1. 13 2月, 2021 4 次提交
    • V
      net: dsa: act as passthrough for bridge port flags · a8b659e7
      Vladimir Oltean 提交于
      There are multiple ways in which a PORT_BRIDGE_FLAGS attribute can be
      expressed by the bridge through switchdev, and not all of them can be
      emulated by DSA mid-layer API at the same time.
      
      One possible configuration is when the bridge offloads the port flags
      using a mask that has a single bit set - therefore only one feature
      should change. However, DSA currently groups together unicast and
      multicast flooding in the .port_egress_floods method, which limits our
      options when we try to add support for turning off broadcast flooding:
      do we extend .port_egress_floods with a third parameter which b53 and
      mv88e6xxx will ignore? But that means that the DSA layer, which
      currently implements the PRE_BRIDGE_FLAGS attribute all by itself, will
      see that .port_egress_floods is implemented, and will report that all 3
      types of flooding are supported - not necessarily true.
      
      Another configuration is when the user specifies more than one flag at
      the same time, in the same netlink message. If we were to create one
      individual function per offloadable bridge port flag, we would limit the
      expressiveness of the switch driver of refusing certain combinations of
      flag values. For example, a switch may not have an explicit knob for
      flooding of unknown multicast, just for flooding in general. In that
      case, the only correct thing to do is to allow changes to BR_FLOOD and
      BR_MCAST_FLOOD in tandem, and never allow mismatched values. But having
      a separate .port_set_unicast_flood and .port_set_multicast_flood would
      not allow the driver to possibly reject that.
      
      Also, DSA doesn't consider it necessary to inform the driver that a
      SWITCHDEV_ATTR_ID_BRIDGE_MROUTER attribute was offloaded, because it
      just calls .port_egress_floods for the CPU port. When we'll add support
      for the plain SWITCHDEV_ATTR_ID_PORT_MROUTER, that will become a real
      problem because the flood settings will need to be held statefully in
      the DSA middle layer, otherwise changing the mrouter port attribute will
      impact the flooding attribute. And that's _assuming_ that the underlying
      hardware doesn't have anything else to do when a multicast router
      attaches to a port than flood unknown traffic to it.  If it does, there
      will need to be a dedicated .port_set_mrouter anyway.
      
      So we need to let the DSA drivers see the exact form that the bridge
      passes this switchdev attribute in, otherwise we are standing in the
      way. Therefore we also need to use this form of language when
      communicating to the driver that it needs to configure its initial
      (before bridge join) and final (after bridge leave) port flags.
      
      The b53 and mv88e6xxx drivers are converted to the passthrough API and
      their implementation of .port_egress_floods is split into two: a
      function that configures unicast flooding and another for multicast.
      The mv88e6xxx implementation is quite hairy, and it turns out that
      the implementations of unknown unicast flooding are actually the same
      for 6185 and for 6352:
      
      behind the confusing names actually lie two individual bits:
      NO_UNKNOWN_MC -> FLOOD_UC = 0x4 = BIT(2)
      NO_UNKNOWN_UC -> FLOOD_MC = 0x8 = BIT(3)
      
      so there was no reason to entangle them in the first place.
      
      Whereas the 6185 writes to MV88E6185_PORT_CTL0_FORWARD_UNKNOWN of
      PORT_CTL0, which has the exact same bit index. I have left the
      implementations separate though, for the only reason that the names are
      different enough to confuse me, since I am not able to double-check with
      a user manual. The multicast flooding setting for 6185 is in a different
      register than for 6352 though.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      a8b659e7
    • V
      net: switchdev: pass flags and mask to both {PRE_,}BRIDGE_FLAGS attributes · e18f4c18
      Vladimir Oltean 提交于
      This switchdev attribute offers a counterproductive API for a driver
      writer, because although br_switchdev_set_port_flag gets passed a
      "flags" and a "mask", those are passed piecemeal to the driver, so while
      the PRE_BRIDGE_FLAGS listener knows what changed because it has the
      "mask", the BRIDGE_FLAGS listener doesn't, because it only has the final
      value. But certain drivers can offload only certain combinations of
      settings, like for example they cannot change unicast flooding
      independently of multicast flooding - they must be both on or both off.
      The way the information is passed to switchdev makes drivers not
      expressive enough, and unable to reject this request ahead of time, in
      the PRE_BRIDGE_FLAGS notifier, so they are forced to reject it during
      the deferred BRIDGE_FLAGS attribute, where the rejection is currently
      ignored.
      
      This patch also changes drivers to make use of the "mask" field for edge
      detection when possible.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NGrygorii Strashko <grygorii.strashko@ti.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      e18f4c18
    • V
      net: dsa: configure better brport flags when ports leave the bridge · 5e38c158
      Vladimir Oltean 提交于
      For a DSA switch port operating in standalone mode, address learning
      doesn't make much sense since that is a bridge function. In fact,
      address learning even breaks setups such as this one:
      
         +---------------------------------------------+
         |                                             |
         | +-------------------+                       |
         | |        br0        |    send      receive  |
         | +--------+-+--------+ +--------+ +--------+ |
         | |        | |        | |        | |        | |
         | |  swp0  | |  swp1  | |  swp2  | |  swp3  | |
         | |        | |        | |        | |        | |
         +-+--------+-+--------+-+--------+-+--------+-+
                |         ^           |          ^
                |         |           |          |
                |         +-----------+          |
                |                                |
                +--------------------------------+
      
      because if the switch has a single FDB (can offload a single bridge)
      then source address learning on swp3 can "steal" the source MAC address
      of swp2 from br0's FDB, because learning frames coming from swp2 will be
      done twice: first on the swp1 ingress port, second on the swp3 ingress
      port. So the hardware FDB will become out of sync with the software
      bridge, and when swp2 tries to send one more packet towards swp1, the
      ASIC will attempt to short-circuit the forwarding path and send it
      directly to swp3 (since that's the last port it learned that address on),
      which it obviously can't, because swp3 operates in standalone mode.
      
      So DSA drivers operating in standalone mode should still configure a
      list of bridge port flags even when they are standalone. Currently DSA
      attempts to call dsa_port_bridge_flags with 0, which disables egress
      flooding of unknown unicast and multicast, something which doesn't make
      much sense. For the switches that implement .port_egress_floods - b53
      and mv88e6xxx, it probably doesn't matter too much either, since they
      can possibly inject traffic from the CPU into a standalone port,
      regardless of MAC DA, even if egress flooding is turned off for that
      port, but certainly not all DSA switches can do that - sja1105, for
      example, can't. So it makes sense to use a better common default there,
      such as "flood everything".
      
      It should also be noted that what DSA calls "dsa_port_bridge_flags()"
      is a degenerate name for just calling .port_egress_floods(), since
      nothing else is implemented - not learning, in particular. But disabling
      address learning, something that this driver is also coding up for, will
      be supported by individual drivers once .port_egress_floods is replaced
      with a more generic .port_bridge_flags.
      
      Previous attempts to code up this logic have been in the common bridge
      layer, but as pointed out by Ido Schimmel, there are corner cases that
      are missed when doing that:
      https://patchwork.kernel.org/project/netdevbpf/patch/20210209151936.97382-5-olteanv@gmail.com/
      
      So, at least for now, let's leave DSA in charge of setting port flags
      before and after the bridge join and leave.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      5e38c158
    • V
      net: switchdev: propagate extack to port attributes · 4c08c586
      Vladimir Oltean 提交于
      When a struct switchdev_attr is notified through switchdev, there is no
      way to report informational messages, unlike for struct switchdev_obj.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NIdo Schimmel <idosch@nvidia.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Reviewed-by: NNikolay Aleksandrov <nikolay@nvidia.com>
      Reviewed-by: NGrygorii Strashko <grygorii.strashko@ti.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      4c08c586
  2. 12 2月, 2021 2 次提交
  3. 07 2月, 2021 3 次提交
    • V
      net: dsa: make assisted_learning_on_cpu_port bypass offloaded LAG interfaces · a324d3d4
      Vladimir Oltean 提交于
      Given the following topology, and focusing only on Box A:
      
               Box A
               +----------------------------------+
               | Board 1         br0              |
               |             +---------+          |
               |            /           \         |
               |            |           |         |
               |            |         bond0       |
               |            |        +-----+      |
               |192.168.1.1 |       /       \     |
               |  eno0     swp0    swp1    swp2   |
               +---|--------|-------|-------|-----+
                   |        |       |       |
                   +--------+       |       |
                     Cable          |       |
                               Cable|       |Cable
                     Cable          |       |
                   +--------+       |       |
                   |        |       |       |
               +---|--------|-------|-------|-----+
               |  eno0     swp0    swp1    swp2   |
               |192.168.1.2 |       \       /     |
               |            |        +-----+      |
               |            |         bond0       |
               |            |           |         |
               |            \           /         |
               |             +---------+          |
               | Board 2         br0              |
               +----------------------------------+
               Box B
      
      The assisted_learning_on_cpu_port logic will see that swp0 is bridged
      with a "foreign interface" (bond0) and will therefore install all
      addresses learnt by the software bridge towards bond0 (including the
      address of eno0 on Box B) as static addresses towards the CPU port.
      
      But that's not what we want - bond0 is not really a "foreign interface"
      but one we can offload including L2 forwarding from/towards it. So we
      need to refine our logic for assisted learning such that, whenever we
      see an address learnt on a non-DSA interface, we search through the tree
      for any port that offloads that non-DSA interface.
      
      Some confusion might arise as to why we search through the whole tree
      instead of just the local switch returned by dsa_slave_dev_lower_find.
      Or a different angle of the same confusion: why does
      dsa_slave_dev_lower_find(br_dev) return a single dp that's under br_dev
      instead of the whole list of bridged DSA ports?
      
      To answer the second question, it should be enough to install the static
      FDB entry on the CPU port of a single switch in the tree, because
      dsa_port_fdb_add uses DSA_NOTIFIER_FDB_ADD which ensures that all other
      switches in the tree get notified of that address, and add the entry
      themselves using dsa_towards_port().
      
      This should help understand the answer to the first question: the port
      returned by dsa_slave_dev_lower_find may not be on the same switch as
      the ports that offload the LAG. Nonetheless, if the driver implements
      .crosschip_lag_join and .crosschip_bridge_join as mv88e6xxx does, there
      still isn't any reason for trapping addresses learnt on the remote LAG
      towards the CPU, and we should prevent that.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      a324d3d4
    • V
      net: dsa: automatically bring user ports down when master goes down · c0a8a9c2
      Vladimir Oltean 提交于
      This is not fixing any actual bug that I know of, but having a DSA
      interface that is up even when its lower (master) interface is down is
      one of those things that just do not sound right.
      
      Yes, DSA checks if the master is up before actually bringing the
      user interface up, but nobody prevents bringing the master interface
      down immediately afterwards... Then the user ports would attempt
      dev_queue_xmit on an interface that is down, and wonder what's wrong.
      
      This patch prevents that from happening. NETDEV_GOING_DOWN is the
      notification emitted _before_ the master actually goes down, and we are
      protected by the rtnl_mutex, so all is well.
      
      For those of you reading this because you were doing switch testing
      such as latency measurements for autonomously forwarded traffic, and you
      needed a controlled environment with no extra packets sent by the
      network stack, this patch breaks that, because now the user ports go
      down too, which may shut down the PHY etc. But please don't do it like
      that, just do instead:
      
      tc qdisc add dev eno2 clsact
      tc filter add dev eno2 egress flower action drop
      
      Tested with two cascaded DSA switches:
      $ ip link set eno2 down
      sja1105 spi2.0 sw0p2: Link is Down
      mscc_felix 0000:00:00.5 swp0: Link is Down
      fsl_enetc 0000:00:00.2 eno2: Link is Down
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NAndrew Lunn <andrew@lunn.ch>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      c0a8a9c2
    • V
      net: dsa: automatically bring up DSA master when opening user port · 9d5ef190
      Vladimir Oltean 提交于
      DSA wants the master interface to be open before the user port is due to
      historical reasons. The promiscuity of interfaces that are down used to
      have issues, as referenced Lennert Buytenhek in commit df02c6ff
      ("dsa: fix master interface allmulti/promisc handling").
      
      The bugfix mentioned there, commit b6c40d68 ("net: only invoke
      dev->change_rx_flags when device is UP"), was basically a "don't do
      that" approach to working around the promiscuity while down issue.
      
      Further work done by Vlad Yasevich in commit d2615bf4 ("net: core:
      Always propagate flag changes to interfaces") has resolved the
      underlying issue, and it is strictly up to the DSA and 8021q drivers
      now, it is no longer mandated by the networking core that the master
      interface must be up when changing its promiscuity.
      
      From DSA's point of view, deciding to error out in dsa_slave_open
      because the master isn't up is
      (a) a bad user experience and
      (b) knocking at an open door.
      Even if there still was an issue with promiscuity while down, DSA could
      still just open the master and avoid it.
      
      Doing it this way has the additional benefit that user space can now
      remove DSA-specific workarounds, like systemd-networkd with BindCarrier:
      https://github.com/systemd/systemd/issues/7478
      
      And we can finally remove one of the 2 bullets in the "Common pitfalls
      using DSA setups" chapter.
      
      Tested with two cascaded DSA switches:
      
      $ ip link set sw0p2 up
      fsl_enetc 0000:00:00.2 eno2: configuring for fixed/internal link mode
      fsl_enetc 0000:00:00.2 eno2: Link is Up - 1Gbps/Full - flow control rx/tx
      mscc_felix 0000:00:00.5 swp0: configuring for fixed/sgmii link mode
      mscc_felix 0000:00:00.5 swp0: Link is Up - 1Gbps/Full - flow control off
      8021q: adding VLAN 0 to HW filter on device swp0
      sja1105 spi2.0 sw0p2: configuring for phy/rgmii-id link mode
      IPv6: ADDRCONF(NETDEV_CHANGE): eno2: link becomes ready
      IPv6: ADDRCONF(NETDEV_CHANGE): swp0: link becomes ready
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NAndrew Lunn <andrew@lunn.ch>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      9d5ef190
  4. 05 2月, 2021 1 次提交
  5. 04 2月, 2021 1 次提交
    • V
      net: dsa: fix SWITCHDEV_ATTR_ID_BRIDGE_VLAN_FILTERING getting ignored · 99b8202b
      Vladimir Oltean 提交于
      The bridge emits VLAN filtering events and quite a few others via
      switchdev with orig_dev = br->dev. After the blamed commit, these events
      started getting ignored.
      
      The point of the patch was to not offload switchdev objects for ports
      that didn't go through dsa_port_bridge_join, because the configuration
      is unsupported:
      - ports that offload a bonding/team interface go through
        dsa_port_bridge_join when that bonding/team interface is later bridged
        with another switch port or LAG
      - ports that don't offload LAG don't get notified of the bridge that is
        on top of that LAG.
      
      Sadly, a check is missing, which is that the orig_dev is equal to the
      bridge device. This check is compatible with the original intention,
      because ports that don't offload bridging because they use a software
      LAG don't have dp->bridge_dev set.
      
      On a semi-related note, we should not offload switchdev objects or
      populate dp->bridge_dev if the driver doesn't implement .port_bridge_join
      either. However there is no regression associated with that, so it can
      be done separately.
      
      Fixes: 5696c8ae ("net: dsa: Don't offload port attributes on standalone ports")
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NTobias Waldekranz <tobias@waldekranz.com>
      Tested-by: NTobias Waldekranz <tobias@waldekranz.com>
      Link: https://lore.kernel.org/r/20210202233109.1591466-1-olteanv@gmail.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
      99b8202b
  6. 30 1月, 2021 5 次提交
    • V
      net: dsa: add a second tagger for Ocelot switches based on tag_8021q · 7c83a7c5
      Vladimir Oltean 提交于
      There are use cases for which the existing tagger, based on the NPI
      (Node Processor Interface) functionality, is insufficient.
      
      Namely:
      - Frames injected through the NPI port bypass the frame analyzer, so no
        source address learning is performed, no TSN stream classification,
        etc.
      - Flow control is not functional over an NPI port (PAUSE frames are
        encapsulated in the same Extraction Frame Header as all other frames)
      - There can be at most one NPI port configured for an Ocelot switch. But
        in NXP LS1028A and T1040 there are two Ethernet CPU ports. The non-NPI
        port is currently either disabled, or operated as a plain user port
        (albeit an internally-facing one). Having the ability to configure the
        two CPU ports symmetrically could pave the way for e.g. creating a LAG
        between them, to increase bandwidth seamlessly for the system.
      
      So there is a desire to have an alternative to the NPI mode. This change
      keeps the default tagger for the Seville and Felix switches as "ocelot",
      but it can be changed via the following device attribute:
      
      echo ocelot-8021q > /sys/class/<dsa-master>/dsa/tagging
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      7c83a7c5
    • V
      net: dsa: allow changing the tag protocol via the "tagging" device attribute · 53da0eba
      Vladimir Oltean 提交于
      Currently DSA exposes the following sysfs:
      $ cat /sys/class/net/eno2/dsa/tagging
      ocelot
      
      which is a read-only device attribute, introduced in the kernel as
      commit 98cdb480 ("net: dsa: Expose tagging protocol to user-space"),
      and used by libpcap since its commit 993db3800d7d ("Add support for DSA
      link-layer types").
      
      It would be nice if we could extend this device attribute by making it
      writable:
      $ echo ocelot-8021q > /sys/class/net/eno2/dsa/tagging
      
      This is useful with DSA switches that can make use of more than one
      tagging protocol. It may be useful in dsa_loop in the future too, to
      perform offline testing of various taggers, or for changing between dsa
      and edsa on Marvell switches, if that is desirable.
      
      In terms of implementation, drivers can support this feature by
      implementing .change_tag_protocol, which should always leave the switch
      in a consistent state: either with the new protocol if things went well,
      or with the old one if something failed. Teardown of the old protocol,
      if necessary, must be handled by the driver.
      
      Some things remain as before:
      - The .get_tag_protocol is currently only called at probe time, to load
        the initial tagging protocol driver. Nonetheless, new drivers should
        report the tagging protocol in current use now.
      - The driver should manage by itself the initial setup of tagging
        protocol, no later than the .setup() method, as well as destroying
        resources used by the last tagger in use, no earlier than the
        .teardown() method.
      
      For multi-switch DSA trees, error handling is a bit more complicated,
      since e.g. the 5th out of 7 switches may fail to change the tag
      protocol. When that happens, a revert to the original tag protocol is
      attempted, but that may fail too, leaving the tree in an inconsistent
      state despite each individual switch implementing .change_tag_protocol
      transactionally. Since the intersection between drivers that implement
      .change_tag_protocol and drivers that support D in DSA is currently the
      empty set, the possibility for this error to happen is ignored for now.
      
      Testing:
      
      $ insmod mscc_felix.ko
      [   79.549784] mscc_felix 0000:00:00.5: Adding to iommu group 14
      [   79.565712] mscc_felix 0000:00:00.5: Failed to register DSA switch: -517
      $ insmod tag_ocelot.ko
      $ rmmod mscc_felix.ko
      $ insmod mscc_felix.ko
      [   97.261724] libphy: VSC9959 internal MDIO bus: probed
      [   97.267363] mscc_felix 0000:00:00.5: Found PCS at internal MDIO address 0
      [   97.274998] mscc_felix 0000:00:00.5: Found PCS at internal MDIO address 1
      [   97.282561] mscc_felix 0000:00:00.5: Found PCS at internal MDIO address 2
      [   97.289700] mscc_felix 0000:00:00.5: Found PCS at internal MDIO address 3
      [   97.599163] mscc_felix 0000:00:00.5 swp0 (uninitialized): PHY [0000:00:00.3:10] driver [Microsemi GE VSC8514 SyncE] (irq=POLL)
      [   97.862034] mscc_felix 0000:00:00.5 swp1 (uninitialized): PHY [0000:00:00.3:11] driver [Microsemi GE VSC8514 SyncE] (irq=POLL)
      [   97.950731] mscc_felix 0000:00:00.5 swp0: configuring for inband/qsgmii link mode
      [   97.964278] 8021q: adding VLAN 0 to HW filter on device swp0
      [   98.146161] mscc_felix 0000:00:00.5 swp2 (uninitialized): PHY [0000:00:00.3:12] driver [Microsemi GE VSC8514 SyncE] (irq=POLL)
      [   98.238649] mscc_felix 0000:00:00.5 swp1: configuring for inband/qsgmii link mode
      [   98.251845] 8021q: adding VLAN 0 to HW filter on device swp1
      [   98.433916] mscc_felix 0000:00:00.5 swp3 (uninitialized): PHY [0000:00:00.3:13] driver [Microsemi GE VSC8514 SyncE] (irq=POLL)
      [   98.485542] mscc_felix 0000:00:00.5: configuring for fixed/internal link mode
      [   98.503584] mscc_felix 0000:00:00.5: Link is Up - 2.5Gbps/Full - flow control rx/tx
      [   98.527948] device eno2 entered promiscuous mode
      [   98.544755] DSA: tree 0 setup
      
      $ ping 10.0.0.1
      PING 10.0.0.1 (10.0.0.1): 56 data bytes
      64 bytes from 10.0.0.1: seq=0 ttl=64 time=2.337 ms
      64 bytes from 10.0.0.1: seq=1 ttl=64 time=0.754 ms
      ^C
       -  10.0.0.1 ping statistics  -
      2 packets transmitted, 2 packets received, 0% packet loss
      round-trip min/avg/max = 0.754/1.545/2.337 ms
      
      $ cat /sys/class/net/eno2/dsa/tagging
      ocelot
      $ cat ./test_ocelot_8021q.sh
              #!/bin/bash
      
              ip link set swp0 down
              ip link set swp1 down
              ip link set swp2 down
              ip link set swp3 down
              ip link set swp5 down
              ip link set eno2 down
              echo ocelot-8021q > /sys/class/net/eno2/dsa/tagging
              ip link set eno2 up
              ip link set swp0 up
              ip link set swp1 up
              ip link set swp2 up
              ip link set swp3 up
              ip link set swp5 up
      $ ./test_ocelot_8021q.sh
      ./test_ocelot_8021q.sh: line 9: echo: write error: Protocol not available
      $ rmmod tag_ocelot.ko
      rmmod: can't unload module 'tag_ocelot': Resource temporarily unavailable
      $ insmod tag_ocelot_8021q.ko
      $ ./test_ocelot_8021q.sh
      $ cat /sys/class/net/eno2/dsa/tagging
      ocelot-8021q
      $ rmmod tag_ocelot.ko
      $ rmmod tag_ocelot_8021q.ko
      rmmod: can't unload module 'tag_ocelot_8021q': Resource temporarily unavailable
      $ ping 10.0.0.1
      PING 10.0.0.1 (10.0.0.1): 56 data bytes
      64 bytes from 10.0.0.1: seq=0 ttl=64 time=0.953 ms
      64 bytes from 10.0.0.1: seq=1 ttl=64 time=0.787 ms
      64 bytes from 10.0.0.1: seq=2 ttl=64 time=0.771 ms
      $ rmmod mscc_felix.ko
      [  645.544426] mscc_felix 0000:00:00.5: Link is Down
      [  645.838608] DSA: tree 0 torn down
      $ rmmod tag_ocelot_8021q.ko
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      53da0eba
    • V
      net: dsa: keep a copy of the tagging protocol in the DSA switch tree · 357f203b
      Vladimir Oltean 提交于
      Cascading DSA switches can be done multiple ways. There is the brute
      force approach / tag stacking, where one upstream switch, located
      between leaf switches and the host Ethernet controller, will just
      happily transport the DSA header of those leaf switches as payload.
      For this kind of setups, DSA works without any special kind of treatment
      compared to a single switch - they just aren't aware of each other.
      Then there's the approach where the upstream switch understands the tags
      it transports from its leaves below, as it doesn't push a tag of its own,
      but it routes based on the source port & switch id information present
      in that tag (as opposed to DMAC & VID) and it strips the tag when
      egressing a front-facing port. Currently only Marvell implements the
      latter, and Marvell DSA trees contain only Marvell switches.
      
      So it is safe to say that DSA trees already have a single tag protocol
      shared by all switches, and in fact this is what makes the switches able
      to understand each other. This fact is also implied by the fact that
      currently, the tagging protocol is reported as part of a sysfs installed
      on the DSA master and not per port, so it must be the same for all the
      ports connected to that DSA master regardless of the switch that they
      belong to.
      
      It's time to make this official and enforce it (yes, this also means we
      won't have any "switch understands tag to some extent but is not able to
      speak it" hardware oddities that we'll support in the future).
      
      This is needed due to the imminent introduction of the dsa_switch_ops::
      change_tag_protocol driver API. When that is introduced, we'll have
      to notify switches of the tagging protocol that they're configured to
      use. Currently the tag_ops structure pointer is held only for CPU ports.
      But there are switches which don't have CPU ports and nonetheless still
      need to be configured. These would be Marvell leaf switches whose
      upstream port is just a DSA link. How do we inform these of their
      tagging protocol setup/deletion?
      
      One answer to the above would be: iterate through the DSA switch tree's
      ports once, list the CPU ports, get their tag_ops, then iterate again
      now that we have it, and notify everybody of that tag_ops. But what to
      do if conflicts appear between one cpu_dp->tag_ops and another? There's
      no escaping the fact that conflict resolution needs to be done, so we
      can be upfront about it.
      
      Ease our work and just keep the master copy of the tag_ops inside the
      struct dsa_switch_tree. Reference counting is now moved to be per-tree
      too, instead of per-CPU port.
      
      There are many places in the data path that access master->dsa_ptr->tag_ops
      and we would introduce unnecessary performance penalty going through yet
      another indirection, so keep those right where they are.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      357f203b
    • V
      net: dsa: document the existing switch tree notifiers and add a new one · 886f8e26
      Vladimir Oltean 提交于
      The existence of dsa_broadcast has generated some confusion in the past:
      https://www.mail-archive.com/netdev@vger.kernel.org/msg365042.html
      
      So let's document the existing dsa_port_notify and dsa_broadcast
      functions and explain when each of them should be used.
      
      Also, in fact, the in-between function has always been there but was
      lacking a name, and is the main reason for this patch: dsa_tree_notify.
      Refactor dsa_broadcast to use it.
      
      This patch also moves dsa_broadcast (a top-level function) to dsa2.c,
      where it really belonged in the first place, but had no companion so it
      stood with dsa_port_notify.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      886f8e26
    • V
      net: dsa: tag_8021q: add helpers to deduce whether a VLAN ID is RX or TX VLAN · 9c7caf28
      Vladimir Oltean 提交于
      The sja1105 implementation can be blind about this, but the felix driver
      doesn't do exactly what it's being told, so it needs to know whether it
      is a TX or an RX VLAN, so it can install the appropriate type of TCAM
      rule.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      9c7caf28
  7. 16 1月, 2021 3 次提交
    • V
      net: dsa: add ops for devlink-sb · 2a6ef763
      Vladimir Oltean 提交于
      Switches that care about QoS might have hardware support for reserving
      buffer pools for individual ports or traffic classes, and configuring
      their sizes and thresholds. Through devlink-sb (shared buffers), this is
      all configurable, as well as their occupancy being viewable.
      
      Add the plumbing in DSA for these operations.
      
      Individual drivers still need to call devlink_sb_register() with the
      shared buffers they want to expose. A helper was not created in DSA for
      this purpose (unlike, say, dsa_devlink_params_register), since in my
      opinion it does not bring any benefit over plainly calling
      devlink_sb_register() directly.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NAndrew Lunn <andrew@lunn.ch>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      2a6ef763
    • V
      net: dsa: set configure_vlan_while_not_filtering to true by default · 0ee2af4e
      Vladimir Oltean 提交于
      As explained in commit 54a0ed0d ("net: dsa: provide an option for
      drivers to always receive bridge VLANs"), DSA has historically been
      skipping VLAN switchdev operations when the bridge wasn't in
      vlan_filtering mode, but the reason why it was doing that has never been
      clear. So the configure_vlan_while_not_filtering option is there merely
      to preserve functionality for existing drivers. It isn't some behavior
      that drivers should opt into. Ideally, when all drivers leave this flag
      set, we can delete the dsa_port_skip_vlan_configuration() function.
      
      New drivers always seem to omit setting this flag, for some reason. So
      let's reverse the logic: the DSA core sets it by default to true before
      the .setup() callback, and legacy drivers can turn it off. This way, new
      drivers get the new behavior by default, unless they explicitly set the
      flag to false, which is more obvious during review.
      
      Remove the assignment from drivers which were setting it to true, and
      add the assignment to false for the drivers that didn't previously have
      it. This way, it should be easier to see how many we have left.
      
      The following drivers: lan9303, mv88e6060 were skipped from setting this
      flag to false, because they didn't have any VLAN offload ops in the
      first place.
      
      The Broadcom Starfighter 2 driver calls the common b53_switch_alloc and
      therefore also inherits the configure_vlan_while_not_filtering=true
      behavior.
      
      Also, print a message through netlink extack every time a VLAN has been
      skipped. This is mildly annoying on purpose, so that (a) it is at least
      clear that VLANs are being skipped - the legacy behavior in itself is
      confusing, and the extack should be much more difficult to miss, unlike
      kernel logs - and (b) people have one more incentive to convert to the
      new behavior.
      
      No behavior change except for the added prints is intended at this time.
      
      $ ip link add br0 type bridge vlan_filtering 0
      $ ip link set sw0p2 master br0
      [   60.315148] br0: port 1(sw0p2) entered blocking state
      [   60.320350] br0: port 1(sw0p2) entered disabled state
      [   60.327839] device sw0p2 entered promiscuous mode
      [   60.334905] br0: port 1(sw0p2) entered blocking state
      [   60.340142] br0: port 1(sw0p2) entered forwarding state
      Warning: dsa_core: skipping configuration of VLAN. # This was the pvid
      $ bridge vlan add dev sw0p2 vid 100
      Warning: dsa_core: skipping configuration of VLAN.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NKurt Kanzenbach <kurt@linutronix.de>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Link: https://lore.kernel.org/r/20210115231919.43834-1-vladimir.oltean@nxp.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
      0ee2af4e
    • G
      dsa: add support for Arrow XRS700x tag trailer · 54a52823
      George McCollister 提交于
      Add support for Arrow SpeedChips XRS700x single byte tag trailer. This
      is modeled on tag_trailer.c which works in a similar way.
      Signed-off-by: NGeorge McCollister <george.mccollister@gmail.com>
      Reviewed-by: NAndrew Lunn <andrew@lunn.ch>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Reviewed-by: NVladimir Oltean <olteanv@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      54a52823
  8. 15 1月, 2021 3 次提交
    • T
      net: dsa: tag_dsa: Support reception of packets from LAG devices · 5b60dadb
      Tobias Waldekranz 提交于
      Packets ingressing on a LAG that egress on the CPU port, which are not
      classified as management, will have a FORWARD tag that does not
      contain the normal source device/port tuple. Instead the trunk bit
      will be set, and the port field holds the LAG id.
      
      Since the exact source port information is not available in the tag,
      frames are injected directly on the LAG interface and thus do never
      pass through any DSA port interface on ingress.
      
      Management frames (TO_CPU) are not affected and will pass through the
      DSA port interface as usual.
      Signed-off-by: NTobias Waldekranz <tobias@waldekranz.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Reviewed-by: NVladimir Oltean <olteanv@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      5b60dadb
    • T
      net: dsa: Link aggregation support · 058102a6
      Tobias Waldekranz 提交于
      Monitor the following events and notify the driver when:
      
      - A DSA port joins/leaves a LAG.
      - A LAG, made up of DSA ports, joins/leaves a bridge.
      - A DSA port in a LAG is enabled/disabled (enabled meaning
        "distributing" in 802.3ad LACP terms).
      
      When a LAG joins a bridge, the DSA subsystem will treat that as each
      individual port joining the bridge. The driver may look at the port's
      LAG device pointer to see if it is associated with any LAG, if that is
      required. This is analogue to how switchdev events are replicated out
      to all lower devices when reaching e.g. a LAG.
      
      Drivers can optionally request that DSA maintain a linear mapping from
      a LAG ID to the corresponding netdev by setting ds->num_lag_ids to the
      desired size.
      
      In the event that the hardware is not capable of offloading a
      particular LAG for any reason (the typical case being use of exotic
      modes like broadcast), DSA will take a hands-off approach, allowing
      the LAG to be formed as a pure software construct. This is reported
      back through the extended ACK, but is otherwise transparent to the
      user.
      Signed-off-by: NTobias Waldekranz <tobias@waldekranz.com>
      Reviewed-by: NVladimir Oltean <olteanv@gmail.com>
      Tested-by: NVladimir Oltean <olteanv@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      058102a6
    • T
      net: dsa: Don't offload port attributes on standalone ports · 5696c8ae
      Tobias Waldekranz 提交于
      In a situation where a standalone port is indirectly attached to a
      bridge (e.g. via a LAG) which is not offloaded, do not offload any
      port attributes either. The port should behave as a standard NIC.
      
      Previously, on mv88e6xxx, this meant that in the following setup:
      
           br0
           /
        team0
         / \
      swp0 swp1
      
      If vlan filtering was enabled on br0, swp0's and swp1's QMode was set
      to "secure". This caused all untagged packets to be dropped, as their
      default VID (0) was not loaded into the VTU.
      Signed-off-by: NTobias Waldekranz <tobias@waldekranz.com>
      Reviewed-by: NVladimir Oltean <olteanv@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      5696c8ae
  9. 13 1月, 2021 3 次提交
    • O
      net: dsa: add optional stats64 support · c2ec5f2e
      Oleksij Rempel 提交于
      Allow DSA drivers to export stats64
      Signed-off-by: NOleksij Rempel <o.rempel@pengutronix.de>
      Reviewed-by: NVladimir Oltean <olteanv@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      c2ec5f2e
    • V
      net: dsa: clear devlink port type before unregistering slave netdevs · 91158e16
      Vladimir Oltean 提交于
      Florian reported a use-after-free bug in devlink_nl_port_fill found with
      KASAN:
      
      (devlink_nl_port_fill)
      (devlink_port_notify)
      (devlink_port_unregister)
      (dsa_switch_teardown.part.3)
      (dsa_tree_teardown_switches)
      (dsa_unregister_switch)
      (bcm_sf2_sw_remove)
      (platform_remove)
      (device_release_driver_internal)
      (device_links_unbind_consumers)
      (device_release_driver_internal)
      (device_driver_detach)
      (unbind_store)
      
      Allocated by task 31:
       alloc_netdev_mqs+0x5c/0x50c
       dsa_slave_create+0x110/0x9c8
       dsa_register_switch+0xdb0/0x13a4
       b53_switch_register+0x47c/0x6dc
       bcm_sf2_sw_probe+0xaa4/0xc98
       platform_probe+0x90/0xf4
       really_probe+0x184/0x728
       driver_probe_device+0xa4/0x278
       __device_attach_driver+0xe8/0x148
       bus_for_each_drv+0x108/0x158
      
      Freed by task 249:
       free_netdev+0x170/0x194
       dsa_slave_destroy+0xac/0xb0
       dsa_port_teardown.part.2+0xa0/0xb4
       dsa_tree_teardown_switches+0x50/0xc4
       dsa_unregister_switch+0x124/0x250
       bcm_sf2_sw_remove+0x98/0x13c
       platform_remove+0x44/0x5c
       device_release_driver_internal+0x150/0x254
       device_links_unbind_consumers+0xf8/0x12c
       device_release_driver_internal+0x84/0x254
       device_driver_detach+0x30/0x34
       unbind_store+0x90/0x134
      
      What happens is that devlink_port_unregister emits a netlink
      DEVLINK_CMD_PORT_DEL message which associates the devlink port that is
      getting unregistered with the ifindex of its corresponding net_device.
      Only trouble is, the net_device has already been unregistered.
      
      It looks like we can stub out the search for a corresponding net_device
      if we clear the devlink_port's type. This looks like a bit of a hack,
      but also seems to be the reason why the devlink_port_type_clear function
      exists in the first place.
      
      Fixes: 3122433e ("net: dsa: Register devlink ports before calling DSA driver setup()")
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Tested-by: NFlorian fainelli <f.fainelli@gmail.com>
      Reported-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Link: https://lore.kernel.org/r/20210112004831.3778323-1-olteanv@gmail.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
      91158e16
    • V
      net: dsa: unbind all switches from tree when DSA master unbinds · 07b90056
      Vladimir Oltean 提交于
      Currently the following happens when a DSA master driver unbinds while
      there are DSA switches attached to it:
      
      $ echo 0000:00:00.5 > /sys/bus/pci/drivers/mscc_felix/unbind
      ------------[ cut here ]------------
      WARNING: CPU: 0 PID: 392 at net/core/dev.c:9507
      Call trace:
       rollback_registered_many+0x5fc/0x688
       unregister_netdevice_queue+0x98/0x120
       dsa_slave_destroy+0x4c/0x88
       dsa_port_teardown.part.16+0x78/0xb0
       dsa_tree_teardown_switches+0x58/0xc0
       dsa_unregister_switch+0x104/0x1b8
       felix_pci_remove+0x24/0x48
       pci_device_remove+0x48/0xf0
       device_release_driver_internal+0x118/0x1e8
       device_driver_detach+0x28/0x38
       unbind_store+0xd0/0x100
      
      Located at the above location is this WARN_ON:
      
      	/* Notifier chain MUST detach us all upper devices. */
      	WARN_ON(netdev_has_any_upper_dev(dev));
      
      Other stacked interfaces, like VLAN, do indeed listen for
      NETDEV_UNREGISTER on the real_dev and also unregister themselves at that
      time, which is clearly the behavior that rollback_registered_many
      expects. But DSA interfaces are not VLAN. They have backing hardware
      (platform devices, PCI devices, MDIO, SPI etc) which have a life cycle
      of their own and we can't just trigger an unregister from the DSA
      framework when we receive a netdev notifier that the master unregisters.
      
      Luckily, there is something we can do, and that is to inform the driver
      core that we have a runtime dependency to the DSA master interface's
      device, and create a device link where that is the supplier and we are
      the consumer. Having this device link will make the DSA switch unbind
      before the DSA master unbinds, which is enough to avoid the WARN_ON from
      rollback_registered_many.
      
      Note that even before the blamed commit, DSA did nothing intelligent
      when the master interface got unregistered either. See the discussion
      here:
      https://lore.kernel.org/netdev/20200505210253.20311-1-f.fainelli@gmail.com/
      But this time, at least the WARN_ON is loud enough that the
      upper_dev_link commit can be blamed.
      
      The advantage with this approach vs dev_hold(master) in the attached
      link is that the latter is not meant for long term reference counting.
      With dev_hold, the only thing that will happen is that when the user
      attempts an unbind of the DSA master, netdev_wait_allrefs will keep
      waiting and waiting, due to DSA keeping the refcount forever. DSA would
      not access freed memory corresponding to the master interface, but the
      unbind would still result in a freeze. Whereas with device links,
      graceful teardown is ensured. It even works with cascaded DSA trees.
      
      $ echo 0000:00:00.2 > /sys/bus/pci/drivers/fsl_enetc/unbind
      [ 1818.797546] device swp0 left promiscuous mode
      [ 1819.301112] sja1105 spi2.0: Link is Down
      [ 1819.307981] DSA: tree 1 torn down
      [ 1819.312408] device eno2 left promiscuous mode
      [ 1819.656803] mscc_felix 0000:00:00.5: Link is Down
      [ 1819.667194] DSA: tree 0 torn down
      [ 1819.711557] fsl_enetc 0000:00:00.2 eno2: Link is Down
      
      This approach allows us to keep the DSA framework absolutely unchanged,
      and the driver core will just know to unbind us first when the master
      goes away - as opposed to the large (and probably impossible) rework
      required if attempting to listen for NETDEV_UNREGISTER.
      
      As per the documentation at Documentation/driver-api/device_link.rst,
      specifying the DL_FLAG_AUTOREMOVE_CONSUMER flag causes the device link
      to be automatically purged when the consumer fails to probe or later
      unbinds. So we don't need to keep the consumer_link variable in struct
      dsa_switch.
      
      Fixes: 2f1e8ea7 ("net: dsa: link interfaces with the DSA master to get rid of lockdep warnings")
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Tested-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Link: https://lore.kernel.org/r/20210111230943.3701806-1-olteanv@gmail.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
      07b90056
  10. 12 1月, 2021 7 次提交
    • V
      net: dsa: remove obsolete comments about switchdev transactions · 417b99bf
      Vladimir Oltean 提交于
      Now that all port object notifiers were converted to be non-transactional,
      we can remove the comments that say otherwise.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Acked-by: NLinus Walleij <linus.walleij@linaro.org>
      Acked-by: NJiri Pirko <jiri@nvidia.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      417b99bf
    • V
      net: dsa: remove the transactional logic from VLAN objects · 1958d581
      Vladimir Oltean 提交于
      It should be the driver's business to logically separate its VLAN
      offloading into a preparation and a commit phase, and some drivers don't
      need / can't do this.
      
      So remove the transactional shim from DSA and let drivers propagate
      errors directly from the .port_vlan_add callback.
      
      It would appear that the code has worse error handling now than it had
      before. DSA is the only in-kernel user of switchdev that offloads one
      switchdev object to more than one port: for every VLAN object offloaded
      to a user port, that VLAN is also offloaded to the CPU port. So the
      "prepare for user port -> check for errors -> prepare for CPU port ->
      check for errors -> commit for user port -> commit for CPU port"
      sequence appears to make more sense than the one we are using now:
      "offload to user port -> check for errors -> offload to CPU port ->
      check for errors", but it is really a compromise. In the new way, we can
      catch errors from the commit phase that we previously had to ignore.
      But we have our hands tied and cannot do any rollback now: if we add a
      VLAN on the CPU port and it fails, we can't do the rollback by simply
      deleting it from the user port, because the switchdev API is not so nice
      with us: it could have simply been there already, even with the same
      flags. So we don't even attempt to rollback anything on addition error,
      just leave whatever VLANs managed to get offloaded right where they are.
      This should not be a problem at all in practice.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Acked-by: NLinus Walleij <linus.walleij@linaro.org>
      Acked-by: NJiri Pirko <jiri@nvidia.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      1958d581
    • V
      net: dsa: remove the transactional logic from MDB entries · a52b2da7
      Vladimir Oltean 提交于
      For many drivers, the .port_mdb_prepare callback was not a good opportunity
      to avoid any error condition, and they would suppress errors found during
      the actual commit phase.
      
      Where a logical separation between the prepare and the commit phase
      existed, the function that used to implement the .port_mdb_prepare
      callback still exists, but now it is called directly from .port_mdb_add,
      which was modified to return an int code.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Acked-by: NLinus Walleij <linus.walleij@linaro.org>
      Acked-by: NJiri Pirko <jiri@nvidia.com>
      Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek
      Reviewed-by: Linus Wallei <linus.walleij@linaro.org> # RTL8366
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      a52b2da7
    • V
      net: dsa: remove the transactional logic from ageing time notifiers · 77b61365
      Vladimir Oltean 提交于
      Remove the shim introduced in DSA for offloading the bridge ageing time
      from switchdev, by first checking whether the ageing time is within the
      range limits requested by the driver.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Acked-by: NLinus Walleij <linus.walleij@linaro.org>
      Acked-by: NJiri Pirko <jiri@nvidia.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      77b61365
    • V
      net: switchdev: remove the transaction structure from port attributes · bae33f2b
      Vladimir Oltean 提交于
      Since the introduction of the switchdev API, port attributes were
      transmitted to drivers for offloading using a two-step transactional
      model, with a prepare phase that was supposed to catch all errors, and a
      commit phase that was supposed to never fail.
      
      Some classes of failures can never be avoided, like hardware access, or
      memory allocation. In the latter case, merely attempting to move the
      memory allocation to the preparation phase makes it impossible to avoid
      memory leaks, since commit 91cf8ece ("switchdev: Remove unused
      transaction item queue") which has removed the unused mechanism of
      passing on the allocated memory between one phase and another.
      
      It is time we admit that separating the preparation from the commit
      phase is something that is best left for the driver to decide, and not
      something that should be baked into the API, especially since there are
      no switchdev callers that depend on this.
      
      This patch removes the struct switchdev_trans member from switchdev port
      attribute notifier structures, and converts drivers to not look at this
      member.
      
      In part, this patch contains a revert of my previous commit 2e554a7a
      ("net: dsa: propagate switchdev vlan_filtering prepare phase to
      drivers").
      
      For the most part, the conversion was trivial except for:
      - Rocker's world implementation based on Broadcom OF-DPA had an odd
        implementation of ofdpa_port_attr_bridge_flags_set. The conversion was
        done mechanically, by pasting the implementation twice, then only
        keeping the code that would get executed during prepare phase on top,
        then only keeping the code that gets executed during the commit phase
        on bottom, then simplifying the resulting code until this was obtained.
      - DSA's offloading of STP state, bridge flags, VLAN filtering and
        multicast router could be converted right away. But the ageing time
        could not, so a shim was introduced and this was left for a further
        commit.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Acked-by: NLinus Walleij <linus.walleij@linaro.org>
      Acked-by: NJiri Pirko <jiri@nvidia.com>
      Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek
      Reviewed-by: Linus Walleij <linus.walleij@linaro.org> # RTL8366RB
      Reviewed-by: NIdo Schimmel <idosch@nvidia.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      bae33f2b
    • V
      net: switchdev: remove the transaction structure from port object notifiers · ffb68fc5
      Vladimir Oltean 提交于
      Since the introduction of the switchdev API, port objects were
      transmitted to drivers for offloading using a two-step transactional
      model, with a prepare phase that was supposed to catch all errors, and a
      commit phase that was supposed to never fail.
      
      Some classes of failures can never be avoided, like hardware access, or
      memory allocation. In the latter case, merely attempting to move the
      memory allocation to the preparation phase makes it impossible to avoid
      memory leaks, since commit 91cf8ece ("switchdev: Remove unused
      transaction item queue") which has removed the unused mechanism of
      passing on the allocated memory between one phase and another.
      
      It is time we admit that separating the preparation from the commit
      phase is something that is best left for the driver to decide, and not
      something that should be baked into the API, especially since there are
      no switchdev callers that depend on this.
      
      This patch removes the struct switchdev_trans member from switchdev port
      object notifier structures, and converts drivers to not look at this
      member.
      
      Where driver conversion is trivial (like in the case of the Marvell
      Prestera driver, NXP DPAA2 switch, TI CPSW, and Rocker drivers), it is
      done in this patch.
      
      Where driver conversion needs more attention (DSA, Mellanox Spectrum),
      the conversion is left for subsequent patches and here we only fake the
      prepare/commit phases at a lower level, just not in the switchdev
      notifier itself.
      
      Where the code has a natural structure that is best left alone as a
      preparation and a commit phase (as in the case of the Ocelot switch),
      that structure is left in place, just made to not depend upon the
      switchdev transactional model.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Acked-by: NLinus Walleij <linus.walleij@linaro.org>
      Acked-by: NJiri Pirko <jiri@nvidia.com>
      Reviewed-by: NIdo Schimmel <idosch@nvidia.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      ffb68fc5
    • V
      net: switchdev: remove vid_begin -> vid_end range from VLAN objects · b7a9e0da
      Vladimir Oltean 提交于
      The call path of a switchdev VLAN addition to the bridge looks something
      like this today:
      
              nbp_vlan_init
              |  __br_vlan_set_default_pvid
              |  |                       |
              |  |    br_afspec          |
              |  |        |              |
              |  |        v              |
              |  | br_process_vlan_info  |
              |  |        |              |
              |  |        v              |
              |  |   br_vlan_info        |
              |  |       / \            /
              |  |      /   \          /
              |  |     /     \        /
              |  |    /       \      /
              v  v   v         v    v
            nbp_vlan_add   br_vlan_add ------+
             |              ^      ^ |       |
             |             /       | |       |
             |            /       /  /       |
             \ br_vlan_get_master/  /        v
              \        ^        /  /  br_vlan_add_existing
               \       |       /  /          |
                \      |      /  /          /
                 \     |     /  /          /
                  \    |    /  /          /
                   \   |   /  /          /
                    v  |   | v          /
                    __vlan_add         /
                       / |            /
                      /  |           /
                     v   |          /
         __vlan_vid_add  |         /
                     \   |        /
                      v  v        v
            br_switchdev_port_vlan_add
      
      The ranges UAPI was introduced to the bridge in commit bdced7ef
      ("bridge: support for multiple vlans and vlan ranges in setlink and
      dellink requests") (Jan 10 2015). But the VLAN ranges (parsed in br_afspec)
      have always been passed one by one, through struct bridge_vlan_info
      tmp_vinfo, to br_vlan_info. So the range never went too far in depth.
      
      Then Scott Feldman introduced the switchdev_port_bridge_setlink function
      in commit 47f8328b ("switchdev: add new switchdev bridge setlink").
      That marked the introduction of the SWITCHDEV_OBJ_PORT_VLAN, which made
      full use of the range. But switchdev_port_bridge_setlink was called like
      this:
      
      br_setlink
      -> br_afspec
      -> switchdev_port_bridge_setlink
      
      Basically, the switchdev and the bridge code were not tightly integrated.
      Then commit 41c498b9 ("bridge: restore br_setlink back to original")
      came, and switchdev drivers were required to implement
      .ndo_bridge_setlink = switchdev_port_bridge_setlink for a while.
      
      In the meantime, commits such as 0944d6b5 ("bridge: try switchdev op
      first in __vlan_vid_add/del") finally made switchdev penetrate the
      br_vlan_info() barrier and start to develop the call path we have today.
      But remember, br_vlan_info() still receives VLANs one by one.
      
      Then Arkadi Sharshevsky refactored the switchdev API in 2017 in commit
      29ab586c ("net: switchdev: Remove bridge bypass support from
      switchdev") so that drivers would not implement .ndo_bridge_setlink any
      longer. The switchdev_port_bridge_setlink also got deleted.
      This refactoring removed the parallel bridge_setlink implementation from
      switchdev, and left the only switchdev VLAN objects to be the ones
      offloaded from __vlan_vid_add (basically RX filtering) and  __vlan_add
      (the latter coming from commit 9c86ce2c ("net: bridge: Notify about
      bridge VLANs")).
      
      That is to say, today the switchdev VLAN object ranges are not used in
      the kernel. Refactoring the above call path is a bit complicated, when
      the bridge VLAN call path is already a bit complicated.
      
      Let's go off and finish the job of commit 29ab586c by deleting the
      bogus iteration through the VLAN ranges from the drivers. Some aspects
      of this feature never made too much sense in the first place. For
      example, what is a range of VLANs all having the BRIDGE_VLAN_INFO_PVID
      flag supposed to mean, when a port can obviously have a single pvid?
      This particular configuration _is_ denied as of commit 6623c60d
      ("bridge: vlan: enforce no pvid flag in vlan ranges"), but from an API
      perspective, the driver still has to play pretend, and only offload the
      vlan->vid_end as pvid. And the addition of a switchdev VLAN object can
      modify the flags of another, completely unrelated, switchdev VLAN
      object! (a VLAN that is PVID will invalidate the PVID flag from whatever
      other VLAN had previously been offloaded with switchdev and had that
      flag. Yet switchdev never notifies about that change, drivers are
      supposed to guess).
      
      Nonetheless, having a VLAN range in the API makes error handling look
      scarier than it really is - unwinding on errors and all of that.
      When in reality, no one really calls this API with more than one VLAN.
      It is all unnecessary complexity.
      
      And despite appearing pretentious (two-phase transactional model and
      all), the switchdev API is really sloppy because the VLAN addition and
      removal operations are not paired with one another (you can add a VLAN
      100 times and delete it just once). The bridge notifies through
      switchdev of a VLAN addition not only when the flags of an existing VLAN
      change, but also when nothing changes. There are switchdev drivers out
      there who don't like adding a VLAN that has already been added, and
      those checks don't really belong at driver level. But the fact that the
      API contains ranges is yet another factor that prevents this from being
      addressed in the future.
      
      Of the existing switchdev pieces of hardware, it appears that only
      Mellanox Spectrum supports offloading more than one VLAN at a time,
      through mlxsw_sp_port_vlan_set. I have kept that code internal to the
      driver, because there is some more bookkeeping that makes use of it, but
      I deleted it from the switchdev API. But since the switchdev support for
      ranges has already been de facto deleted by a Mellanox employee and
      nobody noticed for 4 years, I'm going to assume it's not a biggie.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: Ido Schimmel <idosch@nvidia.com> # switchdev and mlxsw
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      b7a9e0da
  11. 10 1月, 2021 1 次提交
  12. 08 1月, 2021 7 次提交
    • V
      net: dsa: remove the DSA specific notifiers · 1dbb1302
      Vladimir Oltean 提交于
      This effectively reverts commit 60724d4b ("net: dsa: Add support for
      DSA specific notifiers"). The reason is that since commit 2f1e8ea7
      ("net: dsa: link interfaces with the DSA master to get rid of lockdep
      warnings"), it appears that there is a generic way to achieve the same
      purpose. The only user thus far, the Broadcom SYSTEMPORT driver, was
      converted to use the generic notifiers.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Acked-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      1dbb1302
    • V
      net: dsa: export dsa_slave_dev_check · a5e3c9ba
      Vladimir Oltean 提交于
      Using the NETDEV_CHANGEUPPER notifications, drivers can be aware when
      they are enslaved to e.g. a bridge by calling netif_is_bridge_master().
      
      Export this helper from DSA to get the equivalent functionality of
      determining whether the upper interface of a CHANGEUPPER notifier is a
      DSA switch interface or not.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Acked-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      a5e3c9ba
    • V
      net: dsa: move the Broadcom tag information in a separate header file · f46b9b8e
      Vladimir Oltean 提交于
      It is a bit strange to see something as specific as Broadcom SYSTEMPORT
      bits in the main DSA include file. Move these away into a separate
      header, and have the tagger and the SYSTEMPORT driver include them.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Acked-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      f46b9b8e
    • V
      net: dsa: listen for SWITCHDEV_{FDB,DEL}_ADD_TO_DEVICE on foreign bridge neighbors · d5f19486
      Vladimir Oltean 提交于
      Some DSA switches (and not only) cannot learn source MAC addresses from
      packets injected from the CPU. They only perform hardware address
      learning from inbound traffic.
      
      This can be problematic when we have a bridge spanning some DSA switch
      ports and some non-DSA ports (which we'll call "foreign interfaces" from
      DSA's perspective).
      
      There are 2 classes of problems created by the lack of learning on
      CPU-injected traffic:
      - excessive flooding, due to the fact that DSA treats those addresses as
        unknown
      - the risk of stale routes, which can lead to temporary packet loss
      
      To illustrate the second class, consider the following situation, which
      is common in production equipment (wireless access points, where there
      is a WLAN interface and an Ethernet switch, and these form a single
      bridging domain).
      
       AP 1:
       +------------------------------------------------------------------------+
       |                                          br0                           |
       +------------------------------------------------------------------------+
       +------------+ +------------+ +------------+ +------------+ +------------+
       |    swp0    | |    swp1    | |    swp2    | |    swp3    | |    wlan0   |
       +------------+ +------------+ +------------+ +------------+ +------------+
             |                                                       ^        ^
             |                                                       |        |
             |                                                       |        |
             |                                                    Client A  Client B
             |
             |
             |
       +------------+ +------------+ +------------+ +------------+ +------------+
       |    swp0    | |    swp1    | |    swp2    | |    swp3    | |    wlan0   |
       +------------+ +------------+ +------------+ +------------+ +------------+
       +------------------------------------------------------------------------+
       |                                          br0                           |
       +------------------------------------------------------------------------+
       AP 2
      
      - br0 of AP 1 will know that Clients A and B are reachable via wlan0
      - the hardware fdb of a DSA switch driver today is not kept in sync with
        the software entries on other bridge ports, so it will not know that
        clients A and B are reachable via the CPU port UNLESS the hardware
        switch itself performs SA learning from traffic injected from the CPU.
        Nonetheless, a substantial number of switches don't.
      - the hardware fdb of the DSA switch on AP 2 may autonomously learn that
        Client A and B are reachable through swp0. Therefore, the software br0
        of AP 2 also may or may not learn this. In the example we're
        illustrating, some Ethernet traffic has been going on, and br0 from AP
        2 has indeed learnt that it can reach Client B through swp0.
      
      One of the wireless clients, say Client B, disconnects from AP 1 and
      roams to AP 2. The topology now looks like this:
      
       AP 1:
       +------------------------------------------------------------------------+
       |                                          br0                           |
       +------------------------------------------------------------------------+
       +------------+ +------------+ +------------+ +------------+ +------------+
       |    swp0    | |    swp1    | |    swp2    | |    swp3    | |    wlan0   |
       +------------+ +------------+ +------------+ +------------+ +------------+
             |                                                            ^
             |                                                            |
             |                                                         Client A
             |
             |
             |                                                         Client B
             |                                                            |
             |                                                            v
       +------------+ +------------+ +------------+ +------------+ +------------+
       |    swp0    | |    swp1    | |    swp2    | |    swp3    | |    wlan0   |
       +------------+ +------------+ +------------+ +------------+ +------------+
       +------------------------------------------------------------------------+
       |                                          br0                           |
       +------------------------------------------------------------------------+
       AP 2
      
      - br0 of AP 1 still knows that Client A is reachable via wlan0 (no change)
      - br0 of AP 1 will (possibly) know that Client B has left wlan0. There
        are cases where it might never find out though. Either way, DSA today
        does not process that notification in any way.
      - the hardware FDB of the DSA switch on AP 1 may learn autonomously that
        Client B can be reached via swp0, if it receives any packet with
        Client 1's source MAC address over Ethernet.
      - the hardware FDB of the DSA switch on AP 2 still thinks that Client B
        can be reached via swp0. It does not know that it has roamed to wlan0,
        because it doesn't perform SA learning from the CPU port.
      
      Now Client A contacts Client B.
      AP 1 routes the packet fine towards swp0 and delivers it on the Ethernet
      segment.
      AP 2 sees a frame on swp0 and its fdb says that the destination is swp0.
      Hairpinning is disabled => drop.
      
      This problem comes from the fact that these switches have a 'blind spot'
      for addresses coming from software bridging. The generic solution is not
      to assume that hardware learning can be enabled somehow, but to listen
      to more bridge learning events. It turns out that the bridge driver does
      learn in software from all inbound frames, in __br_handle_local_finish.
      A proper SWITCHDEV_FDB_ADD_TO_DEVICE notification is emitted for the
      addresses serviced by the bridge on 'foreign' interfaces. The software
      bridge also does the right thing on migration, by notifying that the old
      entry is deleted, so that does not need to be special-cased in DSA. When
      it is deleted, we just need to delete our static FDB entry towards the
      CPU too, and wait.
      
      The problem is that DSA currently only cares about SWITCHDEV_FDB_ADD_TO_DEVICE
      events received on its own interfaces, such as static FDB entries.
      
      Luckily we can change that, and DSA can listen to all switchdev FDB
      add/del events in the system and figure out if those events were emitted
      by a bridge that spans at least one of DSA's own ports. In case that is
      true, DSA will also offload that address towards its own CPU port, in
      the eventuality that there might be bridge clients attached to the DSA
      switch who want to talk to the station connected to the foreign
      interface.
      
      In terms of implementation, we need to keep the fdb_info->added_by_user
      check for the case where the switchdev event was targeted directly at a
      DSA switch port. But we don't need to look at that flag for snooped
      events. So the check is currently too late, we need to move it earlier.
      This also simplifies the code a bit, since we avoid uselessly allocating
      and freeing switchdev_work.
      
      We could probably do some improvements in the future. For example,
      multi-bridge support is rudimentary at the moment. If there are two
      bridges spanning a DSA switch's ports, and both of them need to service
      the same MAC address, then what will happen is that the migration of one
      of those stations will trigger the deletion of the FDB entry from the
      CPU port while it is still used by other bridge. That could be improved
      with reference counting but is left for another time.
      
      This behavior needs to be enabled at driver level by setting
      ds->assisted_learning_on_cpu_port = true. This is because we don't want
      to inflict a potential performance penalty (accesses through
      MDIO/I2C/SPI are expensive) to hardware that really doesn't need it
      because address learning on the CPU port works there.
      Reported-by: NDENG Qingfang <dqfext@gmail.com>
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Reviewed-by: NAndrew Lunn <andrew@lunn.ch>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      d5f19486
    • V
      net: dsa: exit early in dsa_slave_switchdev_event if we can't program the FDB · 5fb4a451
      Vladimir Oltean 提交于
      Right now, the following would happen for a switch driver that does not
      implement .port_fdb_add or .port_fdb_del.
      
      dsa_slave_switchdev_event returns NOTIFY_OK and schedules:
      -> dsa_slave_switchdev_event_work
         -> dsa_port_fdb_add
            -> dsa_port_notify(DSA_NOTIFIER_FDB_ADD)
               -> dsa_switch_fdb_add
                  -> if (!ds->ops->port_fdb_add) return -EOPNOTSUPP;
         -> an error is printed with dev_dbg, and
            dsa_fdb_offload_notify(switchdev_work) is not called.
      
      We can avoid scheduling the worker for nothing and say NOTIFY_DONE.
      Because we don't call dsa_fdb_offload_notify, the static FDB entry will
      remain just in the software bridge.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Reviewed-by: NAndrew Lunn <andrew@lunn.ch>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      5fb4a451
    • V
      net: dsa: move switchdev event implementation under the same switch/case statement · 447d290a
      Vladimir Oltean 提交于
      We'll need to start listening to SWITCHDEV_FDB_{ADD,DEL}_TO_DEVICE
      events even for interfaces where dsa_slave_dev_check returns false, so
      we need that check inside the switch-case statement for SWITCHDEV_FDB_*.
      
      This movement also avoids a useless allocation / free of switchdev_work
      on the untreated "default event" case.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      447d290a
    • V
      net: dsa: don't use switchdev_notifier_fdb_info in dsa_switchdev_event_work · c4bb76a9
      Vladimir Oltean 提交于
      Currently DSA doesn't add FDB entries on the CPU port, because it only
      does so through switchdev, which is associated with a net_device, and
      there are none of those for the CPU port.
      
      But actually FDB addresses on the CPU port have some use cases of their
      own, if the switchdev operations are initiated from within the DSA
      layer. There is just one problem with the existing code: it passes a
      structure in dsa_switchdev_event_work which was retrieved directly from
      switchdev, so it contains a net_device. We need to generalize the
      contents to something that covers the CPU port as well: the "ds, port"
      tuple is fine for that.
      
      Note that the new procedure for notifying the successful FDB offload is
      inspired from the rocker model.
      
      Also, nothing was being done if added_by_user was false. Let's check for
      that a lot earlier, and don't actually bother to schedule the worker
      for nothing.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      c4bb76a9