- 10 1月, 2013 20 次提交
-
-
由 Michael Neuling 提交于
Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Michael Neuling 提交于
.. and add it to POWER8 cpu features. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Michael Neuling 提交于
This frees up 7 bits for crazy new CPU features. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Michael Neuling 提交于
These are 32 bit, so no need to have a bunch of wasted 0s. The 0s saved here can be put to better use elsewhere, like at the end of my pay check. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Haren Myneni 提交于
[PATCH 6/6] powerpc: Implement PPR save/restore When the task enters in to kernel space, the user defined priority (PPR) will be saved in to PACA at the beginning of first level exception vector and then copy from PACA to thread_info in second level vector. PPR will be restored from thread_info before exits the kernel space. P7/P8 temporarily raises the thread priority to higher level during exception until the program executes HMT_* calls. But it will not modify PPR register. So we save PPR value whenever some register is available to use and then calls HMT_MEDIUM to increase the priority. This feature supports on P7 or later processors. We save/ restore PPR for all exception vectors except system call entry. GLIBC will be saving / restore for system calls. So the default PPR value (3) will be set for the system call exit when the task returned to the user space. Signed-off-by: NHaren Myneni <haren@us.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Haren Myneni 提交于
[PATCH 5/6] powerpc: Macros for saving/restore PPR Several macros are defined for saving and restore user defined PPR value. Signed-off-by: NHaren Myneni <haren@us.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Haren Myneni 提交于
[PATCH 4/6] powerpc: Define ppr in thread_struct ppr in thread_struct is used to save PPR and restore it before process exits from kernel. This patch sets the default priority to 3 when tasks are created such that users can use 4 for higher priority tasks. Signed-off-by: NHaren Myneni <haren@us.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Haren Myneni 提交于
[PATCH 3/6] powerpc: Increase exceptions arrays in paca struct to save PPR Using paca to save user defined PPR value in the first level exception vector. Signed-off-by: NHaren Myneni <haren@us.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Haren Myneni 提交于
[PATCH 2/6] powerpc: Enable PPR save/restore SMT thread status register (PPR) is used to set thread priority. This patch enables PPR save/restore feature (CPU_FTR_HAS_PPR) on POWER7 and POWER8 systems. Signed-off-by: NHaren Myneni <haren@us.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Haren Myneni 提交于
[PATCH 1/6] powerpc: Move branch instruction from ACCOUNT_CPU_USER_ENTRY to caller The first instruction in ACCOUNT_CPU_USER_ENTRY is 'beq' which checks for exceptions coming from kernel mode. PPR value will be saved immediately after ACCOUNT_CPU_USER_ENTRY and is also for user level exceptions. So moved this branch instruction in the caller code. Signed-off-by: NHaren Myneni <haren@us.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Ian Munsie 提交于
For PR KVM we allow userspace to map 0xc000000000000000. Because transitioning from userspace to the guest kernel may use the relocated exception vectors we have to disable relocation on exceptions whenever PR KVM is active as we cannot trust that address. This issue does not apply to HV KVM, since changing from a guest to the hypervisor will never use the relocated exception vectors. Currently the hypervisor interface only allows us to toggle relocation on exceptions on a partition wide scope, so we need to globally disable relocation on exceptions when the first PR KVM instance is started and only re-enable them when all PR KVM instances have been destroyed. It's a bit heavy handed, but until the hypervisor gives us a lightweight way to toggle relocation on exceptions on a single thread it's only real option. Signed-off-by: NIan Munsie <imunsie@au1.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Anton Blanchard 提交于
The ppc64 kernel can get loaded at any address which means our very early init code in prom_init.c must be relocatable. We do this with a pretty nasty RELOC() macro that we wrap accesses of variables with. It is very fragile and sometimes we forget to add a RELOC() to an uncommon path or sometimes a compiler change breaks it. 32bit has a much more elegant solution where we build prom_init.c with -mrelocatable and then process the relocations manually. Unfortunately we can't do the equivalent on 64bit and we would have to build the entire kernel relocatable (-pie), resulting in a large increase in kernel footprint (megabytes of relocation data). The relocation data will be marked __initdata but it still creates more pressure on our already tight memory layout at boot. Alan Modra pointed out that the 64bit ABI is relocatable even if we don't build with -pie, we just need to relocate the TOC. This patch implements that idea and relocates the TOC entries of prom_init.c. An added bonus is there are very few relocations to process which helps keep boot times on simulators down. gcc does not put 64bit integer constants into the TOC but to be safe we may want a build time script which passes through the prom_init.c TOC entries to make sure everything looks reasonable. Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Anshuman Khandual 提交于
Change the representation of the PMU flags from decimal to hex since they are bitfields which are easier to read in hex. Signed-off-by: NAnshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Ian Munsie 提交于
This patch actually hooks up doorbell interrupts on POWER8: - Select the PPC_DOORBELL Kconfig option from PPC_PSERIES - Add the doorbell CPU feature bit to POWER8 - We define a new pSeries_cause_ipi_mux() function that issues a doorbell interrupt if the recipient is another thread within the same core as the sender. If the recipient is in a different core it falls back to using XICS to deliver the IPI as before. - During pSeries_smp_probe() at boot, we check if doorbell interrupts are supported. If they are we set the cause_ipi function pointer to the above mentioned function, otherwise we leave it as whichever XICS cause_ipi function was determined by xics_smp_probe(). Signed-off-by: NIan Munsie <imunsie@au1.ibm.com> Tested-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Ian Munsie 提交于
On book3s we have two msgsnd instructions with differing privilege levels. This patch selects the appropriate instruction to use whenever we send a doorbell interrupt. Signed-off-by: NIan Munsie <imunsie@au1.ibm.com> Tested-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Ian Munsie 提交于
Directed Privileged Doorbell Interrupts come in at 0xa00 (or 0xc000000000004a00 if relocation on exception is enabled), so add exception vectors at these locations. If doorbell support is not compiled in we handle it as an unknown_exception. Signed-off-by: NIan Munsie <imunsie@au1.ibm.com> Tested-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Ian Munsie 提交于
Directed Hypervisor Doorbell Interrupts come in at 0xe80 (or 0xc000000000004e80 if relocation on exceptions is enabled), so add exception vectors at these locations. If doorbell support is not compiled in we handle it as an unknown_exception. Signed-off-by: NIan Munsie <imunsie@au1.ibm.com> Tested-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Ian Munsie 提交于
There are a few key differences between doorbells on server compared with embedded that we care about on Linux, namely: - We have a new msgsndp instruction for directed privileged doorbells. msgsnd is used for directed hypervisor doorbells. - The tag we use in the instruction is the Thread Identification Register of the recipient thread (since server doorbells can only occur between threads within a single core), and is only 7 bits wide. - A new message type is introduced for server doorbells (none of the existing book3e message types are currently supported on book3s). Signed-off-by: NIan Munsie <imunsie@au1.ibm.com> Tested-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Vinh Nguyen Huu Tuong 提交于
This patch consists of: - Add driver for OCM component - Export OCM Information at /sys/kernel/debug/ppc4xx_ocm/info Signed-off-by: NVinh Nguyen Huu Tuong <vhtnguyen@apm.com> Acked-by: NJosh Boyer <jwboyer@gmail.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Michael Neuling 提交于
Currently we search for the best_energy hcall using a custom function. Move this to using the firmware_feature_table. Signed-off-by: NMichael Neuling <mikey@neuling.org> cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> cc: Linux PPC dev <linuxppc-dev@ozlabs.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 04 1月, 2013 1 次提交
-
-
由 Greg Kroah-Hartman 提交于
CONFIG_HOTPLUG is going away as an option. As a result, the __dev* markings need to be removed. This change removes the use of __devinit, __devexit_p, __devinitdata, __devinitconst, and __devexit from these drivers. Based on patches originally written by Bill Pemberton, but redone by me in order to handle some of the coding style issues better, by hand. Cc: Bill Pemberton <wfp5p@virginia.edu> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 20 12月, 2012 1 次提交
-
-
由 Al Viro 提交于
All architectures have CONFIG_GENERIC_KERNEL_THREAD CONFIG_GENERIC_KERNEL_EXECVE __ARCH_WANT_SYS_EXECVE None of them have __ARCH_WANT_KERNEL_EXECVE and there are only two callers of kernel_execve() (which is a trivial wrapper for do_execve() now) left. Kill the conditionals and make both callers use do_execve(). Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 18 12月, 2012 2 次提交
-
-
由 Catalin Marinas 提交于
This function is used by sparc, powerpc tile and arm64 for compat support. The patch adds a generic implementation with a wrapper for PowerPC to do the u32->int sign extension. The reason for a single patch covering powerpc, tile, sparc and arm64 is to keep it bisectable, otherwise kernel building may fail with mismatched function declarations. Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com> Acked-by: Chris Metcalf <cmetcalf@tilera.com> [for tile] Acked-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NArnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Matthew Leach 提交于
Currently the __define_initcall() macro takes three arguments, fn, id and level. The level argument is exactly the same as the id argument but wrapped in quotes. To overcome this need to specify three arguments to the __define_initcall macro, where one argument is the stringification of another, we can just use the stringification macro instead. Signed-off-by: NMatthew Leach <matthew@mattleach.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 12月, 2012 1 次提交
-
-
由 Rusty Russell 提交于
(This is just for Acks: this won't work without the actual syscall patches, sitting in my tree for -next at the moment). Acked-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NRusty Russell <rusty@rustcorp.com.au>
-
- 06 12月, 2012 13 次提交
-
-
由 Alexander Graf 提交于
In BookE, EPCR is defined and valid when either the HV or the 64bit category are implemented. Reflect this in the field definition. Today the only KVM target on 64bit is HV enabled, so there is no change in actual source code, but this keeps the code closer to the spec and doesn't build up artificial road blocks for a PR KVM on 64bit. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Mihai Caraman 提交于
Extend MAS2 EPN mask to retain most significant bits on 64-bit hosts. Use this mask in tlb effective address accessor. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Mihai Caraman 提交于
Mask high 32 bits of effective address in emulation layer for guests running in 32-bit mode. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> [agraf: fix indent] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Mihai Caraman 提交于
Add emulation helper for getting instruction ea and refactor tlb instruction emulation to use it. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> [agraf: keep rt variable around] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Mihai Caraman 提交于
Add interrupt handling support for 64-bit bookehv hosts. Unify 32 and 64 bit implementations using a common stack layout and a common execution flow starting from kvm_handler_common macro. Update documentation for 64-bit input register values. This patch only address the bolted TLB miss exception handlers version. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Currently, if a machine check interrupt happens while we are in the guest, we exit the guest and call the host's machine check handler, which tends to cause the host to panic. Some machine checks can be triggered by the guest; for example, if the guest creates two entries in the SLB that map the same effective address, and then accesses that effective address, the CPU will take a machine check interrupt. To handle this better, when a machine check happens inside the guest, we call a new function, kvmppc_realmode_machine_check(), while still in real mode before exiting the guest. On POWER7, it handles the cases that the guest can trigger, either by flushing and reloading the SLB, or by flushing the TLB, and then it delivers the machine check interrupt directly to the guest without going back to the host. On POWER7, the OPAL firmware patches the machine check interrupt vector so that it gets control first, and it leaves behind its analysis of the situation in a structure pointed to by the opal_mc_evt field of the paca. The kvmppc_realmode_machine_check() function looks at this, and if OPAL reports that there was no error, or that it has handled the error, we also go straight back to the guest with a machine check. We have to deliver a machine check to the guest since the machine check interrupt might have trashed valid values in SRR0/1. If the machine check is one we can't handle in real mode, and one that OPAL hasn't already handled, or on PPC970, we exit the guest and call the host's machine check handler. We do this by jumping to the machine_check_fwnmi label, rather than absolute address 0x200, because we don't want to re-execute OPAL's handler on POWER7. On PPC970, the two are equivalent because address 0x200 just contains a branch. Then, if the host machine check handler decides that the system can continue executing, kvmppc_handle_exit() delivers a machine check interrupt to the guest -- once again to let the guest know that SRR0/1 have been modified. Signed-off-by: NPaul Mackerras <paulus@samba.org> [agraf: fix checkpatch warnings] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
When we change or remove a HPT (hashed page table) entry, we can do either a global TLB invalidation (tlbie) that works across the whole machine, or a local invalidation (tlbiel) that only affects this core. Currently we do local invalidations if the VM has only one vcpu or if the guest requests it with the H_LOCAL flag, though the guest Linux kernel currently doesn't ever use H_LOCAL. Then, to cope with the possibility that vcpus moving around to different physical cores might expose stale TLB entries, there is some code in kvmppc_hv_entry to flush the whole TLB of entries for this VM if either this vcpu is now running on a different physical core from where it last ran, or if this physical core last ran a different vcpu. There are a number of problems on POWER7 with this as it stands: - The TLB invalidation is done per thread, whereas it only needs to be done per core, since the TLB is shared between the threads. - With the possibility of the host paging out guest pages, the use of H_LOCAL by an SMP guest is dangerous since the guest could possibly retain and use a stale TLB entry pointing to a page that had been removed from the guest. - The TLB invalidations that we do when a vcpu moves from one physical core to another are unnecessary in the case of an SMP guest that isn't using H_LOCAL. - The optimization of using local invalidations rather than global should apply to guests with one virtual core, not just one vcpu. (None of this applies on PPC970, since there we always have to invalidate the whole TLB when entering and leaving the guest, and we can't support paging out guest memory.) To fix these problems and simplify the code, we now maintain a simple cpumask of which cpus need to flush the TLB on entry to the guest. (This is indexed by cpu, though we only ever use the bits for thread 0 of each core.) Whenever we do a local TLB invalidation, we set the bits for every cpu except the bit for thread 0 of the core that we're currently running on. Whenever we enter a guest, we test and clear the bit for our core, and flush the TLB if it was set. On initial startup of the VM, and when resetting the HPT, we set all the bits in the need_tlb_flush cpumask, since any core could potentially have stale TLB entries from the previous VM to use the same LPID, or the previous contents of the HPT. Then, we maintain a count of the number of online virtual cores, and use that when deciding whether to use a local invalidation rather than the number of online vcpus. The code to make that decision is extracted out into a new function, global_invalidates(). For multi-core guests on POWER7 (i.e. when we are using mmu notifiers), we now never do local invalidations regardless of the H_LOCAL flag. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This fixes various issues in how we were handling the VSX registers that exist on POWER7 machines. First, we were running off the end of the current->thread.fpr[] array. Ultimately this was because the vcpu->arch.vsr[] array is sized to be able to store both the FP registers and the extra VSX registers (i.e. 64 entries), but PR KVM only uses it for the extra VSX registers (i.e. 32 entries). Secondly, calling load_up_vsx() from C code is a really bad idea, because it jumps to fast_exception_return at the end, rather than returning with a blr instruction. This was causing it to jump off to a random location with random register contents, since it was using the largely uninitialized stack frame created by kvmppc_load_up_vsx. In fact, it isn't necessary to call either __giveup_vsx or load_up_vsx, since giveup_fpu and load_up_fpu handle the extra VSX registers as well as the standard FP registers on machines with VSX. Also, since VSX instructions can access the VMX registers and the FP registers as well as the extra VSX registers, we have to load up the FP and VMX registers before we can turn on the MSR_VSX bit for the guest. Conversely, if we save away any of the VSX or FP registers, we have to turn off MSR_VSX for the guest. To handle all this, it is more convenient for a single call to kvmppc_giveup_ext() to handle all the state saving that needs to be done, so we make it take a set of MSR bits rather than just one, and the switch statement becomes a series of if statements. Similarly kvmppc_handle_ext needs to be able to load up more than one set of registers. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This adds basic emulation of the PURR and SPURR registers. We assume we are emulating a single-threaded core, so these advance at the same rate as the timebase. A Linux kernel running on a POWER7 expects to be able to access these registers and is not prepared to handle a program interrupt on accessing them. This also adds a very minimal emulation of the DSCR (data stream control register). Writes are ignored and reads return zero. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on this fd return the contents of the HPT (hashed page table), writes create and/or remove entries in the HPT. There is a new capability, KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl takes an argument structure with the index of the first HPT entry to read out and a set of flags. The flags indicate whether the user is intending to read or write the HPT, and whether to return all entries or only the "bolted" entries (those with the bolted bit, 0x10, set in the first doubleword). This is intended for use in implementing qemu's savevm/loadvm and for live migration. Therefore, on reads, the first pass returns information about all HPTEs (or all bolted HPTEs). When the first pass reaches the end of the HPT, it returns from the read. Subsequent reads only return information about HPTEs that have changed since they were last read. A read that finds no changed HPTEs in the HPT following where the last read finished will return 0 bytes. The format of the data provides a simple run-length compression of the invalid entries. Each block of data starts with a header that indicates the index (position in the HPT, which is just an array), the number of valid entries starting at that index (may be zero), and the number of invalid entries following those valid entries. The valid entries, 16 bytes each, follow the header. The invalid entries are not explicitly represented. Signed-off-by: NPaul Mackerras <paulus@samba.org> [agraf: fix documentation] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This makes a HPTE removal function, kvmppc_do_h_remove(), available outside book3s_hv_rm_mmu.c. This will be used by the HPT writing code. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This uses a bit in our record of the guest view of the HPTE to record when the HPTE gets modified. We use a reserved bit for this, and ensure that this bit is always cleared in HPTE values returned to the guest. The recording of modified HPTEs is only done if other code indicates its interest by setting kvm->arch.hpte_mod_interest to a non-zero value. The reason for this is that when later commits add facilities for userspace to read the HPT, the first pass of reading the HPT will be quicker if there are no (or very few) HPTEs marked as modified, rather than having most HPTEs marked as modified. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This restructures the code that creates HPT (hashed page table) entries so that it can be called in situations where we don't have a struct vcpu pointer, only a struct kvm pointer. It also fixes a bug where kvmppc_map_vrma() would corrupt the guest R4 value. Most of the work of kvmppc_virtmode_h_enter is now done by a new function, kvmppc_virtmode_do_h_enter, which itself calls another new function, kvmppc_do_h_enter, which contains most of the old kvmppc_h_enter. The new kvmppc_do_h_enter takes explicit arguments for the place to return the HPTE index, the Linux page tables to use, and whether it is being called in real mode, thus removing the need for it to have the vcpu as an argument. Currently kvmppc_map_vrma creates the VRMA (virtual real mode area) HPTEs by calling kvmppc_virtmode_h_enter, which is designed primarily to handle H_ENTER hcalls from the guest that need to pin a page of memory. Since H_ENTER returns the index of the created HPTE in R4, kvmppc_virtmode_h_enter updates the guest R4, corrupting the guest R4 in the case when it gets called from kvmppc_map_vrma on the first VCPU_RUN ioctl. With this, kvmppc_map_vrma instead calls kvmppc_virtmode_do_h_enter with the address of a dummy word as the place to store the HPTE index, thus avoiding corrupting the guest R4. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 29 11月, 2012 2 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-