- 09 8月, 2019 1 次提交
-
-
由 Marc Zyngier 提交于
At the moment, the way we reset system registers is mildly insane: We write junk to them, call the reset functions, and then check that we have something else in them. The "fun" thing is that this can happen while the guest is running (PSCI, for example). If anything in KVM has to evaluate the state of a system register while junk is in there, bad thing may happen. Let's stop doing that. Instead, we track that we have called a reset function for that register, and assume that the reset function has done something. This requires fixing a couple of sysreg refinition in the trap table. In the end, the very need of this reset check is pretty dubious, as it doesn't check everything (a lot of the sysregs leave outside of the sys_regs[] array). It may well be axed in the near future. Tested-by: NZenghui Yu <yuzenghui@huawei.com> Signed-off-by: NMarc Zyngier <maz@kernel.org>
-
- 05 7月, 2019 2 次提交
-
-
由 Dave Martin 提交于
Currently, the {read,write}_sysreg_el*() accessors for accessing particular ELs' sysregs in the presence of VHE rely on some local hacks and define their system register encodings in a way that is inconsistent with the core definitions in <asm/sysreg.h>. As a result, it is necessary to add duplicate definitions for any system register that already needs a definition in sysreg.h for other reasons. This is a bit of a maintenance headache, and the reasons for the _el*() accessors working the way they do is a bit historical. This patch gets rid of the shadow sysreg definitions in <asm/kvm_hyp.h>, converts the _el*() accessors to use the core __msr_s/__mrs_s interface, and converts all call sites to use the standard sysreg #define names (i.e., upper case, with SYS_ prefix). This patch will conflict heavily anyway, so the opportunity to clean up some bad whitespace in the context of the changes is taken. The change exposes a few system registers that have no sysreg.h definition, due to msr_s/mrs_s being used in place of msr/mrs: additions are made in order to fill in the gaps. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Link: https://www.spinics.net/lists/kvm-arm/msg31717.html [Rebased to v4.21-rc1] Signed-off-by: NSudeep Holla <sudeep.holla@arm.com> [Rebased to v5.2-rc5, changelog updates] Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Andrew Murray 提交于
The kvm_pmu_{enable/disable}_counter functions can enable/disable multiple counters at once as they operate on a bitmask. Let's make this clearer by renaming the function. Suggested-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NAndrew Murray <andrew.murray@arm.com> Reviewed-by: NJulien Thierry <julien.thierry@arm.com> Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 19 6月, 2019 1 次提交
-
-
由 Thomas Gleixner 提交于
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license version 2 as published by the free software foundation this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not see http www gnu org licenses extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 503 file(s). Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NAlexios Zavras <alexios.zavras@intel.com> Reviewed-by: NAllison Randal <allison@lohutok.net> Reviewed-by: NEnrico Weigelt <info@metux.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190602204653.811534538@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 02 5月, 2019 1 次提交
-
-
由 Kristina Martsenko 提交于
When a VCPU doesn't have pointer auth, we want to hide all four pointer auth ID register fields from the guest, not just one of them. Fixes: 384b40ca ("KVM: arm/arm64: Context-switch ptrauth registers") Reported-by: NAndrew Murray <andrew.murray@arm.com> Fscked-up-by: NMarc Zyngier <marc.zyngier@arm.com> Acked-by: NWill Deacon <will.deacon@arm.com> Tested-by: NAndrew Murray <andrew.murray@arm.com> Signed-off-by: NKristina Martsenko <kristina.martsenko@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 24 4月, 2019 2 次提交
-
-
由 Andrew Murray 提交于
With VHE different exception levels are used between the host (EL2) and guest (EL1) with a shared exception level for userpace (EL0). We can take advantage of this and use the PMU's exception level filtering to avoid enabling/disabling counters in the world-switch code. Instead we just modify the counter type to include or exclude EL0 at vcpu_{load,put} time. We also ensure that trapped PMU system register writes do not re-enable EL0 when reconfiguring the backing perf events. This approach completely avoids blackout windows seen with !VHE. Suggested-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NAndrew Murray <andrew.murray@arm.com> Acked-by: NWill Deacon <will.deacon@arm.com> Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Mark Rutland 提交于
When pointer authentication is supported, a guest may wish to use it. This patch adds the necessary KVM infrastructure for this to work, with a semi-lazy context switch of the pointer auth state. Pointer authentication feature is only enabled when VHE is built in the kernel and present in the CPU implementation so only VHE code paths are modified. When we schedule a vcpu, we disable guest usage of pointer authentication instructions and accesses to the keys. While these are disabled, we avoid context-switching the keys. When we trap the guest trying to use pointer authentication functionality, we change to eagerly context-switching the keys, and enable the feature. The next time the vcpu is scheduled out/in, we start again. However the host key save is optimized and implemented inside ptrauth instruction/register access trap. Pointer authentication consists of address authentication and generic authentication, and CPUs in a system might have varied support for either. Where support for either feature is not uniform, it is hidden from guests via ID register emulation, as a result of the cpufeature framework in the host. Unfortunately, address authentication and generic authentication cannot be trapped separately, as the architecture provides a single EL2 trap covering both. If we wish to expose one without the other, we cannot prevent a (badly-written) guest from intermittently using a feature which is not uniformly supported (when scheduled on a physical CPU which supports the relevant feature). Hence, this patch expects both type of authentication to be present in a cpu. This switch of key is done from guest enter/exit assembly as preparation for the upcoming in-kernel pointer authentication support. Hence, these key switching routines are not implemented in C code as they may cause pointer authentication key signing error in some situations. Signed-off-by: NMark Rutland <mark.rutland@arm.com> [Only VHE, key switch in full assembly, vcpu_has_ptrauth checks , save host key in ptrauth exception trap] Signed-off-by: NAmit Daniel Kachhap <amit.kachhap@arm.com> Reviewed-by: NJulien Thierry <julien.thierry@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: kvmarm@lists.cs.columbia.edu [maz: various fixups] Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 19 4月, 2019 1 次提交
-
-
由 Dave Martin 提交于
Because of the logic in kvm_arm_sys_reg_{get,set}_reg() and sve_id_visibility(), we should never call {get,set}_id_aa64zfr0_el1() for a vcpu where !vcpu_has_sve(vcpu). To avoid the code giving the impression that it is valid for these functions to be called in this situation, and to help the compiler make the right optimisation decisions, this patch adds WARN_ON() for these cases. Given the way the logic is spread out, this seems preferable to dropping the checks altogether. Suggested-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NDave Martin <Dave.Martin@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 29 3月, 2019 3 次提交
-
-
由 Dave Martin 提交于
This patch adds the necessary support for context switching ZCR_EL1 for each vcpu. ZCR_EL1 is trapped alongside the FPSIMD/SVE registers, so it makes sense for it to be handled as part of the guest FPSIMD/SVE context for context switch purposes instead of handling it as a general system register. This means that it can be switched in lazily at the appropriate time. No effort is made to track host context for this register, since SVE requires VHE: thus the hosts's value for this register lives permanently in ZCR_EL2 and does not alias the guest's value at any time. The Hyp switch and fpsimd context handling code is extended appropriately. Accessors are added in sys_regs.c to expose the SVE system registers and ID register fields. Because these need to be conditionally visible based on the guest configuration, they are implemented separately for now rather than by use of the generic system register helpers. This may be abstracted better later on when/if there are more features requiring this model. ID_AA64ZFR0_EL1 is RO-RAZ for MRS/MSR when SVE is disabled for the guest, but for compatibility with non-SVE aware KVM implementations the register should not be enumerated at all for KVM_GET_REG_LIST in this case. For consistency we also reject ioctl access to the register. This ensures that a non-SVE-enabled guest looks the same to userspace, irrespective of whether the kernel KVM implementation supports SVE. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Reviewed-by: NJulien Thierry <julien.thierry@arm.com> Tested-by: Nzhang.lei <zhang.lei@jp.fujitsu.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Dave Martin 提交于
Some optional features of the Arm architecture add new system registers that are not present in the base architecture. Where these features are optional for the guest, the visibility of these registers may need to depend on some runtime configuration, such as a flag passed to KVM_ARM_VCPU_INIT. For example, ZCR_EL1 and ID_AA64ZFR0_EL1 need to be hidden if SVE is not enabled for the guest, even though these registers may be present in the hardware and visible to the host at EL2. Adding special-case checks all over the place for individual registers is going to get messy as the number of conditionally- visible registers grows. In order to help solve this problem, this patch adds a new sysreg method visibility() that can be used to hook in any needed runtime visibility checks. This method can currently return REG_HIDDEN_USER to inhibit enumeration and ioctl access to the register for userspace, and REG_HIDDEN_GUEST to inhibit runtime access by the guest using MSR/MRS. Wrappers are added to allow these flags to be conveniently queried. This approach allows a conditionally modified view of individual system registers such as the CPU ID registers, in addition to completely hiding register where appropriate. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Tested-by: Nzhang.lei <zhang.lei@jp.fujitsu.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Dave Martin 提交于
Architecture features that are conditionally visible to the guest will require run-time checks in the ID register accessor functions. In particular, read_id_reg() will need to perform checks in order to generate the correct emulated value for certain ID register fields such as ID_AA64PFR0_EL1.SVE for example. This patch propagates vcpu into read_id_reg() so that future patches can add run-time checks on the guest configuration here. For now, there is no functional change. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Reviewed-by: NAlex Bennée <alex.bennee@linaro.org> Tested-by: Nzhang.lei <zhang.lei@jp.fujitsu.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 22 2月, 2019 1 次提交
-
-
由 Dave Martin 提交于
Due to what looks like a typo dating back to the original addition of FPEXC32_EL2 handling, KVM currently initialises this register to an architecturally invalid value. As a result, the VECITR field (RES1) in bits [10:8] is initialised with 0, and the two reserved (RES0) bits [6:5] are initialised with 1. (In the Common VFP Subarchitecture as specified by ARMv7-A, these two bits were IMP DEF. ARMv8-A removes them.) This patch changes the reset value from 0x70 to 0x700, which reflects the architectural constraints and is presumably what was originally intended. Cc: <stable@vger.kernel.org> # 4.12.x- Cc: Christoffer Dall <christoffer.dall@arm.com> Fixes: 62a89c44 ("arm64: KVM: 32bit handling of coprocessor traps") Signed-off-by: NDave Martin <Dave.Martin@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 20 2月, 2019 4 次提交
-
-
由 Ard Biesheuvel 提交于
On SMP ARM systems, cache maintenance by set/way should only ever be done in the context of onlining or offlining CPUs, which is typically done by bare metal firmware and never in a virtual machine. For this reason, we trap set/way cache maintenance operations and replace them with conditional flushing of the entire guest address space. Due to this trapping, the set/way arguments passed into the set/way ops are completely ignored, and thus irrelevant. This also means that the set/way geometry is equally irrelevant, and we can simply report it as 1 set and 1 way, so that legacy 32-bit ARM system software (i.e., the kind that only receives odd fixes) doesn't take a performance hit due to the trapping when iterating over the cachelines. Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Ard Biesheuvel 提交于
We currently permit CPUs in the same system to deviate in the exact topology of the caches, and we subsequently hide this fact from user space by exposing a sanitised value of the cache type register CTR_EL0. However, guests running under KVM see the bare value of CTR_EL0, which could potentially result in issues with, e.g., JITs or other pieces of code that are sensitive to misreported cache line sizes. So let's start trapping cache ID instructions if there is a mismatch, and expose the sanitised version of CTR_EL0 to guests. Note that CTR_EL0 is treated as an invariant to KVM user space, so update that part as well. Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Andre Przywara 提交于
At the moment we have separate system register emulation handlers for each timer register. Actually they are quite similar, and we rely on kvm_arm_timer_[gs]et_reg() for the actual emulation anyways, so let's just merge all of those handlers into one function, which just marshalls the arguments and then hands off to a set of common accessors. This makes extending the emulation to include EL2 timers much easier. Signed-off-by: NAndre Przywara <andre.przywara@arm.com> [Fixed 32-bit VM breakage and reduced to reworking existing code] Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> [Fixed 32bit host, general cleanup] Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
Instead of having an open-coded macro, reuse the sys_reg() macro that does the exact same thing (the encoding is slightly different, but the ordering property is the same). Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com>
-
- 07 2月, 2019 1 次提交
-
-
由 Marc Zyngier 提交于
Failing to properly reset system registers is pretty bad. But not quite as bad as bringing the whole machine down... So warn loudly, but slightly more gracefully. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com>
-
- 25 1月, 2019 1 次提交
-
-
由 Marc Zyngier 提交于
We currently hide the LORegion feature, and generate an UNDEF if the guest dares using the corresponding registers. This is a bit extreme, as ARMv8.1 guarantees the feature to be present. The guest should check the feature register before doing anything, but we could also give the guest some slack (read "allow the guest to be a bit stupid"). So instead of unconditionnaly deliver an exception, let's only do it when the host doesn't support LORegion at all (or when the feature has been sanitized out), and treat the registers as RAZ/WI otherwise (with the exception of LORID_EL1 being RO). Fixes: cc33c4e2 ("arm64/kvm: Prohibit guest LOR accesses") Suggested-by: NRichard Henderson <richard.henderson@linaro.org> Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com>
-
- 20 12月, 2018 2 次提交
-
-
由 Marc Zyngier 提交于
We're pretty blind when it comes to system register tracing, and rely on the ESR value displayed by kvm_handle_sys, which isn't much. Instead, let's add an actual name to the sysreg entries, so that we can finally print it as we're about to perform the access itself. The new tracepoint is conveniently called kvm_sys_access. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
vcpu_read_sys_reg should not be modifying the VCPU structure. Eventually, to handle EL2 sysregs for nested virtualization, we will call vcpu_read_sys_reg from places that have a const vcpu pointer, which will complain about the lack of the const modifier on the read path. Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 18 12月, 2018 1 次提交
-
-
由 Mark Rutland 提交于
When KVM traps an unhandled sysreg/coproc access from a guest, it logs the guest PC. To aid debugging, it would be helpful to know which exception level the trap came from, along with other PSTATE/CPSR bits, so let's log the PSTATE/CPSR too. Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 14 12月, 2018 1 次提交
-
-
由 Mark Rutland 提交于
In subsequent patches we're going to expose ptrauth to the host kernel and userspace, but things are a bit trickier for guest kernels. For the time being, let's hide ptrauth from KVM guests. Regardless of how well-behaved the guest kernel is, guest userspace could attempt to use ptrauth instructions, triggering a trap to EL2, resulting in noise from kvm_handle_unknown_ec(). So let's write up a handler for the PAC trap, which silently injects an UNDEF into the guest, as if the feature were really missing. Reviewed-by: NRichard Henderson <richard.henderson@linaro.org> Signed-off-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NKristina Martsenko <kristina.martsenko@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: kvmarm@lists.cs.columbia.edu Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 12 8月, 2018 3 次提交
-
-
由 Marc Zyngier 提交于
In order to generate Group0 SGIs, let's add some decoding logic to access_gic_sgi(), and pass the generating group accordingly. Reviewed-by: NEric Auger <eric.auger@redhat.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
Although vgic-v3 now supports Group0 interrupts, it still doesn't deal with Group0 SGIs. As usually with the GIC, nothing is simple: - ICC_SGI1R can signal SGIs of both groups, since GICD_CTLR.DS==1 with KVM (as per 8.1.10, Non-secure EL1 access) - ICC_SGI0R can only generate Group0 SGIs - ICC_ASGI1R sees its scope refocussed to generate only Group0 SGIs (as per the note at the bottom of Table 8-14) We only support Group1 SGIs so far, so no material change. Reviewed-by: NEric Auger <eric.auger@redhat.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
ICC_SGI1R is a 64bit system register, even on AArch32. It is thus pointless to have such an encoding in the 32bit cp15 array. Let's drop it. Reviewed-by: NEric Auger <eric.auger@redhat.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 09 7月, 2018 1 次提交
-
-
由 Marc Zyngier 提交于
Set/Way handling is one of the ugliest corners of KVM. We shouldn't have to handle that, but better safe than sorry. Thankfully, FWB fixes this for us by not requiering any maintenance (the guest is forced to use cacheable memory, no matter what it says, and the whole system is garanteed to be cache coherent), which means we don't have to emulate S/W CMOs, and don't have to track VM ops either. We still have to trap S/W though, if only to prevent the guest from doing something bad. Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 25 5月, 2018 1 次提交
-
-
由 Dave Martin 提交于
In struct vcpu_arch, the debug_flags field is used to store debug-related flags about the vcpu state. Since we are about to add some more flags related to FPSIMD and SVE, it makes sense to add them to the existing flags field rather than adding new fields. Since there is only one debug_flags flag defined so far, there is plenty of free space for expansion. In preparation for adding more flags, this patch renames the debug_flags field to simply "flags", and updates comments appropriately. The flag definitions are also moved to <asm/kvm_host.h>, since their presence in <asm/kvm_asm.h> was for purely historical reasons: these definitions are not used from asm any more, and not very likely to be as more Hyp asm is migrated to C. KVM_ARM64_DEBUG_DIRTY_SHIFT has not been used since commit 1ea66d27 ("arm64: KVM: Move away from the assembly version of the world switch"), so this patch gets rid of that too. No functional change. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAlex Bennée <alex.bennee@linaro.org> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> [maz: fixed minor conflict] Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 17 4月, 2018 1 次提交
-
-
由 Marc Zyngier 提交于
While generating a message about guests probing for SVE/LORegions is a useful debugging tool, considering it an error is slightly over the top, as this is the only way the guest can find out about the presence of the feature. Let's turn these message into kvm_debug so that they can only be seen if CONFIG_DYNAMIC_DEBUG, and kept quiet otherwise. Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 19 3月, 2018 5 次提交
-
-
由 Christoffer Dall 提交于
When running a 32-bit VM (EL1 in AArch32), the AArch32 system registers can be deferred to vcpu load/put on VHE systems because neither the host kernel nor host userspace uses these registers. Note that we can't save DBGVCR32_EL2 conditionally based on the state of the debug dirty flag on VHE after this change, because during vcpu_load() we haven't calculated a valid debug flag yet, and when we've restored the register during vcpu_load() we also have to save it during vcpu_put(). This means that we'll always restore/save the register for VHE on load/put, but luckily vcpu load/put are called rarely, so saving an extra register unconditionally shouldn't significantly hurt performance. We can also not defer saving FPEXC32_32 because this register only holds a guest-valid value for 32-bit guests during the exit path when the guest has used FPSIMD registers and restored the register in the early assembly handler from taking the EL2 fault, and therefore we have to check if fpsimd is enabled for the guest in the exit path and save the register then, for both VHE and non-VHE guests. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
Some system registers do not affect the host kernel's execution and can therefore be loaded when we are about to run a VCPU and we don't have to restore the host state to the hardware before the time when we are actually about to return to userspace or schedule out the VCPU thread. The EL1 system registers and the userspace state registers only affecting EL0 execution do not need to be saved and restored on every switch between the VM and the host, because they don't affect the host kernel's execution. We mark all registers which are now deffered as such in the vcpu_{read,write}_sys_reg accessors in sys-regs.c to ensure the most up-to-date copy is always accessed. Note MPIDR_EL1 (controlled via VMPIDR_EL2) is accessed from other vcpu threads, for example via the GIC emulation, and therefore must be declared as immediate, which is fine as the guest cannot modify this value. The 32-bit sysregs can also be deferred but we do this in a separate patch as it requires a bit more infrastructure. Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
We are about to defer saving and restoring some groups of system registers to vcpu_put and vcpu_load on supported systems. This means that we need some infrastructure to access system registes which supports either accessing the memory backing of the register or directly accessing the system registers, depending on the state of the system when we access the register. We do this by defining read/write accessor functions, which can handle both "immediate" and "deferrable" system registers. Immediate registers are always saved/restored in the world-switch path, but deferrable registers are only saved/restored in vcpu_put/vcpu_load when supported and sysregs_loaded_on_cpu will be set in that case. Note that we don't use the deferred mechanism yet in this patch, but only introduce infrastructure. This is to improve convenience of review in the subsequent patches where it is clear which registers become deferred. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
Currently we access the system registers array via the vcpu_sys_reg() macro. However, we are about to change the behavior to some times modify the register file directly, so let's change this to two primitives: * Accessor macros vcpu_write_sys_reg() and vcpu_read_sys_reg() * Direct array access macro __vcpu_sys_reg() The accessor macros should be used in places where the code needs to access the currently loaded VCPU's state as observed by the guest. For example, when trapping on cache related registers, a write to a system register should go directly to the VCPU version of the register. The direct array access macro can be used in places where the VCPU is known to never be running (for example userspace access) or for registers which are never context switched (for example all the PMU system registers). This rewrites all users of vcpu_sys_regs to one of the macros described above. No functional change. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <cdall@cs.columbia.edu> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
We currently handle 32-bit accesses to trapped VM system registers using the 32-bit index into the coproc array on the vcpu structure, which is a union of the coproc array and the sysreg array. Since all the 32-bit coproc indices are created to correspond to the architectural mapping between 64-bit system registers and 32-bit coprocessor registers, and because the AArch64 system registers are the double in size of the AArch32 coprocessor registers, we can always find the system register entry that we must update by dividing the 32-bit coproc index by 2. This is going to make our lives much easier when we have to start accessing system registers that use deferred save/restore and might have to be read directly from the physical CPU. Reviewed-by: NAndrew Jones <drjones@redhat.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 26 2月, 2018 2 次提交
-
-
由 Jérémy Fanguède 提交于
Some 32bits guest OS can use the CNTP timer, however KVM does not handle the accesses, injecting a fault instead. Use the proper handlers to emulate the EL1 Physical Timer (CNTP) register accesses of AArch32 guests. Signed-off-by: NJérémy Fanguède <j.fanguede@virtualopensystems.com> Signed-off-by: NAlvise Rigo <a.rigo@virtualopensystems.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Mark Rutland 提交于
We don't currently limit guest accesses to the LOR registers, which we neither virtualize nor context-switch. As such, guests are provided with unusable information/controls, and are not isolated from each other (or the host). To prevent these issues, we can trap register accesses and present the illusion LORegions are unssupported by the CPU. To do this, we mask ID_AA64MMFR1.LO, and set HCR_EL2.TLOR to trap accesses to the following registers: * LORC_EL1 * LOREA_EL1 * LORID_EL1 * LORN_EL1 * LORSA_EL1 ... when trapped, we inject an UNDEFINED exception to EL1, simulating their non-existence. As noted in D7.2.67, when no LORegions are implemented, LoadLOAcquire and StoreLORelease must behave as LoadAcquire and StoreRelease respectively. We can ensure this by clearing LORC_EL1.EN when a CPU's EL2 is first initialized, as the host kernel will not modify this. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Cc: Vladimir Murzin <vladimir.murzin@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoffer Dall <christoffer.dall@linaro.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: kvmarm@lists.cs.columbia.edu Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 16 1月, 2018 2 次提交
-
-
由 Dongjiu Geng 提交于
ARMv8.2 adds a new bit HCR_EL2.TEA which routes synchronous external aborts to EL2, and adds a trap control bit HCR_EL2.TERR which traps all Non-secure EL1&0 error record accesses to EL2. This patch enables the two bits for the guest OS, guaranteeing that KVM takes external aborts and traps attempts to access the physical error registers. ERRIDR_EL1 advertises the number of error records, we return zero meaning we can treat all the other registers as RAZ/WI too. Signed-off-by: NDongjiu Geng <gengdongjiu@huawei.com> [removed specific emulation, use trap_raz_wi() directly for everything, rephrased parts of the commit message] Signed-off-by: NJames Morse <james.morse@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 James Morse 提交于
If we deliver a virtual SError to the guest, the guest may defer it with an ESB instruction. The guest reads the deferred value via DISR_EL1, but the guests view of DISR_EL1 is re-mapped to VDISR_EL2 when HCR_EL2.AMO is set. Add the KVM code to save/restore VDISR_EL2, and make it accessible to userspace as DISR_EL1. Signed-off-by: NJames Morse <james.morse@arm.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 08 1月, 2018 1 次提交
-
-
由 Christoffer Dall 提交于
Commit 0c0543a1 breaks migration and introduces a regression with existing userspace because it introduces an ordering requirement of setting up all VCPU features before writing ID registers which we didn't have before. Revert this commit for now until we have a proper fix. Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 02 1月, 2018 1 次提交
-
-
由 Andrew Jones 提交于
Since commit 93390c0a ("arm64: KVM: Hide unsupported AArch64 CPU features from guests") we can hide cpu features from guests. Apply this to a long standing issue where guests see a PMU available, but it's not, because it was not enabled by KVM's userspace. Signed-off-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 06 11月, 2017 1 次提交
-
-
由 Christoffer Dall 提交于
When trapping on a guest access to one of the timer registers, we were messing with the internals of the timer state from the sysregs handling code, and that logic was about to receive more added complexity when optimizing the timer handling code. Therefore, since we already have timer register access functions (to access registers from userspace), reuse those for the timer register traps from a VM and let the timer code maintain its own consistency. Signed-off-by: NChristoffer Dall <cdall@linaro.org> Acked-by: NMarc Zyngier <marc.zyngier@arm.com>
-