1. 05 6月, 2015 1 次提交
    • O
      signals: don't abuse __flush_signals() in selinux_bprm_committed_creds() · 9e7c8f8c
      Oleg Nesterov 提交于
      selinux_bprm_committed_creds()->__flush_signals() is not right, we
      shouldn't clear TIF_SIGPENDING unconditionally. There can be other
      reasons for signal_pending(): freezing(), JOBCTL_PENDING_MASK, and
      potentially more.
      
      Also change this code to check fatal_signal_pending() rather than
      SIGNAL_GROUP_EXIT, it looks a bit better.
      
      Now we can kill __flush_signals() before it finds another buggy user.
      
      Note: this code looks racy, we can flush a signal which was sent after
      the task SID has been updated.
      Signed-off-by: NOleg Nesterov <oleg@redhat.com>
      Signed-off-by: NPaul Moore <pmoore@redhat.com>
      9e7c8f8c
  2. 13 4月, 2015 1 次提交
  3. 27 3月, 2015 1 次提交
    • V
      sched: Add sched_avg::utilization_avg_contrib · 36ee28e4
      Vincent Guittot 提交于
      Add new statistics which reflect the average time a task is running on the CPU
      and the sum of these running time of the tasks on a runqueue. The latter is
      named utilization_load_avg.
      
      This patch is based on the usage metric that was proposed in the 1st
      versions of the per-entity load tracking patchset by Paul Turner
      <pjt@google.com> but that has be removed afterwards. This version differs from
      the original one in the sense that it's not linked to task_group.
      
      The rq's utilization_load_avg will be used to check if a rq is overloaded or
      not instead of trying to compute how many tasks a group of CPUs can handle.
      
      Rename runnable_avg_period into avg_period as it is now used with both
      runnable_avg_sum and running_avg_sum.
      
      Add some descriptions of the variables to explain their differences.
      Signed-off-by: NVincent Guittot <vincent.guittot@linaro.org>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Acked-by: NMorten Rasmussen <morten.rasmussen@arm.com>
      Cc: Paul Turner <pjt@google.com>
      Cc: Ben Segall <bsegall@google.com>
      Cc: Ben Segall <bsegall@google.com>
      Cc: Morten.Rasmussen@arm.com
      Cc: Paul Turner <pjt@google.com>
      Cc: dietmar.eggemann@arm.com
      Cc: efault@gmx.de
      Cc: kamalesh@linux.vnet.ibm.com
      Cc: linaro-kernel@lists.linaro.org
      Cc: nicolas.pitre@linaro.org
      Cc: preeti@linux.vnet.ibm.com
      Cc: riel@redhat.com
      Link: http://lkml.kernel.org/r/1425052454-25797-2-git-send-email-vincent.guittot@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
      36ee28e4
  4. 26 3月, 2015 1 次提交
    • M
      mm: numa: slow PTE scan rate if migration failures occur · 074c2381
      Mel Gorman 提交于
      Dave Chinner reported the following on https://lkml.org/lkml/2015/3/1/226
      
        Across the board the 4.0-rc1 numbers are much slower, and the degradation
        is far worse when using the large memory footprint configs. Perf points
        straight at the cause - this is from 4.0-rc1 on the "-o bhash=101073" config:
      
         -   56.07%    56.07%  [kernel]            [k] default_send_IPI_mask_sequence_phys
            - default_send_IPI_mask_sequence_phys
               - 99.99% physflat_send_IPI_mask
                  - 99.37% native_send_call_func_ipi
                       smp_call_function_many
                     - native_flush_tlb_others
                        - 99.85% flush_tlb_page
                             ptep_clear_flush
                             try_to_unmap_one
                             rmap_walk
                             try_to_unmap
                             migrate_pages
                             migrate_misplaced_page
                           - handle_mm_fault
                              - 99.73% __do_page_fault
                                   trace_do_page_fault
                                   do_async_page_fault
                                 + async_page_fault
                    0.63% native_send_call_func_single_ipi
                       generic_exec_single
                       smp_call_function_single
      
      This is showing excessive migration activity even though excessive
      migrations are meant to get throttled.  Normally, the scan rate is tuned
      on a per-task basis depending on the locality of faults.  However, if
      migrations fail for any reason then the PTE scanner may scan faster if
      the faults continue to be remote.  This means there is higher system CPU
      overhead and fault trapping at exactly the time we know that migrations
      cannot happen.  This patch tracks when migration failures occur and
      slows the PTE scanner.
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Reported-by: NDave Chinner <david@fromorbit.com>
      Tested-by: NDave Chinner <david@fromorbit.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      074c2381
  5. 24 3月, 2015 1 次提交
  6. 20 3月, 2015 1 次提交
    • R
      sched, isolcpu: make cpu_isolated_map visible outside scheduler · 3fa0818b
      Rik van Riel 提交于
      Needed by the next patch. Also makes cpu_isolated_map present
      when compiled without SMP and/or with CONFIG_NR_CPUS=1, like
      the other cpu masks.
      
      At some point we may want to clean things up so cpumasks do
      not exist in UP kernels. Maybe something for the CONFIG_TINY
      crowd.
      
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Clark Williams <williams@redhat.com>
      Cc: Li Zefan <lizefan@huawei.com>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Luiz Capitulino <lcapitulino@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
      Cc: cgroups@vger.kernel.org
      Signed-off-by: NRik van Riel <riel@redhat.com>
      Acked-by: NZefan Li <lizefan@huawei.com>
      Signed-off-by: NTejun Heo <tj@kernel.org>
      3fa0818b
  7. 18 2月, 2015 1 次提交
    • N
      sched: Prevent recursion in io_schedule() · 9cff8ade
      NeilBrown 提交于
      io_schedule() calls blk_flush_plug() which, depending on the
      contents of current->plug, can initiate arbitrary blk-io requests.
      
      Note that this contrasts with blk_schedule_flush_plug() which requires
      all non-trivial work to be handed off to a separate thread.
      
      This makes it possible for io_schedule() to recurse, and initiating
      block requests could possibly call mempool_alloc() which, in times of
      memory pressure, uses io_schedule().
      
      Apart from any stack usage issues, io_schedule() will not behave
      correctly when called recursively as delayacct_blkio_start() does
      not allow for repeated calls.
      
      So:
       - use ->in_iowait to detect recursion.  Set it earlier, and restore
         it to the old value.
       - move the call to "raw_rq" after the call to blk_flush_plug().
         As this is some sort of per-cpu thing, we want some chance that
         we are on the right CPU
       - When io_schedule() is called recurively, use blk_schedule_flush_plug()
         which cannot further recurse.
       - as this makes io_schedule() a lot more complex and as io_schedule()
         must match io_schedule_timeout(), but all the changes in io_schedule_timeout()
         and make io_schedule a simple wrapper for that.
      Signed-off-by: NNeilBrown <neilb@suse.de>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      [ Moved the now rudimentary io_schedule() into sched.h. ]
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Tony Battersby <tonyb@cybernetics.com>
      Link: http://lkml.kernel.org/r/20150213162600.059fffb2@notabene.brownSigned-off-by: NIngo Molnar <mingo@kernel.org>
      9cff8ade
  8. 14 2月, 2015 1 次提交
    • A
      kasan: add kernel address sanitizer infrastructure · 0b24becc
      Andrey Ryabinin 提交于
      Kernel Address sanitizer (KASan) is a dynamic memory error detector.  It
      provides fast and comprehensive solution for finding use-after-free and
      out-of-bounds bugs.
      
      KASAN uses compile-time instrumentation for checking every memory access,
      therefore GCC > v4.9.2 required.  v4.9.2 almost works, but has issues with
      putting symbol aliases into the wrong section, which breaks kasan
      instrumentation of globals.
      
      This patch only adds infrastructure for kernel address sanitizer.  It's
      not available for use yet.  The idea and some code was borrowed from [1].
      
      Basic idea:
      
      The main idea of KASAN is to use shadow memory to record whether each byte
      of memory is safe to access or not, and use compiler's instrumentation to
      check the shadow memory on each memory access.
      
      Address sanitizer uses 1/8 of the memory addressable in kernel for shadow
      memory and uses direct mapping with a scale and offset to translate a
      memory address to its corresponding shadow address.
      
      Here is function to translate address to corresponding shadow address:
      
           unsigned long kasan_mem_to_shadow(unsigned long addr)
           {
                      return (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET;
           }
      
      where KASAN_SHADOW_SCALE_SHIFT = 3.
      
      So for every 8 bytes there is one corresponding byte of shadow memory.
      The following encoding used for each shadow byte: 0 means that all 8 bytes
      of the corresponding memory region are valid for access; k (1 <= k <= 7)
      means that the first k bytes are valid for access, and other (8 - k) bytes
      are not; Any negative value indicates that the entire 8-bytes are
      inaccessible.  Different negative values used to distinguish between
      different kinds of inaccessible memory (redzones, freed memory) (see
      mm/kasan/kasan.h).
      
      To be able to detect accesses to bad memory we need a special compiler.
      Such compiler inserts a specific function calls (__asan_load*(addr),
      __asan_store*(addr)) before each memory access of size 1, 2, 4, 8 or 16.
      
      These functions check whether memory region is valid to access or not by
      checking corresponding shadow memory.  If access is not valid an error
      printed.
      
      Historical background of the address sanitizer from Dmitry Vyukov:
      
      	"We've developed the set of tools, AddressSanitizer (Asan),
      	ThreadSanitizer and MemorySanitizer, for user space. We actively use
      	them for testing inside of Google (continuous testing, fuzzing,
      	running prod services). To date the tools have found more than 10'000
      	scary bugs in Chromium, Google internal codebase and various
      	open-source projects (Firefox, OpenSSL, gcc, clang, ffmpeg, MySQL and
      	lots of others): [2] [3] [4].
      	The tools are part of both gcc and clang compilers.
      
      	We have not yet done massive testing under the Kernel AddressSanitizer
      	(it's kind of chicken and egg problem, you need it to be upstream to
      	start applying it extensively). To date it has found about 50 bugs.
      	Bugs that we've found in upstream kernel are listed in [5].
      	We've also found ~20 bugs in out internal version of the kernel. Also
      	people from Samsung and Oracle have found some.
      
      	[...]
      
      	As others noted, the main feature of AddressSanitizer is its
      	performance due to inline compiler instrumentation and simple linear
      	shadow memory. User-space Asan has ~2x slowdown on computational
      	programs and ~2x memory consumption increase. Taking into account that
      	kernel usually consumes only small fraction of CPU and memory when
      	running real user-space programs, I would expect that kernel Asan will
      	have ~10-30% slowdown and similar memory consumption increase (when we
      	finish all tuning).
      
      	I agree that Asan can well replace kmemcheck. We have plans to start
      	working on Kernel MemorySanitizer that finds uses of unitialized
      	memory. Asan+Msan will provide feature-parity with kmemcheck. As
      	others noted, Asan will unlikely replace debug slab and pagealloc that
      	can be enabled at runtime. Asan uses compiler instrumentation, so even
      	if it is disabled, it still incurs visible overheads.
      
      	Asan technology is easily portable to other architectures. Compiler
      	instrumentation is fully portable. Runtime has some arch-dependent
      	parts like shadow mapping and atomic operation interception. They are
      	relatively easy to port."
      
      Comparison with other debugging features:
      ========================================
      
      KMEMCHECK:
      
        - KASan can do almost everything that kmemcheck can.  KASan uses
          compile-time instrumentation, which makes it significantly faster than
          kmemcheck.  The only advantage of kmemcheck over KASan is detection of
          uninitialized memory reads.
      
          Some brief performance testing showed that kasan could be
          x500-x600 times faster than kmemcheck:
      
      $ netperf -l 30
      		MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost (127.0.0.1) port 0 AF_INET
      		Recv   Send    Send
      		Socket Socket  Message  Elapsed
      		Size   Size    Size     Time     Throughput
      		bytes  bytes   bytes    secs.    10^6bits/sec
      
      no debug:	87380  16384  16384    30.00    41624.72
      
      kasan inline:	87380  16384  16384    30.00    12870.54
      
      kasan outline:	87380  16384  16384    30.00    10586.39
      
      kmemcheck: 	87380  16384  16384    30.03      20.23
      
        - Also kmemcheck couldn't work on several CPUs.  It always sets
          number of CPUs to 1.  KASan doesn't have such limitation.
      
      DEBUG_PAGEALLOC:
      	- KASan is slower than DEBUG_PAGEALLOC, but KASan works on sub-page
      	  granularity level, so it able to find more bugs.
      
      SLUB_DEBUG (poisoning, redzones):
      	- SLUB_DEBUG has lower overhead than KASan.
      
      	- SLUB_DEBUG in most cases are not able to detect bad reads,
      	  KASan able to detect both reads and writes.
      
      	- In some cases (e.g. redzone overwritten) SLUB_DEBUG detect
      	  bugs only on allocation/freeing of object. KASan catch
      	  bugs right before it will happen, so we always know exact
      	  place of first bad read/write.
      
      [1] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel
      [2] https://code.google.com/p/address-sanitizer/wiki/FoundBugs
      [3] https://code.google.com/p/thread-sanitizer/wiki/FoundBugs
      [4] https://code.google.com/p/memory-sanitizer/wiki/FoundBugs
      [5] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel#Trophies
      
      Based on work by Andrey Konovalov.
      Signed-off-by: NAndrey Ryabinin <a.ryabinin@samsung.com>
      Acked-by: NMichal Marek <mmarek@suse.cz>
      Signed-off-by: NAndrey Konovalov <adech.fo@gmail.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Konstantin Serebryany <kcc@google.com>
      Cc: Dmitry Chernenkov <dmitryc@google.com>
      Cc: Yuri Gribov <tetra2005@gmail.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Stephen Rothwell <sfr@canb.auug.org.au>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0b24becc
  9. 13 2月, 2015 2 次提交
    • C
      kernel/sched/clock.c: add another clock for use with the soft lockup watchdog · 545a2bf7
      Cyril Bur 提交于
      When the hypervisor pauses a virtualised kernel the kernel will observe a
      jump in timebase, this can cause spurious messages from the softlockup
      detector.
      
      Whilst these messages are harmless, they are accompanied with a stack
      trace which causes undue concern and more problematically the stack trace
      in the guest has nothing to do with the observed problem and can only be
      misleading.
      
      Futhermore, on POWER8 this is completely avoidable with the introduction
      of the Virtual Time Base (VTB) register.
      
      This patch (of 2):
      
      This permits the use of arch specific clocks for which virtualised kernels
      can use their notion of 'running' time, not the elpased wall time which
      will include host execution time.
      Signed-off-by: NCyril Bur <cyrilbur@gmail.com>
      Cc: Michael Ellerman <mpe@ellerman.id.au>
      Cc: Andrew Jones <drjones@redhat.com>
      Acked-by: NDon Zickus <dzickus@redhat.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Ulrich Obergfell <uobergfe@redhat.com>
      Cc: chai wen <chaiw.fnst@cn.fujitsu.com>
      Cc: Fabian Frederick <fabf@skynet.be>
      Cc: Aaron Tomlin <atomlin@redhat.com>
      Cc: Ben Zhang <benzh@chromium.org>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: John Stultz <john.stultz@linaro.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      545a2bf7
    • A
      all arches, signal: move restart_block to struct task_struct · f56141e3
      Andy Lutomirski 提交于
      If an attacker can cause a controlled kernel stack overflow, overwriting
      the restart block is a very juicy exploit target.  This is because the
      restart_block is held in the same memory allocation as the kernel stack.
      
      Moving the restart block to struct task_struct prevents this exploit by
      making the restart_block harder to locate.
      
      Note that there are other fields in thread_info that are also easy
      targets, at least on some architectures.
      
      It's also a decent simplification, since the restart code is more or less
      identical on all architectures.
      
      [james.hogan@imgtec.com: metag: align thread_info::supervisor_stack]
      Signed-off-by: NAndy Lutomirski <luto@amacapital.net>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Al Viro <viro@zeniv.linux.org.uk>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Kees Cook <keescook@chromium.org>
      Cc: David Miller <davem@davemloft.net>
      Acked-by: NRichard Weinberger <richard@nod.at>
      Cc: Richard Henderson <rth@twiddle.net>
      Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
      Cc: Matt Turner <mattst88@gmail.com>
      Cc: Vineet Gupta <vgupta@synopsys.com>
      Cc: Russell King <rmk@arm.linux.org.uk>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
      Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
      Cc: Steven Miao <realmz6@gmail.com>
      Cc: Mark Salter <msalter@redhat.com>
      Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
      Cc: Mikael Starvik <starvik@axis.com>
      Cc: Jesper Nilsson <jesper.nilsson@axis.com>
      Cc: David Howells <dhowells@redhat.com>
      Cc: Richard Kuo <rkuo@codeaurora.org>
      Cc: "Luck, Tony" <tony.luck@intel.com>
      Cc: Geert Uytterhoeven <geert@linux-m68k.org>
      Cc: Michal Simek <monstr@monstr.eu>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Cc: Jonas Bonn <jonas@southpole.se>
      Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
      Cc: Helge Deller <deller@gmx.de>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Paul Mackerras <paulus@samba.org>
      Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
      Tested-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Chen Liqin <liqin.linux@gmail.com>
      Cc: Lennox Wu <lennox.wu@gmail.com>
      Cc: Chris Metcalf <cmetcalf@ezchip.com>
      Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
      Cc: Chris Zankel <chris@zankel.net>
      Cc: Max Filippov <jcmvbkbc@gmail.com>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Guenter Roeck <linux@roeck-us.net>
      Signed-off-by: NJames Hogan <james.hogan@imgtec.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      f56141e3
  10. 14 12月, 2014 2 次提交
    • D
      syscalls: implement execveat() system call · 51f39a1f
      David Drysdale 提交于
      This patchset adds execveat(2) for x86, and is derived from Meredydd
      Luff's patch from Sept 2012 (https://lkml.org/lkml/2012/9/11/528).
      
      The primary aim of adding an execveat syscall is to allow an
      implementation of fexecve(3) that does not rely on the /proc filesystem,
      at least for executables (rather than scripts).  The current glibc version
      of fexecve(3) is implemented via /proc, which causes problems in sandboxed
      or otherwise restricted environments.
      
      Given the desire for a /proc-free fexecve() implementation, HPA suggested
      (https://lkml.org/lkml/2006/7/11/556) that an execveat(2) syscall would be
      an appropriate generalization.
      
      Also, having a new syscall means that it can take a flags argument without
      back-compatibility concerns.  The current implementation just defines the
      AT_EMPTY_PATH and AT_SYMLINK_NOFOLLOW flags, but other flags could be
      added in future -- for example, flags for new namespaces (as suggested at
      https://lkml.org/lkml/2006/7/11/474).
      
      Related history:
       - https://lkml.org/lkml/2006/12/27/123 is an example of someone
         realizing that fexecve() is likely to fail in a chroot environment.
       - http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=514043 covered
         documenting the /proc requirement of fexecve(3) in its manpage, to
         "prevent other people from wasting their time".
       - https://bugzilla.redhat.com/show_bug.cgi?id=241609 described a
         problem where a process that did setuid() could not fexecve()
         because it no longer had access to /proc/self/fd; this has since
         been fixed.
      
      This patch (of 4):
      
      Add a new execveat(2) system call.  execveat() is to execve() as openat()
      is to open(): it takes a file descriptor that refers to a directory, and
      resolves the filename relative to that.
      
      In addition, if the filename is empty and AT_EMPTY_PATH is specified,
      execveat() executes the file to which the file descriptor refers.  This
      replicates the functionality of fexecve(), which is a system call in other
      UNIXen, but in Linux glibc it depends on opening "/proc/self/fd/<fd>" (and
      so relies on /proc being mounted).
      
      The filename fed to the executed program as argv[0] (or the name of the
      script fed to a script interpreter) will be of the form "/dev/fd/<fd>"
      (for an empty filename) or "/dev/fd/<fd>/<filename>", effectively
      reflecting how the executable was found.  This does however mean that
      execution of a script in a /proc-less environment won't work; also, script
      execution via an O_CLOEXEC file descriptor fails (as the file will not be
      accessible after exec).
      
      Based on patches by Meredydd Luff.
      Signed-off-by: NDavid Drysdale <drysdale@google.com>
      Cc: Meredydd Luff <meredydd@senatehouse.org>
      Cc: Shuah Khan <shuah.kh@samsung.com>
      Cc: "Eric W. Biederman" <ebiederm@xmission.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Kees Cook <keescook@chromium.org>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Rich Felker <dalias@aerifal.cx>
      Cc: Christoph Hellwig <hch@infradead.org>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      51f39a1f
    • V
      memcg: turn memcg_kmem_skip_account into a bit field · 6f185c29
      Vladimir Davydov 提交于
      It isn't supposed to stack, so turn it into a bit-field to save 4 bytes on
      the task_struct.
      
      Also, remove the memcg_stop/resume_kmem_account helpers - it is clearer to
      set/clear the flag inline.  Regarding the overwhelming comment to the
      helpers, which is removed by this patch too, we already have a compact yet
      accurate explanation in memcg_schedule_cache_create, no need in yet
      another one.
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6f185c29
  11. 04 11月, 2014 1 次提交
  12. 30 10月, 2014 1 次提交
  13. 28 10月, 2014 4 次提交
  14. 10 10月, 2014 1 次提交
    • J
      mm: clear __GFP_FS when PF_MEMALLOC_NOIO is set · 934f3072
      Junxiao Bi 提交于
      commit 21caf2fc ("mm: teach mm by current context info to not do I/O
      during memory allocation") introduces PF_MEMALLOC_NOIO flag to avoid doing
      I/O inside memory allocation, __GFP_IO is cleared when this flag is set,
      but __GFP_FS implies __GFP_IO, it should also be cleared.  Or it may still
      run into I/O, like in superblock shrinker.  And this will make the kernel
      run into the deadlock case described in that commit.
      
      See Dave Chinner's comment about io in superblock shrinker:
      
      Filesystem shrinkers do indeed perform IO from the superblock shrinker and
      have for years.  Even clean inodes can require IO before they can be freed
      - e.g.  on an orphan list, need truncation of post-eof blocks, need to
      wait for ordered operations to complete before it can be freed, etc.
      
      IOWs, Ext4, btrfs and XFS all can issue and/or block on arbitrary amounts
      of IO in the superblock shrinker context.  XFS, in particular, has been
      doing transactions and IO from the VFS inode cache shrinker since it was
      first introduced....
      
      Fix this by clearing __GFP_FS in memalloc_noio_flags(), this function has
      masked all the gfp_mask that will be passed into fs for the processes
      setting PF_MEMALLOC_NOIO in the direct reclaim path.
      
      v1 thread at: https://lkml.org/lkml/2014/9/3/32Signed-off-by: NJunxiao Bi <junxiao.bi@oracle.com>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: joyce.xue <xuejiufei@huawei.com>
      Cc: Ming Lei <ming.lei@canonical.com>
      Cc: Trond Myklebust <trond.myklebust@primarydata.com>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      934f3072
  15. 25 9月, 2014 3 次提交
  16. 21 9月, 2014 1 次提交
  17. 19 9月, 2014 3 次提交
  18. 08 9月, 2014 4 次提交
    • R
      time, signal: Protect resource use statistics with seqlock · e78c3496
      Rik van Riel 提交于
      Both times() and clock_gettime(CLOCK_PROCESS_CPUTIME_ID) have scalability
      issues on large systems, due to both functions being serialized with a
      lock.
      
      The lock protects against reporting a wrong value, due to a thread in the
      task group exiting, its statistics reporting up to the signal struct, and
      that exited task's statistics being counted twice (or not at all).
      
      Protecting that with a lock results in times() and clock_gettime() being
      completely serialized on large systems.
      
      This can be fixed by using a seqlock around the events that gather and
      propagate statistics. As an additional benefit, the protection code can
      be moved into thread_group_cputime(), slightly simplifying the calling
      functions.
      
      In the case of posix_cpu_clock_get_task() things can be simplified a
      lot, because the calling function already ensures that the task sticks
      around, and the rest is now taken care of in thread_group_cputime().
      
      This way the statistics reporting code can run lockless.
      Signed-off-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Alex Thorlton <athorlton@sgi.com>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Daeseok Youn <daeseok.youn@gmail.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
      Cc: Geert Uytterhoeven <geert@linux-m68k.org>
      Cc: Guillaume Morin <guillaume@morinfr.org>
      Cc: Ionut Alexa <ionut.m.alexa@gmail.com>
      Cc: Kees Cook <keescook@chromium.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Li Zefan <lizefan@huawei.com>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Michal Schmidt <mschmidt@redhat.com>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Vladimir Davydov <vdavydov@parallels.com>
      Cc: umgwanakikbuti@gmail.com
      Cc: fweisbec@gmail.com
      Cc: srao@redhat.com
      Cc: lwoodman@redhat.com
      Cc: atheurer@redhat.com
      Link: http://lkml.kernel.org/r/20140816134010.26a9b572@annuminas.surriel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      e78c3496
    • P
      rcu: Remove local_irq_disable() in rcu_preempt_note_context_switch() · 1d082fd0
      Paul E. McKenney 提交于
      The rcu_preempt_note_context_switch() function is on a scheduling fast
      path, so it would be good to avoid disabling irqs.  The reason that irqs
      are disabled is to synchronize process-level and irq-handler access to
      the task_struct ->rcu_read_unlock_special bitmask.  This commit therefore
      makes ->rcu_read_unlock_special instead be a union of bools with a short
      allowing single-access checks in RCU's __rcu_read_unlock().  This results
      in the process-level and irq-handler accesses being simple loads and
      stores, so that irqs need no longer be disabled.  This commit therefore
      removes the irq disabling from rcu_preempt_note_context_switch().
      Reported-by: NPeter Zijlstra <peterz@infradead.org>
      Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      1d082fd0
    • P
      rcu: Make TASKS_RCU handle nohz_full= CPUs · 176f8f7a
      Paul E. McKenney 提交于
      Currently TASKS_RCU would ignore a CPU running a task in nohz_full=
      usermode execution.  There would be neither a context switch nor a
      scheduling-clock interrupt to tell TASKS_RCU that the task in question
      had passed through a quiescent state.  The grace period would therefore
      extend indefinitely.  This commit therefore makes RCU's dyntick-idle
      subsystem record the task_struct structure of the task that is running
      in dyntick-idle mode on each CPU.  The TASKS_RCU grace period can
      then access this information and record a quiescent state on
      behalf of any CPU running in dyntick-idle usermode.
      Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      176f8f7a
    • P
      rcu: Add call_rcu_tasks() · 8315f422
      Paul E. McKenney 提交于
      This commit adds a new RCU-tasks flavor of RCU, which provides
      call_rcu_tasks().  This RCU flavor's quiescent states are voluntary
      context switch (not preemption!) and userspace execution (not the idle
      loop -- use some sort of schedule_on_each_cpu() if you need to handle the
      idle tasks.  Note that unlike other RCU flavors, these quiescent states
      occur in tasks, not necessarily CPUs.  Includes fixes from Steven Rostedt.
      
      This RCU flavor is assumed to have very infrequent latency-tolerant
      updaters.  This assumption permits significant simplifications, including
      a single global callback list protected by a single global lock, along
      with a single task-private linked list containing all tasks that have not
      yet passed through a quiescent state.  If experience shows this assumption
      to be incorrect, the required additional complexity will be added.
      Suggested-by: NSteven Rostedt <rostedt@goodmis.org>
      Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      8315f422
  19. 25 8月, 2014 1 次提交
  20. 09 8月, 2014 3 次提交
    • J
      shm: make exit_shm work proportional to task activity · ab602f79
      Jack Miller 提交于
      This is small set of patches our team has had kicking around for a few
      versions internally that fixes tasks getting hung on shm_exit when there
      are many threads hammering it at once.
      
      Anton wrote a simple test to cause the issue:
      
        http://ozlabs.org/~anton/junkcode/bust_shm_exit.c
      
      Before applying this patchset, this test code will cause either hanging
      tracebacks or pthread out of memory errors.
      
      After this patchset, it will still produce output like:
      
        root@somehost:~# ./bust_shm_exit 1024 160
        ...
        INFO: rcu_sched detected stalls on CPUs/tasks: {} (detected by 116, t=2111 jiffies, g=241, c=240, q=7113)
        INFO: Stall ended before state dump start
        ...
      
      But the task will continue to run along happily, so we consider this an
      improvement over hanging, even if it's a bit noisy.
      
      This patch (of 3):
      
      exit_shm obtains the ipc_ns shm rwsem for write and holds it while it
      walks every shared memory segment in the namespace.  Thus the amount of
      work is related to the number of shm segments in the namespace not the
      number of segments that might need to be cleaned.
      
      In addition, this occurs after the task has been notified the thread has
      exited, so the number of tasks waiting for the ns shm rwsem can grow
      without bound until memory is exausted.
      
      Add a list to the task struct of all shmids allocated by this task.  Init
      the list head in copy_process.  Use the ns->rwsem for locking.  Add
      segments after id is added, remove before removing from id.
      
      On unshare of NEW_IPCNS orphan any ids as if the task had exited, similar
      to handling of semaphore undo.
      
      I chose a define for the init sequence since its a simple list init,
      otherwise it would require a function call to avoid include loops between
      the semaphore code and the task struct.  Converting the list_del to
      list_del_init for the unshare cases would remove the exit followed by
      init, but I left it blow up if not inited.
      Signed-off-by: NMilton Miller <miltonm@bga.com>
      Signed-off-by: NJack Miller <millerjo@us.ibm.com>
      Cc: Davidlohr Bueso <davidlohr@hp.com>
      Cc: Manfred Spraul <manfred@colorfullife.com>
      Cc: Anton Blanchard <anton@samba.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ab602f79
    • V
      kernel/fork.c: make mm_init_owner static · 33144e84
      Vladimir Davydov 提交于
      It's only used in fork.c:mm_init().
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      33144e84
    • J
      mm: memcontrol: use page lists for uncharge batching · 747db954
      Johannes Weiner 提交于
      Pages are now uncharged at release time, and all sources of batched
      uncharges operate on lists of pages.  Directly use those lists, and
      get rid of the per-task batching state.
      
      This also batches statistics accounting, in addition to the res
      counter charges, to reduce IRQ-disabling and re-enabling.
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Vladimir Davydov <vdavydov@parallels.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Vladimir Davydov <vdavydov@parallels.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      747db954
  21. 07 8月, 2014 1 次提交
  22. 06 8月, 2014 1 次提交
  23. 24 7月, 2014 3 次提交
  24. 19 7月, 2014 1 次提交