- 24 11月, 2020 5 次提交
-
-
由 Filipe Manana 提交于
When running test case btrfs/017 from fstests, lockdep reported the following splat: [ 1297.067385] ====================================================== [ 1297.067708] WARNING: possible circular locking dependency detected [ 1297.068022] 5.10.0-rc4-btrfs-next-73 #1 Not tainted [ 1297.068322] ------------------------------------------------------ [ 1297.068629] btrfs/189080 is trying to acquire lock: [ 1297.068929] ffff9f2725731690 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.069274] but task is already holding lock: [ 1297.069868] ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.070219] which lock already depends on the new lock. [ 1297.071131] the existing dependency chain (in reverse order) is: [ 1297.071721] -> #1 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}: [ 1297.072375] lock_acquire+0xd8/0x490 [ 1297.072710] __mutex_lock+0xa3/0xb30 [ 1297.073061] btrfs_qgroup_inherit+0x59/0x6a0 [btrfs] [ 1297.073421] create_subvol+0x194/0x990 [btrfs] [ 1297.073780] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] [ 1297.074133] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] [ 1297.074498] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] [ 1297.074872] btrfs_ioctl+0x1a90/0x36f0 [btrfs] [ 1297.075245] __x64_sys_ioctl+0x83/0xb0 [ 1297.075617] do_syscall_64+0x33/0x80 [ 1297.075993] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.076380] -> #0 (sb_internal#2){.+.+}-{0:0}: [ 1297.077166] check_prev_add+0x91/0xc60 [ 1297.077572] __lock_acquire+0x1740/0x3110 [ 1297.077984] lock_acquire+0xd8/0x490 [ 1297.078411] start_transaction+0x3c5/0x760 [btrfs] [ 1297.078853] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.079323] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.079789] __x64_sys_ioctl+0x83/0xb0 [ 1297.080232] do_syscall_64+0x33/0x80 [ 1297.080680] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.081139] other info that might help us debug this: [ 1297.082536] Possible unsafe locking scenario: [ 1297.083510] CPU0 CPU1 [ 1297.084005] ---- ---- [ 1297.084500] lock(&fs_info->qgroup_ioctl_lock); [ 1297.084994] lock(sb_internal#2); [ 1297.085485] lock(&fs_info->qgroup_ioctl_lock); [ 1297.085974] lock(sb_internal#2); [ 1297.086454] *** DEADLOCK *** [ 1297.087880] 3 locks held by btrfs/189080: [ 1297.088324] #0: ffff9f2725731470 (sb_writers#14){.+.+}-{0:0}, at: btrfs_ioctl+0xa73/0x36f0 [btrfs] [ 1297.088799] #1: ffff9f2702b60cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.089284] #2: ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.089771] stack backtrace: [ 1297.090662] CPU: 5 PID: 189080 Comm: btrfs Not tainted 5.10.0-rc4-btrfs-next-73 #1 [ 1297.091132] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 1297.092123] Call Trace: [ 1297.092629] dump_stack+0x8d/0xb5 [ 1297.093115] check_noncircular+0xff/0x110 [ 1297.093596] check_prev_add+0x91/0xc60 [ 1297.094076] ? kvm_clock_read+0x14/0x30 [ 1297.094553] ? kvm_sched_clock_read+0x5/0x10 [ 1297.095029] __lock_acquire+0x1740/0x3110 [ 1297.095510] lock_acquire+0xd8/0x490 [ 1297.095993] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.096476] start_transaction+0x3c5/0x760 [btrfs] [ 1297.096962] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097451] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097941] ? btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.098429] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.098904] ? do_user_addr_fault+0x20c/0x430 [ 1297.099382] ? kvm_clock_read+0x14/0x30 [ 1297.099854] ? kvm_sched_clock_read+0x5/0x10 [ 1297.100328] ? sched_clock+0x5/0x10 [ 1297.100801] ? sched_clock_cpu+0x12/0x180 [ 1297.101272] ? __x64_sys_ioctl+0x83/0xb0 [ 1297.101739] __x64_sys_ioctl+0x83/0xb0 [ 1297.102207] do_syscall_64+0x33/0x80 [ 1297.102673] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.103148] RIP: 0033:0x7f773ff65d87 This is because during the quota enable ioctl we lock first the mutex qgroup_ioctl_lock and then start a transaction, and starting a transaction acquires a fs freeze semaphore (at the VFS level). However, every other code path, except for the quota disable ioctl path, we do the opposite: we start a transaction and then lock the mutex. So fix this by making the quota enable and disable paths to start the transaction without having the mutex locked, and then, after starting the transaction, lock the mutex and check if some other task already enabled or disabled the quotas, bailing with success if that was the case. Signed-off-by: NFilipe Manana <fdmanana@suse.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Filipe Manana 提交于
When adding or removing a qgroup relation we are doing a GFP_KERNEL allocation which is not safe because we are holding a transaction handle open and that can make us deadlock if the allocator needs to recurse into the filesystem. So just surround those calls with a nofs context. Signed-off-by: NFilipe Manana <fdmanana@suse.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Filipe Manana 提交于
Lockdep reported the following splat when running test btrfs/190 from fstests: [ 9482.126098] ====================================================== [ 9482.126184] WARNING: possible circular locking dependency detected [ 9482.126281] 5.10.0-rc4-btrfs-next-73 #1 Not tainted [ 9482.126365] ------------------------------------------------------ [ 9482.126456] mount/24187 is trying to acquire lock: [ 9482.126534] ffffa0c869a7dac0 (&fs_info->qgroup_rescan_lock){+.+.}-{3:3}, at: qgroup_rescan_init+0x43/0xf0 [btrfs] [ 9482.126647] but task is already holding lock: [ 9482.126777] ffffa0c892ebd3a0 (btrfs-quota-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x27/0x120 [btrfs] [ 9482.126886] which lock already depends on the new lock. [ 9482.127078] the existing dependency chain (in reverse order) is: [ 9482.127213] -> #1 (btrfs-quota-00){++++}-{3:3}: [ 9482.127366] lock_acquire+0xd8/0x490 [ 9482.127436] down_read_nested+0x45/0x220 [ 9482.127528] __btrfs_tree_read_lock+0x27/0x120 [btrfs] [ 9482.127613] btrfs_read_lock_root_node+0x41/0x130 [btrfs] [ 9482.127702] btrfs_search_slot+0x514/0xc30 [btrfs] [ 9482.127788] update_qgroup_status_item+0x72/0x140 [btrfs] [ 9482.127877] btrfs_qgroup_rescan_worker+0xde/0x680 [btrfs] [ 9482.127964] btrfs_work_helper+0xf1/0x600 [btrfs] [ 9482.128039] process_one_work+0x24e/0x5e0 [ 9482.128110] worker_thread+0x50/0x3b0 [ 9482.128181] kthread+0x153/0x170 [ 9482.128256] ret_from_fork+0x22/0x30 [ 9482.128327] -> #0 (&fs_info->qgroup_rescan_lock){+.+.}-{3:3}: [ 9482.128464] check_prev_add+0x91/0xc60 [ 9482.128551] __lock_acquire+0x1740/0x3110 [ 9482.128623] lock_acquire+0xd8/0x490 [ 9482.130029] __mutex_lock+0xa3/0xb30 [ 9482.130590] qgroup_rescan_init+0x43/0xf0 [btrfs] [ 9482.131577] btrfs_read_qgroup_config+0x43a/0x550 [btrfs] [ 9482.132175] open_ctree+0x1228/0x18a0 [btrfs] [ 9482.132756] btrfs_mount_root.cold+0x13/0xed [btrfs] [ 9482.133325] legacy_get_tree+0x30/0x60 [ 9482.133866] vfs_get_tree+0x28/0xe0 [ 9482.134392] fc_mount+0xe/0x40 [ 9482.134908] vfs_kern_mount.part.0+0x71/0x90 [ 9482.135428] btrfs_mount+0x13b/0x3e0 [btrfs] [ 9482.135942] legacy_get_tree+0x30/0x60 [ 9482.136444] vfs_get_tree+0x28/0xe0 [ 9482.136949] path_mount+0x2d7/0xa70 [ 9482.137438] do_mount+0x75/0x90 [ 9482.137923] __x64_sys_mount+0x8e/0xd0 [ 9482.138400] do_syscall_64+0x33/0x80 [ 9482.138873] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 9482.139346] other info that might help us debug this: [ 9482.140735] Possible unsafe locking scenario: [ 9482.141594] CPU0 CPU1 [ 9482.142011] ---- ---- [ 9482.142411] lock(btrfs-quota-00); [ 9482.142806] lock(&fs_info->qgroup_rescan_lock); [ 9482.143216] lock(btrfs-quota-00); [ 9482.143629] lock(&fs_info->qgroup_rescan_lock); [ 9482.144056] *** DEADLOCK *** [ 9482.145242] 2 locks held by mount/24187: [ 9482.145637] #0: ffffa0c8411c40e8 (&type->s_umount_key#44/1){+.+.}-{3:3}, at: alloc_super+0xb9/0x400 [ 9482.146061] #1: ffffa0c892ebd3a0 (btrfs-quota-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x27/0x120 [btrfs] [ 9482.146509] stack backtrace: [ 9482.147350] CPU: 1 PID: 24187 Comm: mount Not tainted 5.10.0-rc4-btrfs-next-73 #1 [ 9482.147788] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 9482.148709] Call Trace: [ 9482.149169] dump_stack+0x8d/0xb5 [ 9482.149628] check_noncircular+0xff/0x110 [ 9482.150090] check_prev_add+0x91/0xc60 [ 9482.150561] ? kvm_clock_read+0x14/0x30 [ 9482.151017] ? kvm_sched_clock_read+0x5/0x10 [ 9482.151470] __lock_acquire+0x1740/0x3110 [ 9482.151941] ? __btrfs_tree_read_lock+0x27/0x120 [btrfs] [ 9482.152402] lock_acquire+0xd8/0x490 [ 9482.152887] ? qgroup_rescan_init+0x43/0xf0 [btrfs] [ 9482.153354] __mutex_lock+0xa3/0xb30 [ 9482.153826] ? qgroup_rescan_init+0x43/0xf0 [btrfs] [ 9482.154301] ? qgroup_rescan_init+0x43/0xf0 [btrfs] [ 9482.154768] ? qgroup_rescan_init+0x43/0xf0 [btrfs] [ 9482.155226] qgroup_rescan_init+0x43/0xf0 [btrfs] [ 9482.155690] btrfs_read_qgroup_config+0x43a/0x550 [btrfs] [ 9482.156160] open_ctree+0x1228/0x18a0 [btrfs] [ 9482.156643] btrfs_mount_root.cold+0x13/0xed [btrfs] [ 9482.157108] ? rcu_read_lock_sched_held+0x5d/0x90 [ 9482.157567] ? kfree+0x31f/0x3e0 [ 9482.158030] legacy_get_tree+0x30/0x60 [ 9482.158489] vfs_get_tree+0x28/0xe0 [ 9482.158947] fc_mount+0xe/0x40 [ 9482.159403] vfs_kern_mount.part.0+0x71/0x90 [ 9482.159875] btrfs_mount+0x13b/0x3e0 [btrfs] [ 9482.160335] ? rcu_read_lock_sched_held+0x5d/0x90 [ 9482.160805] ? kfree+0x31f/0x3e0 [ 9482.161260] ? legacy_get_tree+0x30/0x60 [ 9482.161714] legacy_get_tree+0x30/0x60 [ 9482.162166] vfs_get_tree+0x28/0xe0 [ 9482.162616] path_mount+0x2d7/0xa70 [ 9482.163070] do_mount+0x75/0x90 [ 9482.163525] __x64_sys_mount+0x8e/0xd0 [ 9482.163986] do_syscall_64+0x33/0x80 [ 9482.164437] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 9482.164902] RIP: 0033:0x7f51e907caaa This happens because at btrfs_read_qgroup_config() we can call qgroup_rescan_init() while holding a read lock on a quota btree leaf, acquired by the previous call to btrfs_search_slot_for_read(), and qgroup_rescan_init() acquires the mutex qgroup_rescan_lock. A qgroup rescan worker does the opposite: it acquires the mutex qgroup_rescan_lock, at btrfs_qgroup_rescan_worker(), and then tries to update the qgroup status item in the quota btree through the call to update_qgroup_status_item(). This inversion of locking order between the qgroup_rescan_lock mutex and quota btree locks causes the splat. Fix this simply by releasing and freeing the path before calling qgroup_rescan_init() at btrfs_read_qgroup_config(). CC: stable@vger.kernel.org # 4.4+ Signed-off-by: NFilipe Manana <fdmanana@suse.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 David Sterba 提交于
There are sectorsize alignment checks that are reported but then check_extent_data_ref continues. This was not intended, wrong alignment is not a minor problem and we should return with error. CC: stable@vger.kernel.org # 5.4+ Fixes: 0785a9aa ("btrfs: tree-checker: Add EXTENT_DATA_REF check") Reviewed-by: NQu Wenruo <wqu@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Johannes Thumshirn 提交于
Syzbot reported a possible use-after-free when printing a duplicate device warning device_list_add(). At this point it can happen that a btrfs_device::fs_info is not correctly setup yet, so we're accessing stale data, when printing the warning message using the btrfs_printk() wrappers. ================================================================== BUG: KASAN: use-after-free in btrfs_printk+0x3eb/0x435 fs/btrfs/super.c:245 Read of size 8 at addr ffff8880878e06a8 by task syz-executor225/7068 CPU: 1 PID: 7068 Comm: syz-executor225 Not tainted 5.9.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1d6/0x29e lib/dump_stack.c:118 print_address_description+0x66/0x620 mm/kasan/report.c:383 __kasan_report mm/kasan/report.c:513 [inline] kasan_report+0x132/0x1d0 mm/kasan/report.c:530 btrfs_printk+0x3eb/0x435 fs/btrfs/super.c:245 device_list_add+0x1a88/0x1d60 fs/btrfs/volumes.c:943 btrfs_scan_one_device+0x196/0x490 fs/btrfs/volumes.c:1359 btrfs_mount_root+0x48f/0xb60 fs/btrfs/super.c:1634 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x88/0x270 fs/super.c:1547 fc_mount fs/namespace.c:978 [inline] vfs_kern_mount+0xc9/0x160 fs/namespace.c:1008 btrfs_mount+0x33c/0xae0 fs/btrfs/super.c:1732 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x88/0x270 fs/super.c:1547 do_new_mount fs/namespace.c:2875 [inline] path_mount+0x179d/0x29e0 fs/namespace.c:3192 do_mount fs/namespace.c:3205 [inline] __do_sys_mount fs/namespace.c:3413 [inline] __se_sys_mount+0x126/0x180 fs/namespace.c:3390 do_syscall_64+0x31/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x44840a RSP: 002b:00007ffedfffd608 EFLAGS: 00000293 ORIG_RAX: 00000000000000a5 RAX: ffffffffffffffda RBX: 00007ffedfffd670 RCX: 000000000044840a RDX: 0000000020000000 RSI: 0000000020000100 RDI: 00007ffedfffd630 RBP: 00007ffedfffd630 R08: 00007ffedfffd670 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000293 R12: 000000000000001a R13: 0000000000000004 R14: 0000000000000003 R15: 0000000000000003 Allocated by task 6945: kasan_save_stack mm/kasan/common.c:48 [inline] kasan_set_track mm/kasan/common.c:56 [inline] __kasan_kmalloc+0x100/0x130 mm/kasan/common.c:461 kmalloc_node include/linux/slab.h:577 [inline] kvmalloc_node+0x81/0x110 mm/util.c:574 kvmalloc include/linux/mm.h:757 [inline] kvzalloc include/linux/mm.h:765 [inline] btrfs_mount_root+0xd0/0xb60 fs/btrfs/super.c:1613 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x88/0x270 fs/super.c:1547 fc_mount fs/namespace.c:978 [inline] vfs_kern_mount+0xc9/0x160 fs/namespace.c:1008 btrfs_mount+0x33c/0xae0 fs/btrfs/super.c:1732 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x88/0x270 fs/super.c:1547 do_new_mount fs/namespace.c:2875 [inline] path_mount+0x179d/0x29e0 fs/namespace.c:3192 do_mount fs/namespace.c:3205 [inline] __do_sys_mount fs/namespace.c:3413 [inline] __se_sys_mount+0x126/0x180 fs/namespace.c:3390 do_syscall_64+0x31/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Freed by task 6945: kasan_save_stack mm/kasan/common.c:48 [inline] kasan_set_track+0x3d/0x70 mm/kasan/common.c:56 kasan_set_free_info+0x17/0x30 mm/kasan/generic.c:355 __kasan_slab_free+0xdd/0x110 mm/kasan/common.c:422 __cache_free mm/slab.c:3418 [inline] kfree+0x113/0x200 mm/slab.c:3756 deactivate_locked_super+0xa7/0xf0 fs/super.c:335 btrfs_mount_root+0x72b/0xb60 fs/btrfs/super.c:1678 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x88/0x270 fs/super.c:1547 fc_mount fs/namespace.c:978 [inline] vfs_kern_mount+0xc9/0x160 fs/namespace.c:1008 btrfs_mount+0x33c/0xae0 fs/btrfs/super.c:1732 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x88/0x270 fs/super.c:1547 do_new_mount fs/namespace.c:2875 [inline] path_mount+0x179d/0x29e0 fs/namespace.c:3192 do_mount fs/namespace.c:3205 [inline] __do_sys_mount fs/namespace.c:3413 [inline] __se_sys_mount+0x126/0x180 fs/namespace.c:3390 do_syscall_64+0x31/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The buggy address belongs to the object at ffff8880878e0000 which belongs to the cache kmalloc-16k of size 16384 The buggy address is located 1704 bytes inside of 16384-byte region [ffff8880878e0000, ffff8880878e4000) The buggy address belongs to the page: page:0000000060704f30 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x878e0 head:0000000060704f30 order:3 compound_mapcount:0 compound_pincount:0 flags: 0xfffe0000010200(slab|head) raw: 00fffe0000010200 ffffea00028e9a08 ffffea00021e3608 ffff8880aa440b00 raw: 0000000000000000 ffff8880878e0000 0000000100000001 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880878e0580: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880878e0600: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff8880878e0680: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8880878e0700: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880878e0780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== The syzkaller reproducer for this use-after-free crafts a filesystem image and loop mounts it twice in a loop. The mount will fail as the crafted image has an invalid chunk tree. When this happens btrfs_mount_root() will call deactivate_locked_super(), which then cleans up fs_info and fs_info::sb. If a second thread now adds the same block-device to the filesystem, it will get detected as a duplicate device and device_list_add() will reject the duplicate and print a warning. But as the fs_info pointer passed in is non-NULL this will result in a use-after-free. Instead of printing possibly uninitialized or already freed memory in btrfs_printk(), explicitly pass in a NULL fs_info so the printing of the device name will be skipped altogether. There was a slightly different approach discussed in https://lore.kernel.org/linux-btrfs/20200114060920.4527-1-anand.jain@oracle.com/t/#u Link: https://lore.kernel.org/linux-btrfs/000000000000c9e14b05afcc41ba@google.com Reported-by: syzbot+582e66e5edf36a22c7b0@syzkaller.appspotmail.com CC: stable@vger.kernel.org # 4.19+ Reviewed-by: NNikolay Borisov <nborisov@suse.com> Reviewed-by: NAnand Jain <anand.jain@oracle.com> Signed-off-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 23 11月, 2020 2 次提交
-
-
由 David Howells 提交于
When doing a lookup in a directory, the afs filesystem uses a bulk status fetch to speculatively retrieve the statuses of up to 48 other vnodes found in the same directory and it will then either update extant inodes or create new ones - effectively doing 'lookup ahead'. To avoid the possibility of deadlocking itself, however, the filesystem doesn't lock all of those inodes; rather just the directory inode is locked (by the VFS). When the operation completes, afs_inode_init_from_status() or afs_apply_status() is called, depending on whether the inode already exists, to commit the new status. A case exists, however, where the speculative status fetch operation may straddle a modification operation on one of those vnodes. What can then happen is that the speculative bulk status RPC retrieves the old status, and whilst that is happening, the modification happens - which returns an updated status, then the modification status is committed, then we attempt to commit the speculative status. This results in something like the following being seen in dmesg: kAFS: vnode modified {100058:861} 8->9 YFS.InlineBulkStatus showing that for vnode 861 on volume 100058, we saw YFS.InlineBulkStatus say that the vnode had data version 8 when we'd already recorded version 9 due to a local modification. This was causing the cache to be invalidated for that vnode when it shouldn't have been. If it happens on a data file, this might lead to local changes being lost. Fix this by ignoring speculative status updates if the data version doesn't match the expected value. Note that it is possible to get a DV regression if a volume gets restored from a backup - but we should get a callback break in such a case that should trigger a recheck anyway. It might be worth checking the volume creation time in the volsync info and, if a change is observed in that (as would happen on a restore), invalidate all caches associated with the volume. Fixes: 5cf9dd55 ("afs: Prospectively look up extra files when doing a single lookup") Signed-off-by: NDavid Howells <dhowells@redhat.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yicong Yang 提交于
The attr->set() receive a value of u64, but simple_strtoll() is used for doing the conversion. It will lead to the error cast if user inputs a negative value. Use kstrtoull() instead of simple_strtoll() to convert a string got from the user to an unsigned value. The former will return '-EINVAL' if it gets a negetive value, but the latter can't handle the situation correctly. Make 'val' unsigned long long as what kstrtoull() takes, this will eliminate the compile warning on no 64-bit architectures. Fixes: f7b88631 ("fs/libfs.c: fix simple_attr_write() on 32bit machines") Signed-off-by: NYicong Yang <yangyicong@hisilicon.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Link: https://lkml.kernel.org/r/1605341356-11872-1-git-send-email-yangyicong@hisilicon.comSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 11月, 2020 5 次提交
-
-
由 Jan Kara 提交于
The idea of the warning in ext4_update_dx_flag() is that we should warn when we are clearing EXT4_INODE_INDEX on a filesystem with metadata checksums enabled since after clearing the flag, checksums for internal htree nodes will become invalid. So there's no need to warn (or actually do anything) when EXT4_INODE_INDEX is not set. Link: https://lore.kernel.org/r/20201118153032.17281-1-jack@suse.cz Fixes: 48a34311 ("ext4: fix checksum errors with indexed dirs") Reported-by: NEric Biggers <ebiggers@kernel.org> Reviewed-by: NEric Biggers <ebiggers@google.com> Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NTheodore Ts'o <tytso@mit.edu> Cc: stable@kernel.org
-
由 Mauro Carvalho Chehab 提交于
Kernel-doc markup should use this format: identifier - description They should not have any type before that, as otherwise the parser won't do the right thing. Also, some identifiers have different names between their prototypes and the kernel-doc markup. Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NMauro Carvalho Chehab <mchehab+huawei@kernel.org> Link: https://lore.kernel.org/r/72f5c6628f5f278d67625f60893ffbc2ca28d46e.1605521731.git.mchehab+huawei@kernel.orgSigned-off-by: NTheodore Ts'o <tytso@mit.edu>
-
由 Darrick J. Wong 提交于
This reverts commit 6ff646b2. Your maintainer committed a major braino in the rmap code by adding the attr fork, bmbt, and unwritten extent usage bits into rmap record key comparisons. While XFS uses the usage bits *in the rmap records* for cross-referencing metadata in xfs_scrub and xfs_repair, it only needs the owner and offset information to distinguish between reverse mappings of the same physical extent into the data fork of a file at multiple offsets. The other bits are not important for key comparisons for index lookups, and never have been. Eric Sandeen reports that this causes regressions in generic/299, so undo this patch before it does more damage. Reported-by: NEric Sandeen <sandeen@sandeen.net> Fixes: 6ff646b2 ("xfs: fix rmap key and record comparison functions") Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NEric Sandeen <sandeen@redhat.com>
-
由 Theodore Ts'o 提交于
The options in /proc/mounts must be valid mount options --- and fast_commit is not a mount option. Otherwise, command sequences like this will fail: # mount /dev/vdc /vdc # mkdir -p /vdc/phoronix_test_suite /pts # mount --bind /vdc/phoronix_test_suite /pts # mount -o remount,nodioread_nolock /pts mount: /pts: mount point not mounted or bad option. And in the system logs, you'll find: EXT4-fs (vdc): Unrecognized mount option "fast_commit" or missing value Fixes: 995a3ed6 ("ext4: add fast_commit feature and handling for extended mount options") Signed-off-by: NTheodore Ts'o <tytso@mit.edu>
-
由 Dave Chinner 提交于
Jens has reported a situation where partial direct IOs can be issued and completed yet still return -EAGAIN. We don't want this to report a short IO as we want XFS to complete user DIO entirely or not at all. This partial IO situation can occur on a write IO that is split across an allocated extent and a hole, and the second mapping is returning EAGAIN because allocation would be required. The trivial reproducer: $ sudo xfs_io -fdt -c "pwrite 0 4k" -c "pwrite -V 1 -b 8k -N 0 8k" /mnt/scr/foo wrote 4096/4096 bytes at offset 0 4 KiB, 1 ops; 0.0001 sec (27.509 MiB/sec and 7042.2535 ops/sec) pwrite: Resource temporarily unavailable $ The pwritev2(0, 8kB, RWF_NOWAIT) call returns EAGAIN having done the first 4kB write: xfs_file_direct_write: dev 259:1 ino 0x83 size 0x1000 offset 0x0 count 0x2000 iomap_apply: dev 259:1 ino 0x83 pos 0 length 8192 flags WRITE|DIRECT|NOWAIT (0x31) ops xfs_direct_write_iomap_ops caller iomap_dio_rw actor iomap_dio_actor xfs_ilock_nowait: dev 259:1 ino 0x83 flags ILOCK_SHARED caller xfs_ilock_for_iomap xfs_iunlock: dev 259:1 ino 0x83 flags ILOCK_SHARED caller xfs_direct_write_iomap_begin xfs_iomap_found: dev 259:1 ino 0x83 size 0x1000 offset 0x0 count 8192 fork data startoff 0x0 startblock 24 blockcount 0x1 iomap_apply_dstmap: dev 259:1 ino 0x83 bdev 259:1 addr 102400 offset 0 length 4096 type MAPPED flags DIRTY Here the first iomap loop has mapped the first 4kB of the file and issued the IO, and we enter the second iomap_apply loop: iomap_apply: dev 259:1 ino 0x83 pos 4096 length 4096 flags WRITE|DIRECT|NOWAIT (0x31) ops xfs_direct_write_iomap_ops caller iomap_dio_rw actor iomap_dio_actor xfs_ilock_nowait: dev 259:1 ino 0x83 flags ILOCK_SHARED caller xfs_ilock_for_iomap xfs_iunlock: dev 259:1 ino 0x83 flags ILOCK_SHARED caller xfs_direct_write_iomap_begin And we exit with -EAGAIN out because we hit the allocate case trying to make the second 4kB block. Then IO completes on the first 4kB and the original IO context completes and unlocks the inode, returning -EAGAIN to userspace: xfs_end_io_direct_write: dev 259:1 ino 0x83 isize 0x1000 disize 0x1000 offset 0x0 count 4096 xfs_iunlock: dev 259:1 ino 0x83 flags IOLOCK_SHARED caller xfs_file_dio_aio_write There are other vectors to the same problem when we re-enter the mapping code if we have to make multiple mappinfs under NOWAIT conditions. e.g. failing trylocks, COW extents being found, allocation being required, and so on. Avoid all these potential problems by only allowing IOMAP_NOWAIT IO to go ahead if the mapping we retrieve for the IO spans an entire allocated extent. This avoids the possibility of subsequent mappings to complete the IO from triggering NOWAIT semantics by any means as NOWAIT IO will now only enter the mapping code once per NOWAIT IO. Reported-and-tested-by: NJens Axboe <axboe@kernel.dk> Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 19 11月, 2020 6 次提交
-
-
由 Yu Kuai 提交于
In xfs_initialize_perag(), if kmem_zalloc(), xfs_buf_hash_init(), or radix_tree_preload() failed, the returned value 'error' is not set accordingly. Reported-as-fixing: 8b26c582 ("xfs: handle ENOMEM correctly during initialisation of perag structures") Fixes: 9b247179 ("xfs: cache unlinked pointers in an rhashtable") Reported-by: NHulk Robot <hulkci@huawei.com> Signed-off-by: NYu Kuai <yukuai3@huawei.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Darrick J. Wong 提交于
The aim of the inode btree record iterator function is to call a callback on every record in the btree. To avoid having to tear down and recreate the inode btree cursor around every callback, it caches a certain number of records in a memory buffer. After each batch of callback invocations, we have to perform a btree lookup to find the next record after where we left off. However, if the keys of the inode btree are corrupt, the lookup might put us in the wrong part of the inode btree, causing the walk function to loop forever. Therefore, we add extra cursor tracking to make sure that we never go backwards neither when performing the lookup nor when jumping to the next inobt record. This also fixes an off by one error where upon resume the lookup should have been for the inode /after/ the point at which we stopped. Found by fuzzing xfs/460 with keys[2].startino = ones causing bulkstat and quotacheck to hang. Fixes: a211432c ("xfs: create simplified inode walk function") Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChandan Babu R <chandanrlinux@gmail.com>
-
由 Gao Xiang 提交于
Currently, commit e9e2eae8 dropped a (int) decoration from XFS_LITINO(mp), and since sizeof() expression is also involved, the result of XFS_LITINO(mp) is simply as the size_t type (commonly unsigned long). Considering the expression in xfs_attr_shortform_bytesfit(): offset = (XFS_LITINO(mp) - bytes) >> 3; let "bytes" be (int)340, and "XFS_LITINO(mp)" be (unsigned long)336. on 64-bit platform, the expression is offset = ((unsigned long)336 - (int)340) >> 3 = (int)(0xfffffffffffffffcUL >> 3) = -1 but on 32-bit platform, the expression is offset = ((unsigned long)336 - (int)340) >> 3 = (int)(0xfffffffcUL >> 3) = 0x1fffffff instead. so offset becomes a large positive number on 32-bit platform, and cause xfs_attr_shortform_bytesfit() returns maxforkoff rather than 0. Therefore, one result is "ASSERT(new_size <= XFS_IFORK_SIZE(ip, whichfork));" assertion failure in xfs_idata_realloc(), which was also the root cause of the original bugreport from Dennis, see: https://bugzilla.redhat.com/show_bug.cgi?id=1894177 And it can also be manually triggered with the following commands: $ touch a; $ setfattr -n user.0 -v "`seq 0 80`" a; $ setfattr -n user.1 -v "`seq 0 80`" a on 32-bit platform. Fix the case in xfs_attr_shortform_bytesfit() by bailing out "XFS_LITINO(mp) < bytes" in advance suggested by Eric and a misleading comment together with this bugfix suggested by Darrick. It seems the other users of XFS_LITINO(mp) are not impacted. Fixes: e9e2eae8 ("xfs: only check the superblock version for dinode size calculation") Cc: <stable@vger.kernel.org> # 5.7+ Reported-and-tested-by: NDennis Gilmore <dgilmore@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NGao Xiang <hsiangkao@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Darrick J. Wong 提交于
Teach the directory scrubber to check all the bestfree entries, including the null ones. We want to be able to detect the case where the entry is null but there actually /is/ a directory data block. Found by fuzzing lbests[0] = ones in xfs/391. Fixes: df481968 ("xfs: scrub directory freespace") Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChandan Babu R <chandanrlinux@gmail.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
We always know the correct state of the rmap record flags (attr, bmbt, unwritten) so check them by direct comparison. Fixes: d852657c ("xfs: cross-reference reverse-mapping btree") Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChandan Babu R <chandanrlinux@gmail.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
The comment and logic in xchk_btree_check_minrecs for dealing with inode-rooted btrees isn't quite correct. While the direct children of the inode root are allowed to have fewer records than what would normally be allowed for a regular ondisk btree block, this is only true if there is only one child block and the number of records don't fit in the inode root. Fixes: 08a3a692 ("xfs: btree scrub should check minrecs") Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChandan Babu R <chandanrlinux@gmail.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 18 11月, 2020 4 次提交
-
-
由 Bob Peterson 提交于
Patch 541656d3 ("gfs2: freeze should work on read-only mounts") changed the check for glock state in function freeze_go_sync() from "gl->gl_state == LM_ST_SHARED" to "gl->gl_req == LM_ST_EXCLUSIVE". That's wrong and it regressed gfs2's freeze/thaw mechanism because it caused only the freezing node (which requests the glock in EX) to queue freeze work. All nodes go through this go_sync code path during the freeze to drop their SHared hold on the freeze glock, allowing the freezing node to acquire it in EXclusive mode. But all the nodes must freeze access to the file system locally, so they ALL must queue freeze work. The freeze_work calls freeze_func, which makes a request to reacquire the freeze glock in SH, effectively blocking until the thaw from the EX holder. Once thawed, the freezing node drops its EX hold on the freeze glock, then the (blocked) freeze_func reacquires the freeze glock in SH again (on all nodes, including the freezer) so all nodes go back to a thawed state. This patch changes the check back to gl_state == LM_ST_SHARED like it was prior to 541656d3. Fixes: 541656d3 ("gfs2: freeze should work on read-only mounts") Cc: stable@vger.kernel.org # v5.8+ Signed-off-by: NBob Peterson <rpeterso@redhat.com> Signed-off-by: NAndreas Gruenbacher <agruenba@redhat.com>
-
由 Pavel Begunkov 提交于
Don't recycle a refnode until we're done with all requests of nodes ejected before. Signed-off-by: NPavel Begunkov <asml.silence@gmail.com> Cc: stable@vger.kernel.org # v5.7+ Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Pavel Begunkov 提交于
An active ref_node always can be found in ctx->files_data, it's much safer to get it this way instead of poking into files_data->ref_list. Signed-off-by: NPavel Begunkov <asml.silence@gmail.com> Cc: stable@vger.kernel.org # v5.7+ Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Jens Axboe 提交于
Zorro reports that an xfstest test case is failing, and it turns out that for the reissue path we can potentially issue a double completion on the request for the failure path. There's an issue around the retry as well, but for now, at least just make sure that we handle the error path correctly. Cc: stable@vger.kernel.org Fixes: b63534c4 ("io_uring: re-issue block requests that failed because of resources") Reported-by: NZorro Lang <zlang@redhat.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 16 11月, 2020 4 次提交
-
-
由 Rohith Surabattula 提交于
Mid callback needs to be called only when valid data is read into pages. These patches address a problem found during decryption offload: CIFS: VFS: trying to dequeue a deleted mid that could cause a refcount use after free: Workqueue: smb3decryptd smb2_decrypt_offload [cifs] Signed-off-by: NRohith Surabattula <rohiths@microsoft.com> Reviewed-by: NPavel Shilovsky <pshilov@microsoft.com> CC: Stable <stable@vger.kernel.org> #5.4+ Signed-off-by: NSteve French <stfrench@microsoft.com>
-
由 Rohith Surabattula 提交于
When reconnect happens Mid queue can be corrupted when both demultiplex and offload thread try to dequeue the MID from the pending list. These patches address a problem found during decryption offload: CIFS: VFS: trying to dequeue a deleted mid that could cause a refcount use after free: Workqueue: smb3decryptd smb2_decrypt_offload [cifs] Signed-off-by: NRohith Surabattula <rohiths@microsoft.com> Reviewed-by: NPavel Shilovsky <pshilov@microsoft.com> CC: Stable <stable@vger.kernel.org> #5.4+ Signed-off-by: NSteve French <stfrench@microsoft.com>
-
由 Rohith Surabattula 提交于
cifs_reconnect needs to be called only from demultiplex thread. skip cifs_reconnect in offload thread. So, cifs_reconnect will be called by demultiplex thread in subsequent request. These patches address a problem found during decryption offload: CIFS: VFS: trying to dequeue a deleted mid that can cause a refcount use after free: [ 1271.389453] Workqueue: smb3decryptd smb2_decrypt_offload [cifs] [ 1271.389456] RIP: 0010:refcount_warn_saturate+0xae/0xf0 [ 1271.389457] Code: fa 1d 6a 01 01 e8 c7 44 b1 ff 0f 0b 5d c3 80 3d e7 1d 6a 01 00 75 91 48 c7 c7 d8 be 1d a2 c6 05 d7 1d 6a 01 01 e8 a7 44 b1 ff <0f> 0b 5d c3 80 3d c5 1d 6a 01 00 0f 85 6d ff ff ff 48 c7 c7 30 bf [ 1271.389458] RSP: 0018:ffffa4cdc1f87e30 EFLAGS: 00010286 [ 1271.389458] RAX: 0000000000000000 RBX: ffff9974d2809f00 RCX: ffff9974df898cc8 [ 1271.389459] RDX: 00000000ffffffd8 RSI: 0000000000000027 RDI: ffff9974df898cc0 [ 1271.389460] RBP: ffffa4cdc1f87e30 R08: 0000000000000004 R09: 00000000000002c0 [ 1271.389460] R10: 0000000000000000 R11: 0000000000000001 R12: ffff9974b7fdb5c0 [ 1271.389461] R13: ffff9974d2809f00 R14: ffff9974ccea0a80 R15: ffff99748e60db80 [ 1271.389462] FS: 0000000000000000(0000) GS:ffff9974df880000(0000) knlGS:0000000000000000 [ 1271.389462] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1271.389463] CR2: 000055c60f344fe4 CR3: 0000001031a3c002 CR4: 00000000003706e0 [ 1271.389465] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1271.389465] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 1271.389466] Call Trace: [ 1271.389483] cifs_mid_q_entry_release+0xce/0x110 [cifs] [ 1271.389499] smb2_decrypt_offload+0xa9/0x1c0 [cifs] [ 1271.389501] process_one_work+0x1e8/0x3b0 [ 1271.389503] worker_thread+0x50/0x370 [ 1271.389504] kthread+0x12f/0x150 [ 1271.389506] ? process_one_work+0x3b0/0x3b0 [ 1271.389507] ? __kthread_bind_mask+0x70/0x70 [ 1271.389509] ret_from_fork+0x22/0x30 Signed-off-by: NRohith Surabattula <rohiths@microsoft.com> Reviewed-by: NPavel Shilovsky <pshilov@microsoft.com> CC: Stable <stable@vger.kernel.org> #5.4+ Signed-off-by: NSteve French <stfrench@microsoft.com>
-
由 Namjae Jeon 提交于
kmemleak reported a memory leak allocated in query_info() when cifs is working with modefromsid. backtrace: [<00000000aeef6a1e>] slab_post_alloc_hook+0x58/0x510 [<00000000b2f7a440>] __kmalloc+0x1a0/0x390 [<000000006d470ebc>] query_info+0x5b5/0x700 [cifs] [<00000000bad76ce0>] SMB2_query_acl+0x2b/0x30 [cifs] [<000000001fa09606>] get_smb2_acl_by_path+0x2f3/0x720 [cifs] [<000000001b6ebab7>] get_smb2_acl+0x75/0x90 [cifs] [<00000000abf43904>] cifs_acl_to_fattr+0x13b/0x1d0 [cifs] [<00000000a5372ec3>] cifs_get_inode_info+0x4cd/0x9a0 [cifs] [<00000000388e0a04>] cifs_revalidate_dentry_attr+0x1cd/0x510 [cifs] [<0000000046b6b352>] cifs_getattr+0x8a/0x260 [cifs] [<000000007692c95e>] vfs_getattr_nosec+0xa1/0xc0 [<00000000cbc7d742>] vfs_getattr+0x36/0x40 [<00000000de8acf67>] vfs_statx_fd+0x4a/0x80 [<00000000a58c6adb>] __do_sys_newfstat+0x31/0x70 [<00000000300b3b4e>] __x64_sys_newfstat+0x16/0x20 [<000000006d8e9c48>] do_syscall_64+0x37/0x80 This patch add missing kfree for pntsd when mounting modefromsid option. Cc: Stable <stable@vger.kernel.org> # v5.4+ Signed-off-by: NNamjae Jeon <namjae.jeon@samsung.com> Reviewed-by: NAurelien Aptel <aaptel@suse.com> Signed-off-by: NSteve French <stfrench@microsoft.com>
-
- 15 11月, 2020 3 次提交
-
-
由 David Howells 提交于
When afs_write_end() is called with copied == 0, it tries to set the dirty region, but there's no way to actually encode a 0-length region in the encoding in page->private. "0,0", for example, indicates a 1-byte region at offset 0. The maths miscalculates this and sets it incorrectly. Fix it to just do nothing but unlock and put the page in this case. We don't actually need to mark the page dirty as nothing presumably changed. Fixes: 65dd2d60 ("afs: Alter dirty range encoding in page->private") Signed-off-by: NDavid Howells <dhowells@redhat.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Wengang Wang 提交于
Though problem if found on a lower 4.1.12 kernel, I think upstream has same issue. In one node in the cluster, there is the following callback trace: # cat /proc/21473/stack __ocfs2_cluster_lock.isra.36+0x336/0x9e0 [ocfs2] ocfs2_inode_lock_full_nested+0x121/0x520 [ocfs2] ocfs2_evict_inode+0x152/0x820 [ocfs2] evict+0xae/0x1a0 iput+0x1c6/0x230 ocfs2_orphan_filldir+0x5d/0x100 [ocfs2] ocfs2_dir_foreach_blk+0x490/0x4f0 [ocfs2] ocfs2_dir_foreach+0x29/0x30 [ocfs2] ocfs2_recover_orphans+0x1b6/0x9a0 [ocfs2] ocfs2_complete_recovery+0x1de/0x5c0 [ocfs2] process_one_work+0x169/0x4a0 worker_thread+0x5b/0x560 kthread+0xcb/0xf0 ret_from_fork+0x61/0x90 The above stack is not reasonable, the final iput shouldn't happen in ocfs2_orphan_filldir() function. Looking at the code, 2067 /* Skip inodes which are already added to recover list, since dio may 2068 * happen concurrently with unlink/rename */ 2069 if (OCFS2_I(iter)->ip_next_orphan) { 2070 iput(iter); 2071 return 0; 2072 } 2073 The logic thinks the inode is already in recover list on seeing ip_next_orphan is non-NULL, so it skip this inode after dropping a reference which incremented in ocfs2_iget(). While, if the inode is already in recover list, it should have another reference and the iput() at line 2070 should not be the final iput (dropping the last reference). So I don't think the inode is really in the recover list (no vmcore to confirm). Note that ocfs2_queue_orphans(), though not shown up in the call back trace, is holding cluster lock on the orphan directory when looking up for unlinked inodes. The on disk inode eviction could involve a lot of IOs which may need long time to finish. That means this node could hold the cluster lock for very long time, that can lead to the lock requests (from other nodes) to the orhpan directory hang for long time. Looking at more on ip_next_orphan, I found it's not initialized when allocating a new ocfs2_inode_info structure. This causes te reflink operations from some nodes hang for very long time waiting for the cluster lock on the orphan directory. Fix: initialize ip_next_orphan as NULL. Signed-off-by: NWengang Wang <wen.gang.wang@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Cc: Mark Fasheh <mark@fasheh.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Cc: Changwei Ge <gechangwei@live.cn> Cc: Gang He <ghe@suse.com> Cc: Jun Piao <piaojun@huawei.com> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20201109171746.27884-1-wen.gang.wang@oracle.comSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jens Axboe 提交于
Any attempt to do path resolution on /proc/self from an async worker will yield -EOPNOTSUPP. We can safely do that resolution from the task itself, and without blocking, so retry it from there. Ideally io_uring would know this upfront and not have to go through the worker thread to find out, but that doesn't currently seem feasible. Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 14 11月, 2020 4 次提交
-
-
由 Jens Axboe 提交于
If this is attempted by a kthread, then return -EOPNOTSUPP as we don't currently support that. Once we can get task_pid_ptr() doing the right thing, then this can go away again. Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Daniel Xu 提交于
There's a missing return statement after an error is found in the root_item, this can cause further problems when a crafted image triggers the error. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=210181 Fixes: 259ee775 ("btrfs: tree-checker: Add ROOT_ITEM check") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: NQu Wenruo <wqu@suse.com> Signed-off-by: NDaniel Xu <dxu@dxuuu.xyz> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Qu Wenruo 提交于
[BUG] When running the following script, btrfs will trigger an ASSERT(): #/bin/bash mkfs.btrfs -f $dev mount $dev $mnt xfs_io -f -c "pwrite 0 1G" $mnt/file sync btrfs quota enable $mnt btrfs quota rescan -w $mnt # Manually set the limit below current usage btrfs qgroup limit 512M $mnt $mnt # Crash happens touch $mnt/file The dmesg looks like this: assertion failed: refcount_read(&trans->use_count) == 1, in fs/btrfs/transaction.c:2022 ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.h:3230! invalid opcode: 0000 [#1] SMP PTI RIP: 0010:assertfail.constprop.0+0x18/0x1a [btrfs] btrfs_commit_transaction.cold+0x11/0x5d [btrfs] try_flush_qgroup+0x67/0x100 [btrfs] __btrfs_qgroup_reserve_meta+0x3a/0x60 [btrfs] btrfs_delayed_update_inode+0xaa/0x350 [btrfs] btrfs_update_inode+0x9d/0x110 [btrfs] btrfs_dirty_inode+0x5d/0xd0 [btrfs] touch_atime+0xb5/0x100 iterate_dir+0xf1/0x1b0 __x64_sys_getdents64+0x78/0x110 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7fb5afe588db [CAUSE] In try_flush_qgroup(), we assume we don't hold a transaction handle at all. This is true for data reservation and mostly true for metadata. Since data space reservation always happens before we start a transaction, and for most metadata operation we reserve space in start_transaction(). But there is an exception, btrfs_delayed_inode_reserve_metadata(). It holds a transaction handle, while still trying to reserve extra metadata space. When we hit EDQUOT inside btrfs_delayed_inode_reserve_metadata(), we will join current transaction and commit, while we still have transaction handle from qgroup code. [FIX] Let's check current->journal before we join the transaction. If current->journal is unset or BTRFS_SEND_TRANS_STUB, it means we are not holding a transaction, thus are able to join and then commit transaction. If current->journal is a valid transaction handle, we avoid committing transaction and just end it This is less effective than committing current transaction, as it won't free metadata reserved space, but we may still free some data space before new data writes. Bugzilla: https://bugzilla.suse.com/show_bug.cgi?id=1178634 Fixes: c53e9653 ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT") Reviewed-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NQu Wenruo <wqu@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Filipe Manana 提交于
When doing a buffered write, through one of the write family syscalls, we look for ranges which currently don't have allocated extents and set the 'delalloc new' bit on them, so that we can report a correct number of used blocks to the stat(2) syscall until delalloc is flushed and ordered extents complete. However there are a few other places where we can do a buffered write against a range that is mapped to a hole (no extent allocated) and where we do not set the 'new delalloc' bit. Those places are: - Doing a memory mapped write against a hole; - Cloning an inline extent into a hole starting at file offset 0; - Calling btrfs_cont_expand() when the i_size of the file is not aligned to the sector size and is located in a hole. For example when cloning to a destination offset beyond EOF. So after such cases, until the corresponding delalloc range is flushed and the respective ordered extents complete, we can report an incorrect number of blocks used through the stat(2) syscall. In some cases we can end up reporting 0 used blocks to stat(2), which is a particular bad value to report as it may mislead tools to think a file is completely sparse when its i_size is not zero, making them skip reading any data, an undesired consequence for tools such as archivers and other backup tools, as reported a long time ago in the following thread (and other past threads): https://lists.gnu.org/archive/html/bug-tar/2016-07/msg00001.html Example reproducer: $ cat reproducer.sh #!/bin/bash MNT=/mnt/sdi DEV=/dev/sdi mkfs.btrfs -f $DEV > /dev/null # mkfs.xfs -f $DEV > /dev/null # mkfs.ext4 -F $DEV > /dev/null # mkfs.f2fs -f $DEV > /dev/null mount $DEV $MNT xfs_io -f -c "truncate 64K" \ -c "mmap -w 0 64K" \ -c "mwrite -S 0xab 0 64K" \ -c "munmap" \ $MNT/foo blocks_used=$(stat -c %b $MNT/foo) echo "blocks used: $blocks_used" if [ $blocks_used -eq 0 ]; then echo "ERROR: blocks used is 0" fi umount $DEV $ ./reproducer.sh blocks used: 0 ERROR: blocks used is 0 So move the logic that decides to set the 'delalloc bit' bit into the function btrfs_set_extent_delalloc(), since that is what we use for all those missing cases as well as for the cases that currently work well. This change is also preparatory work for an upcoming patch that fixes other problems related to tracking and reporting the number of bytes used by an inode. CC: stable@vger.kernel.org # 4.19+ Reviewed-by: NJosef Bacik <josef@toxicpanda.com> Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 13 11月, 2020 2 次提交
-
-
由 Bob Peterson 提交于
Patch b2a846db ("gfs2: Ignore journal log writes for jdata holes") tried (unsuccessfully) to fix a case in which writes were done to jdata blocks, the blocks are sent to the ail list, then a punch_hole or truncate operation caused the blocks to be freed. In other words, the ail items are for jdata holes. Before b2a846db, the jdata hole caused function gfs2_block_map to return -EIO, which was eventually interpreted as an IO error to the journal, and then withdraw. This patch changes function gfs2_get_block_noalloc, which is only used for jdata writes, so it returns -ENODATA rather than -EIO, and when -ENODATA is returned to gfs2_ail1_start_one, the error is ignored. We can safely ignore it because gfs2_ail1_start_one is only called when the jdata pages have already been written and truncated, so the ail1 content no longer applies. Signed-off-by: NBob Peterson <rpeterso@redhat.com> Signed-off-by: NAndreas Gruenbacher <agruenba@redhat.com>
-
由 Bob Peterson 提交于
This reverts commit b2a846db. That commit changed the behavior of function gfs2_block_map to return -ENODATA in cases where a hole (IOMAP_HOLE) is encountered and create is false. While that fixed the intended problem for jdata, it also broke other callers of gfs2_block_map such as some jdata block reads. Before the patch, an encountered hole would be skipped and the buffer seen as unmapped by the caller. The patch changed the behavior to return -ENODATA, which is interpreted as an error by the caller. The -ENODATA return code should be restricted to the specific case where jdata holes are encountered during ail1 writes. That will be done in a later patch. Signed-off-by: NBob Peterson <rpeterso@redhat.com> Signed-off-by: NAndreas Gruenbacher <agruenba@redhat.com>
-
- 12 11月, 2020 5 次提交
-
-
由 Trond Myklebust 提交于
nfs_inc_stats() is already thread-safe, and there are no other reasons to hold the inode lock here. Signed-off-by: NTrond Myklebust <trond.myklebust@hammerspace.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Trond Myklebust 提交于
Remove the contentious inode lock, and instead provide thread safety using the file->f_lock spinlock. Signed-off-by: NTrond Myklebust <trond.myklebust@hammerspace.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Certain NFSv4.2/RDMA tests fail with v5.9-rc1. rpcrdma_convert_kvec() runs off the end of the rl_segments array because rq_rcv_buf.tail[0].iov_len holds a very large positive value. The resultant kernel memory corruption is enough to crash the client system. Callers of rpc_prepare_reply_pages() must reserve an extra XDR_UNIT in the maximum decode size for a possible XDR pad of the contents of the xdr_buf's pages. That guarantees the allocated receive buffer will be large enough to accommodate the usual contents plus that XDR pad word. encode_op_hdr() cannot add that extra word. If it does, xdr_inline_pages() underruns the length of the tail iovec. Fixes: 3e1f0212 ("NFSv4.2: add client side XDR handling for extended attributes") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 J. Bruce Fields 提交于
We forgot to unregister the nfs4_xattr_large_entry_shrinker. That leaves the global list of shrinkers corrupted after unload of the nfs module, after which possibly unrelated code that calls register_shrinker() or unregister_shrinker() gets a BUG() with "supervisor write access in kernel mode". And similarly for the nfs4_xattr_large_entry_lru. Reported-by: NKris Karas <bugs-a17@moonlit-rail.com> Tested-By: NKris Karas <bugs-a17@moonlit-rail.com> Fixes: 95ad37f9 "NFSv4.2: add client side xattr caching." Signed-off-by: NJ. Bruce Fields <bfields@redhat.com> CC: stable@vger.kernel.org Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Zhang Qilong 提交于
In the fail path of gfs2_check_blk_type, forgetting to call gfs2_glock_dq_uninit will result in rgd_gh reference leak. Signed-off-by: NZhang Qilong <zhangqilong3@huawei.com> Signed-off-by: NAndreas Gruenbacher <agruenba@redhat.com>
-