex.bennee@linaro.org> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Dave Martin 提交于
In struct vcpu_arch, the debug_flags field is used to store debug-related flags about the vcpu state. Since we are about to add some more flags related to FPSIMD and SVE, it makes sense to add them to the existing flags field rather than adding new fields. Since there is only one debug_flags flag defined so far, there is plenty of free space for expansion. In preparation for adding more flags, this patch renames the debug_flags field to simply "flags", and updates comments appropriately. The flag definitions are also moved to <asm/kvm_host.h>, since their presence in <asm/kvm_asm.h> was for purely historical reasons: these definitions are not used from asm any more, and not very likely to be as more Hyp asm is migrated to C. KVM_ARM64_DEBUG_DIRTY_SHIFT has not been used since commit 1ea66d27 ("arm64: KVM: Move away from the assembly version of the world switch"), so this patch gets rid of that too. No functional change. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAlex Bennée <alex.bennee@linaro.org> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> [maz: fixed minor conflict] Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 20 4月, 2018 1 次提交
-
-
由 Marc Zyngier 提交于
Although we've implemented PSCI 0.1, 0.2 and 1.0, we expose either 0.1 or 1.0 to a guest, defaulting to the latest version of the PSCI implementation that is compatible with the requested version. This is no different from doing a firmware upgrade on KVM. But in order to give a chance to hypothetical badly implemented guests that would have a fit by discovering something other than PSCI 0.2, let's provide a new API that allows userspace to pick one particular version of the API. This is implemented as a new class of "firmware" registers, where we expose the PSCI version. This allows the PSCI version to be save/restored as part of a guest migration, and also set to any supported version if the guest requires it. Cc: stable@vger.kernel.org #4.16 Reviewed-by: NChristoffer Dall <cdall@kernel.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 19 3月, 2018 7 次提交
-
-
由 Christoffer Dall 提交于
We are about to defer saving and restoring some groups of system registers to vcpu_put and vcpu_load on supported systems. This means that we need some infrastructure to access system registes which supports either accessing the memory backing of the register or directly accessing the system registers, depending on the state of the system when we access the register. We do this by defining read/write accessor functions, which can handle both "immediate" and "deferrable" system registers. Immediate registers are always saved/restored in the world-switch path, but deferrable registers are only saved/restored in vcpu_put/vcpu_load when supported and sysregs_loaded_on_cpu will be set in that case. Note that we don't use the deferred mechanism yet in this patch, but only introduce infrastructure. This is to improve convenience of review in the subsequent patches where it is clear which registers become deferred. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
Currently we access the system registers array via the vcpu_sys_reg() macro. However, we are about to change the behavior to some times modify the register file directly, so let's change this to two primitives: * Accessor macros vcpu_write_sys_reg() and vcpu_read_sys_reg() * Direct array access macro __vcpu_sys_reg() The accessor macros should be used in places where the code needs to access the currently loaded VCPU's state as observed by the guest. For example, when trapping on cache related registers, a write to a system register should go directly to the VCPU version of the register. The direct array access macro can be used in places where the VCPU is known to never be running (for example userspace access) or for registers which are never context switched (for example all the PMU system registers). This rewrites all users of vcpu_sys_regs to one of the macros described above. No functional change. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <cdall@cs.columbia.edu> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
We currently handle 32-bit accesses to trapped VM system registers using the 32-bit index into the coproc array on the vcpu structure, which is a union of the coproc array and the sysreg array. Since all the 32-bit coproc indices are created to correspond to the architectural mapping between 64-bit system registers and 32-bit coprocessor registers, and because the AArch64 system registers are the double in size of the AArch32 coprocessor registers, we can always find the system register entry that we must update by dividing the 32-bit coproc index by 2. This is going to make our lives much easier when we have to start accessing system registers that use deferred save/restore and might have to be read directly from the physical CPU. Reviewed-by: NAndrew Jones <drjones@redhat.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
So far this is mostly (see below) a copy of the legacy non-VHE switch function, but we will start reworking these functions in separate directions to work on VHE and non-VHE in the most optimal way in later patches. The only difference after this patch between the VHE and non-VHE run functions is that we omit the branch-predictor variant-2 hardening for QC Falkor CPUs, because this workaround is specific to a series of non-VHE ARMv8.0 CPUs. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
As we are about to move a bunch of save/restore logic for VHE kernels to the load and put functions, we need some infrastructure to do this. Reviewed-by: NAndrew Jones <drjones@redhat.com> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
We currently have a separate read-modify-write of the HCR_EL2 on entry to the guest for the sole purpose of setting the VF and VI bits, if set. Since this is most rarely the case (only when using userspace IRQ chip and interrupts are in flight), let's get rid of this operation and instead modify the bits in the vcpu->arch.hcr[_el2] directly when needed. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Reviewed-by: NJulien Thierry <julien.thierry@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
We already have the percpu area for the host cpu state, which points to the VCPU, so there's no need to store the VCPU pointer on the stack on every context switch. We can be a little more clever and just use tpidr_el2 for the percpu offset and load the VCPU pointer from the host context. This has the benefit of being able to retrieve the host context even when our stack is corrupted, and it has a potential performance benefit because we trade a store plus a load for an mrs and a load on a round trip to the guest. This does require us to calculate the percpu offset without including the offset from the kernel mapping of the percpu array to the linear mapping of the array (which is what we store in tpidr_el1), because a PC-relative generated address in EL2 is already giving us the hyp alias of the linear mapping of a kernel address. We do this in __cpu_init_hyp_mode() by using kvm_ksym_ref(). The code that accesses ESR_EL2 was previously using an alternative to use the _EL1 accessor on VHE systems, but this was actually unnecessary as the _EL1 accessor aliases the ESR_EL2 register on VHE, and the _EL2 accessor does the same thing on both systems. Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 07 2月, 2018 1 次提交
-
-
由 Marc Zyngier 提交于
A new feature of SMCCC 1.1 is that it offers firmware-based CPU workarounds. In particular, SMCCC_ARCH_WORKAROUND_1 provides BP hardening for CVE-2017-5715. If the host has some mitigation for this issue, report that we deal with it using SMCCC_ARCH_WORKAROUND_1, as we apply the host workaround on every guest exit. Tested-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 16 1月, 2018 5 次提交
-
-
由 James Morse 提交于
We expect to have firmware-first handling of RAS SErrors, with errors notified via an APEI method. For systems without firmware-first, add some minimal handling to KVM. There are two ways KVM can take an SError due to a guest, either may be a RAS error: we exit the guest due to an SError routed to EL2 by HCR_EL2.AMO, or we take an SError from EL2 when we unmask PSTATE.A from __guest_exit. The current SError from EL2 code unmasks SError and tries to fence any pending SError into a single instruction window. It then leaves SError unmasked. With the v8.2 RAS Extensions we may take an SError for a 'corrected' error, but KVM is only able to handle SError from EL2 if they occur during this single instruction window... The RAS Extensions give us a new instruction to synchronise and consume SErrors. The RAS Extensions document (ARM DDI0587), '2.4.1 ESB and Unrecoverable errors' describes ESB as synchronising SError interrupts generated by 'instructions, translation table walks, hardware updates to the translation tables, and instruction fetches on the same PE'. This makes ESB equivalent to KVMs existing 'dsb, mrs-daifclr, isb' sequence. Use the alternatives to synchronise and consume any SError using ESB instead of unmasking and taking the SError. Set ARM_EXIT_WITH_SERROR_BIT in the exit_code so that we can restart the vcpu if it turns out this SError has no impact on the vcpu. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 James Morse 提交于
We expect to have firmware-first handling of RAS SErrors, with errors notified via an APEI method. For systems without firmware-first, add some minimal handling to KVM. There are two ways KVM can take an SError due to a guest, either may be a RAS error: we exit the guest due to an SError routed to EL2 by HCR_EL2.AMO, or we take an SError from EL2 when we unmask PSTATE.A from __guest_exit. For SError that interrupt a guest and are routed to EL2 the existing behaviour is to inject an impdef SError into the guest. Add code to handle RAS SError based on the ESR. For uncontained and uncategorized errors arm64_is_fatal_ras_serror() will panic(), these errors compromise the host too. All other error types are contained: For the fatal errors the vCPU can't make progress, so we inject a virtual SError. We ignore contained errors where we can make progress as if we're lucky, we may not hit them again. If only some of the CPUs support RAS the guest will see the cpufeature sanitised version of the id registers, but we may still take RAS SError on this CPU. Move the SError handling out of handle_exit() into a new handler that runs before we can be preempted. This allows us to use this_cpu_has_cap(), via arm64_is_ras_serror(). Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 James Morse 提交于
If we deliver a virtual SError to the guest, the guest may defer it with an ESB instruction. The guest reads the deferred value via DISR_EL1, but the guests view of DISR_EL1 is re-mapped to VDISR_EL2 when HCR_EL2.AMO is set. Add the KVM code to save/restore VDISR_EL2, and make it accessible to userspace as DISR_EL1. Signed-off-by: NJames Morse <james.morse@arm.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 James Morse 提交于
Prior to v8.2's RAS Extensions, the HCR_EL2.VSE 'virtual SError' feature generated an SError with an implementation defined ESR_EL1.ISS, because we had no mechanism to specify the ESR value. On Juno this generates an all-zero ESR, the most significant bit 'ISV' is clear indicating the remainder of the ISS field is invalid. With the RAS Extensions we have a mechanism to specify this value, and the most significant bit has a new meaning: 'IDS - Implementation Defined Syndrome'. An all-zero SError ESR now means: 'RAS error: Uncategorized' instead of 'no valid ISS'. Add KVM support for the VSESR_EL2 register to specify an ESR value when HCR_EL2.VSE generates a virtual SError. Change kvm_inject_vabt() to specify an implementation-defined value. We only need to restore the VSESR_EL2 value when HCR_EL2.VSE is set, KVM save/restores this bit during __{,de}activate_traps() and hardware clears the bit once the guest has consumed the virtual-SError. Future patches may add an API (or KVM CAP) to pend a virtual SError with a specified ESR. Cc: Dongjiu Geng <gengdongjiu@huawei.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NJames Morse <james.morse@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 James Morse 提交于
Non-VHE systems take an exception to EL2 in order to world-switch into the guest. When returning from the guest KVM implicitly restores the DAIF flags when it returns to the kernel at EL1. With VHE none of this exception-level jumping happens, so KVMs world-switch code is exposed to the host kernel's DAIF values, and KVM spills the guest-exit DAIF values back into the host kernel. On entry to a guest we have Debug and SError exceptions unmasked, KVM has switched VBAR but isn't prepared to handle these. On guest exit Debug exceptions are left disabled once we return to the host and will stay this way until we enter user space. Add a helper to mask/unmask DAIF around VHE guests. The unmask can only happen after the hosts VBAR value has been synchronised by the isb in __vhe_hyp_call (via kvm_call_hyp()). Masking could be as late as setting KVMs VBAR value, but is kept here for symmetry. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NJames Morse <james.morse@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 13 1月, 2018 1 次提交
-
-
由 James Morse 提交于
Make tpidr_el2 a cpu-offset for per-cpu variables in the same way the host uses tpidr_el1. This lets tpidr_el{1,2} have the same value, and on VHE they can be the same register. KVM calls hyp_panic() when anything unexpected happens. This may occur while a guest owns the EL1 registers. KVM stashes the vcpu pointer in tpidr_el2, which it uses to find the host context in order to restore the host EL1 registers before parachuting into the host's panic(). The host context is a struct kvm_cpu_context allocated in the per-cpu area, and mapped to hyp. Given the per-cpu offset for this CPU, this is easy to find. Change hyp_panic() to take a pointer to the struct kvm_cpu_context. Wrap these calls with an asm function that retrieves the struct kvm_cpu_context from the host's per-cpu area. Copy the per-cpu offset from the hosts tpidr_el1 into tpidr_el2 during kvm init. (Later patches will make this unnecessary for VHE hosts) We print out the vcpu pointer as part of the panic message. Add a back reference to the 'running vcpu' in the host cpu context to preserve this. Signed-off-by: NJames Morse <james.morse@arm.com> Reviewed-by: NChristoffer Dall <cdall@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 02 1月, 2018 1 次提交
-
-
由 Christoffer Dall 提交于
We currently check if the VM has a userspace irqchip in several places along the critical path, and if so, we do some work which is only required for having an irqchip in userspace. This is unfortunate, as we could avoid doing any work entirely, if we didn't have to support irqchip in userspace. Realizing the userspace irqchip on ARM is mostly a developer or hobby feature, and is unlikely to be used in servers or other scenarios where performance is a priority, we can use a refcounted static key to only check the irqchip configuration when we have at least one VM that uses an irqchip in userspace. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-