- 24 2月, 2020 3 次提交
-
-
由 Ard Biesheuvel 提交于
There is some code that exposes physical addresses of certain parts of the EFI firmware implementation via sysfs nodes. These nodes are only used on x86, and are of dubious value to begin with, so let's move their handling into the x86 arch code. Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64 Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
config_parse_tables() is a jumble of pointer arithmetic, due to the fact that on x86, we may be dealing with firmware whose native word size differs from the kernel's. This is not a concern on other architectures, and doesn't quite justify the state of the code, so let's clean it up by adding a non-x86 code path, constifying statically allocated tables and replacing preprocessor conditionals with IS_ENABLED() checks. Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64 Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
We have three different versions of the code that checks the EFI system table revision and copies the firmware vendor string, and they are mostly equivalent, with the exception of the use of early_memremap_ro vs. __va() and the lowest major revision to warn about. Let's move this into common code and factor out the commonalities. Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64 Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
- 20 1月, 2020 1 次提交
-
-
由 Ard Biesheuvel 提交于
The new of_devlink support breaks PCIe probing on ARM platforms booting via UEFI if the firmware exposes a EFI framebuffer that is backed by a PCI device. The reason is that the probing order gets reversed, resulting in a resource conflict on the framebuffer memory window when the PCIe probes last, causing it to give up entirely. Given that we rely on PCI quirks to deal with EFI framebuffers that get moved around in memory, we cannot simply drop the memory reservation, so instead, let's use the device link infrastructure to register this dependency, and force the probing to occur in the expected order. Co-developed-by: NSaravana Kannan <saravanak@google.com> Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Signed-off-by: NSaravana Kannan <saravanak@google.com> Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Signed-off-by: NIngo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20200113172245.27925-9-ardb@kernel.org
-
- 07 11月, 2019 1 次提交
-
-
由 Dan Williams 提交于
UEFI 2.8 defines an EFI_MEMORY_SP attribute bit to augment the interpretation of the EFI Memory Types as "reserved for a specific purpose". The proposed Linux behavior for specific purpose memory is that it is reserved for direct-access (device-dax) by default and not available for any kernel usage, not even as an OOM fallback. Later, through udev scripts or another init mechanism, these device-dax claimed ranges can be reconfigured and hot-added to the available System-RAM with a unique node identifier. This device-dax management scheme implements "soft" in the "soft reserved" designation by allowing some or all of the reservation to be recovered as typical memory. This policy can be disabled at compile-time with CONFIG_EFI_SOFT_RESERVE=n, or runtime with efi=nosoftreserve. For this patch, update the ARM paths that consider EFI_CONVENTIONAL_MEMORY to optionally take the EFI_MEMORY_SP attribute into account as a reservation indicator. Publish the soft reservation as IORES_DESC_SOFT_RESERVED memory, similar to x86. (Based on an original patch by Ard) Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 04 2月, 2019 1 次提交
-
-
由 Ard Biesheuvel 提交于
Replace all GPL license blurbs with an equivalent SPDX header (most files are GPLv2, some are GPLv2+). While at it, drop some outdated header changelogs as well. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Alexander Graf <agraf@suse.de> Cc: Bjorn Andersson <bjorn.andersson@linaro.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Heinrich Schuchardt <xypron.glpk@gmx.de> Cc: Jeffrey Hugo <jhugo@codeaurora.org> Cc: Lee Jones <lee.jones@linaro.org> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Jones <pjones@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20190202094119.13230-7-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 15 11月, 2018 1 次提交
-
-
由 Ard Biesheuvel 提交于
Commit: 3ea86495 ("efi/arm: preserve early mapping of UEFI memory map longer for BGRT") deferred the unmap of the early mapping of the UEFI memory map to accommodate the ACPI BGRT code, which looks up the memory type that backs the BGRT table to validate it against the requirements of the UEFI spec. Unfortunately, this causes problems on ARM, which does not permit early mappings to persist after paging_init() is called, resulting in a WARN() splat. Since we don't support the BGRT table on ARM anway, let's revert ARM to the old behaviour, which is to take down the early mapping at the end of efi_init(). Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Fixes: 3ea86495 ("efi/arm: preserve early mapping of UEFI memory ...") Link: http://lkml.kernel.org/r/20181114175544.12860-3-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 23 7月, 2018 1 次提交
-
-
由 Ard Biesheuvel 提交于
The BGRT code validates the contents of the table against the UEFI memory map, and so it expects it to be mapped when the code runs. On ARM, this is currently not the case, since we tear down the early mapping after efi_init() completes, and only create the permanent mapping in arm_enable_runtime_services(), which executes as an early initcall, but still leaves a window where the UEFI memory map is not mapped. So move the call to efi_memmap_unmap() from efi_init() to arm_enable_runtime_services(). Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> [will: fold in EFI_MEMMAP attribute check from Ard] Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 15 6月, 2018 1 次提交
-
-
由 Stefan Agner 提交于
With PHYS_ADDR_MAX there is now a type safe variant for all bits set. Make use of it. Patch created using a semantic patch as follows: // <smpl> @@ typedef phys_addr_t; @@ -(phys_addr_t)ULLONG_MAX +PHYS_ADDR_MAX // </smpl> Link: http://lkml.kernel.org/r/20180419214204.19322-1-stefan@agner.chSigned-off-by: NStefan Agner <stefan@agner.ch> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 21 8月, 2017 2 次提交
-
-
由 Ard Biesheuvel 提交于
The ARM EFI init code never assigns the config_table member of the efi struct, which means the sysfs device node is missing, and other in-kernel users will not work correctly. So add the missing assignment. Note that, for now, the runtime and fw_vendor members are still omitted. This is deliberate: exposing physical addresses via sysfs nodes encourages behavior that we would like to avoid on ARM (given how it is more finicky about using correct memory attributes when mapping memory in userland that may be mapped by the kernel already as well). Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170818194947.19347-6-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
On ARM, regions of memory that are described by UEFI as having special significance to the firmware itself are omitted from the linear mapping. This is necessary since we cannot guarantee that alternate mappings of the same physical region will use attributes that are compatible with the ones we use for the linear mapping, and aliases with mismatched attributes are prohibited by the architecture. The above does not apply to ACPI reclaim regions: such regions have no special significance to the firmware, and it is up to the OS to decide whether or not to preserve them after it has consumed their contents, and for how long, after which time the OS can use the memory in any way it likes. In the Linux case, such regions are preserved indefinitely, and are simply treated the same way as other 'reserved' memory types. Punching holes into the linear mapping causes page table fragmentation, which increases TLB pressure, and so we should avoid doing so if we can. So add a special case for regions of type EFI_ACPI_RECLAIM_MEMORY, and memblock_reserve() them instead of marking them MEMBLOCK_NOMAP. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NMark Rutland <mark.rutland@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170818194947.19347-2-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 01 2月, 2017 1 次提交
-
-
由 Sai Praneeth 提交于
Since EFI_PROPERTIES_TABLE and EFI_MEMORY_ATTRIBUTES_TABLE deal with updating memory region attributes, it makes sense to call EFI_MEMORY_ATTRIBUTES_TABLE initialization function from the same place as EFI_PROPERTIES_TABLE. This also moves the EFI_MEMORY_ATTRIBUTES_TABLE initialization code to a more generic efi initialization path rather than ARM specific efi initialization. This is important because EFI_MEMORY_ATTRIBUTES_TABLE will be supported by x86 as well. Signed-off-by: NSai Praneeth Prakhya <sai.praneeth.prakhya@intel.com> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NLee, Chun-Yi <jlee@suse.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ravi Shankar <ravi.v.shankar@intel.com> Cc: Ricardo Neri <ricardo.neri@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1485868902-20401-4-git-send-email-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 18 10月, 2016 1 次提交
-
-
由 Yisheng Xie 提交于
There's an early memmap() leak in the efi_init() error path, fix it. Signed-off-by: NYisheng Xie <xieyisheng1@huawei.com> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20161018143318.15673-4-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 09 9月, 2016 3 次提交
-
-
由 Ard Biesheuvel 提交于
Currently, memory regions are only recorded in the memblock memory table if they have the EFI_MEMORY_WB memory type attribute set. In case the region is of a reserved type, it is also marked as MEMBLOCK_NOMAP, which will leave it out of the linear mapping. However, memory regions may legally have the EFI_MEMORY_WT or EFI_MEMORY_WC attributes set, and the EFI_MEMORY_WB cleared, in which case the region in question is obviously backed by normal memory, but is not recorded in the memblock memory table at all. Since it would be useful to be able to identify any UEFI reported memory region using memblock_is_memory(), it makes sense to add all memory to the memblock memory table, and simply mark it as MEMBLOCK_NOMAP if it lacks the EFI_MEMORY_WB attribute. While implementing this, let's refactor the code slightly to make it easier to understand: replace is_normal_ram() with is_memory(), and make it return true for each region that has any of the WB|WT|WC bits set. (This follows the AArch64 bindings in the UEFI spec, which state that those are the attributes that map to normal memory) Also, replace is_reserve_region() with is_usable_memory(), and only invoke it if the region in question was identified as memory by is_memory() in the first place. The net result is the same (only reserved regions that are backed by memory end up in the memblock memory table with the MEMBLOCK_NOMAP flag set) but carried out in a more straightforward way. Finally, we remove the trailing asterisk in the EFI debug output. Keeping it clutters the code, and it serves no real purpose now that we no longer temporarily reserve BootServices code and data regions like we did in the early days of EFI support on arm64 Linux (which it inherited from the x86 implementation) Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NLeif Lindholm <leif.lindholm@linaro.org> Tested-by: NJames Morse <james.morse@arm.com> Reviewed-by: NJames Morse <james.morse@arm.com> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk>
-
由 Ard Biesheuvel 提交于
ESRT support is built by default for all architectures that define CONFIG_EFI. However, this support was not wired up yet for ARM/arm64, since efi_esrt_init() was never called. So add the missing call. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Jones <pjones@redhat.com> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk>
-
由 Matt Fleming 提交于
Every EFI architecture apart from ia64 needs to setup the EFI memory map at efi.memmap, and the code for doing that is essentially the same across all implementations. Therefore, it makes sense to factor this out into the common code under drivers/firmware/efi/. The only slight variation is the data structure out of which we pull the initial memory map information, such as physical address, memory descriptor size and version, etc. We can address this by passing a generic data structure (struct efi_memory_map_data) as the argument to efi_memmap_init_early() which contains the minimum info required for initialising the memory map. In the process, this patch also fixes a few undesirable implementation differences: - ARM and arm64 were failing to clear the EFI_MEMMAP bit when unmapping the early EFI memory map. EFI_MEMMAP indicates whether the EFI memory map is mapped (not the regions contained within) and can be traversed. It's more correct to set the bit as soon as we memremap() the passed in EFI memmap. - Rename efi_unmmap_memmap() to efi_memmap_unmap() to adhere to the regular naming scheme. This patch also uses a read-write mapping for the memory map instead of the read-only mapping currently used on ARM and arm64. x86 needs the ability to update the memory map in-place when assigning virtual addresses to regions (efi_map_region()) and tagging regions when reserving boot services (efi_reserve_boot_services()). There's no way for the generic fake_mem code to know which mapping to use without introducing some arch-specific constant/hook, so just use read-write since read-only is of dubious value for the EFI memory map. Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump] Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm] Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Peter Jones <pjones@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk>
-
- 03 6月, 2016 1 次提交
-
-
由 Dennis Chen 提交于
When both EFI and memblock debugging is enabled on the kernel command line: 'efi=debug memblock=debug' .. the debug messages for early_con look the following way: [ 0.000000] efi: 0x0000e1050000-0x0000e105ffff [Memory Mapped I/O |RUN| | | | | | | | | | |UC] [ 0.000000] efi: 0x0000e1300000-0x0000e1300fff [Memory Mapped I/O |RUN| | | | | | | | | | |UC] [ 0.000000] efi: 0x0000e8200000-0x0000e827ffff [Memory Mapped I/O |RUN| | | | | | | | | | |UC] [ 0.000000] efi: 0x008000000000-0x008001e7ffff [Runtime Data |RUN| | | | | | | |WB|WT|WC|UC] [ 0.000000] memblock_add: [0x00008000000000-0x00008001e7ffff] flags 0x0 early_init_dt_add_memory_arch+0x54/0x5c [ 0.000000] * ... Note the misplaced '*' line, which happened because the memblock debug message was printed while the EFI debug message was still being constructed.. This patch fixes the output to be the expected: [ 0.000000] efi: 0x0000e1050000-0x0000e105ffff [Memory Mapped I/O |RUN| | | | | | | | | | |UC] [ 0.000000] efi: 0x0000e1300000-0x0000e1300fff [Memory Mapped I/O |RUN| | | | | | | | | | |UC] [ 0.000000] efi: 0x0000e8200000-0x0000e827ffff [Memory Mapped I/O |RUN| | | | | | | | | | |UC] [ 0.000000] efi: 0x008000000000-0x008001e7ffff [Runtime Data |RUN| | | | | | | |WB|WT|WC|UC]* [ 0.000000] memblock_add: [0x00008000000000-0x00008001e7ffff] flags 0x0 early_init_dt_add_memory_arch+0x54/0x5c ... Note how the '*' is now in the proper EFI debug message line. Signed-off-by: NDennis Chen <dennis.chen@arm.com> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Acked-by: NMark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Salter <msalter@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steve Capper <steve.capper@arm.com> Cc: Steve McIntyre <steve@einval.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1464690224-4503-3-git-send-email-matt@codeblueprint.co.uk [ Made the changelog more readable. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 28 4月, 2016 8 次提交
-
-
由 Ard Biesheuvel 提交于
Now that ARM has a fully functional memremap() implementation, there is no longer a need to remove the UEFI memory map from the linear mapping in order to be able to create a permanent mapping for it using generic code. So remove the 'IS_ENABLED(CONFIG_ARM)' conditional we added in: 7cc8cbcf ("efi/arm64: Don't apply MEMBLOCK_NOMAP to UEFI memory map mapping") ... and revert to using memblock_reserve() for both ARM and arm64. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-31-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
This adds code to the ARM and arm64 EFI init routines to expose a platform device of type 'efi-framebuffer' if 'struct screen_info' has been populated appropriately from the GOP protocol by the stub. Since the framebuffer may potentially be located in system RAM, make sure that the region is reserved and marked MEMBLOCK_NOMAP. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: David Herrmann <dh.herrmann@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Jones <pjones@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-24-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
In order to hand over the framebuffer described by the GOP protocol and discovered by the UEFI stub, make struct screen_info accessible by the stub. This involves allocating a loader data buffer and passing it to the kernel proper via a UEFI Configuration Table, since the UEFI stub executes in the context of the decompressor, and cannot access the kernel's copy of struct screen_info directly. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: David Herrmann <dh.herrmann@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Jones <pjones@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-22-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
Call into the generic memory attributes table support code at the appropriate times during the init sequence so that the UEFI Runtime Services region are mapped according to the strict permissions it specifies. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Jones <pjones@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-15-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
Our efi_memory_desc_t type is based on EFI_MEMORY_DESCRIPTOR version 1 in the UEFI spec. No version updates are expected, but since we are about to introduce support for new firmware tables that use the same descriptor type, it makes sense to at least warn if we encounter other versions. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-9-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Matt Fleming 提交于
Abolish the poorly named EFI memory map, 'memmap'. It is shadowed by a bunch of local definitions in various files and having two ways to access the EFI memory map ('efi.memmap' vs. 'memmap') is rather confusing. Furthermore, IA64 doesn't even provide this global object, which has caused issues when trying to write generic EFI memmap code. Replace all occurrences with efi.memmap, and convert the remaining iterator code to use for_each_efi_mem_desc(). Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Luck, Tony <tony.luck@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-8-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Matt Fleming 提交于
Most of the users of for_each_efi_memory_desc() are equally happy iterating over the EFI memory map in efi.memmap instead of 'memmap', since the former is usually a pointer to the latter. For those users that want to specify an EFI memory map other than efi.memmap, that can be done using for_each_efi_memory_desc_in_map(). One such example is in the libstub code where the firmware is queried directly for the memory map, it gets iterated over, and then freed. This change goes part of the way toward deleting the global 'memmap' variable, which is not universally available on all architectures (notably IA64) and is rather poorly named. Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Mark Salter <msalter@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-7-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
Commit: 2eec5ded ("efi/arm-init: Use read-only early mappings") updated the early ARM UEFI init code to create the temporary, early mapping of the UEFI System table using read-only attributes, as a hardening measure against inadvertent modification. However, this still leaves the permanent, writable mapping of the UEFI System table, which is only ever referenced during invocations of UEFI Runtime Services, at which time the UEFI virtual mapping is available, which also covers the system table. (This is guaranteed by the fact that SetVirtualAddressMap(), which is a runtime service itself, converts various entries in the table to their virtual equivalents, which implies that the table must be covered by a RuntimeServicesData region that has the EFI_MEMORY_RUNTIME attribute.) So instead of creating this permanent mapping, record the virtual address of the system table inside the UEFI virtual mapping, and dereference that when accessing the table. This protects the contents of the system table from inadvertent (or deliberate) modification when no UEFI Runtime Services calls are in progress. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-3-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 19 4月, 2016 1 次提交
-
-
由 Arnd Bergmann 提交于
memblock_remove() takes a phys_addr_t, which may be narrower than 64 bits, causing a harmless warning: drivers/firmware/efi/arm-init.c: In function 'reserve_regions': include/linux/kernel.h:29:20: error: large integer implicitly truncated to unsigned type [-Werror=overflow] #define ULLONG_MAX (~0ULL) ^ drivers/firmware/efi/arm-init.c:152:21: note: in expansion of macro 'ULLONG_MAX' memblock_remove(0, ULLONG_MAX); This adds an explicit typecast to avoid the warning Fixes: 500899c2 ("efi: ARM/arm64: ignore DT memory nodes instead of removing them") Acked-by Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 16 4月, 2016 1 次提交
-
-
由 Ard Biesheuvel 提交于
There are two problems with the UEFI stub DT memory node removal routine: - it deletes nodes as it traverses the tree, which happens to work but is not supported, as deletion invalidates the node iterator; - deleting memory nodes entirely may discard annotations in the form of additional properties on the nodes. Since the discovery of DT memory nodes occurs strictly before the UEFI init sequence, we can simply clear the memblock memory table before parsing the UEFI memory map. This way, it is no longer necessary to remove the nodes, so we can remove that logic from the stub as well. Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Acked-by: NSteve Capper <steve.capper@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NDavid Daney <david.daney@cavium.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 01 4月, 2016 1 次提交
-
-
由 Ard Biesheuvel 提交于
Commit 4dffbfc4 ("arm64/efi: mark UEFI reserved regions as MEMBLOCK_NOMAP") updated the mapping logic of both the RuntimeServices regions as well as the kernel's copy of the UEFI memory map to set the MEMBLOCK_NOMAP flag, which causes these regions to be omitted from the kernel direct mapping, and from being covered by a struct page. For the RuntimeServices regions, this is an obvious win, since the contents of these regions have significance to the firmware executable code itself, and are mapped in the EFI page tables using attributes that are described in the UEFI memory map, and which may differ from the attributes we use for mapping system RAM. It also prevents the contents from being modified inadvertently, since the EFI page tables are only live during runtime service invocations. None of these concerns apply to the allocation that covers the UEFI memory map, since it is entirely owned by the kernel. Setting the MEMBLOCK_NOMAP on the region did allow us to use ioremap_cache() to map it both on arm64 and on ARM, since the latter does not allow ioremap_cache() to be used on regions that are covered by a struct page. The ioremap_cache() on ARM restriction will be lifted in the v4.7 timeframe, but in the mean time, it has been reported that commit 4dffbfc4 causes a regression on 64k granule kernels. This is due to the fact that, given the 64 KB page size, the region that we end up removing from the kernel direct mapping is rounded up to 64 KB, and this 64 KB page frame may be shared with the initrd when booting via GRUB (which does not align its EFI_LOADER_DATA allocations to 64 KB like the stub does). This will crash the kernel as soon as it tries to access the initrd. Since the issue is specific to arm64, revert back to memblock_reserve()'ing the UEFI memory map when running on arm64. This is a temporary fix for v4.5 and v4.6, and will be superseded in the v4.7 timeframe when we will be able to move back to memblock_reserve() unconditionally. Fixes: 4dffbfc4 ("arm64/efi: mark UEFI reserved regions as MEMBLOCK_NOMAP") Reported-by: NMark Salter <msalter@redhat.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NWill Deacon <will.deacon@arm.com> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Jeremy Linton <jeremy.linton@arm.com> Cc: Mark Langsdorf <mlangsdo@redhat.com> Cc: <stable@vger.kernel.org> # v4.5 Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk>
-
- 22 2月, 2016 1 次提交
-
-
由 Ard Biesheuvel 提交于
The early mappings of the EFI system table contents and the UEFI memory map are read-only from the OS point of view. So map them read-only to protect them from inadvertent modification. Tested-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt@codeblueprint.co.uk> Acked-by: NMark Rutland <mark.rutland@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1455712566-16727-8-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 10 12月, 2015 3 次提交
-
-
由 Ard Biesheuvel 提交于
This refactors the EFI init and runtime code that will be shared between arm64 and ARM so that it can be built for both archs. Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Ard Biesheuvel 提交于
This splits off the early EFI init and runtime code that - discovers the EFI params and the memory map from the FDT, and installs the memblocks and config tables. - prepares and installs the EFI page tables so that UEFI Runtime Services can be invoked at the virtual address installed by the stub. This will allow it to be reused for 32-bit ARM. Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Ard Biesheuvel 提交于
Change the EFI memory reservation logic to use memblock_mark_nomap() rather than memblock_reserve() to mark UEFI reserved regions as occupied. In addition to reserving them against allocations done by memblock, this will also prevent them from being covered by the linear mapping. Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 27 11月, 2015 2 次提交
-
-
由 Ard Biesheuvel 提交于
Even though initcall return values are typically ignored, the prototype is to return 0 on success or a negative errno value on error. So fix the arm_enable_runtime_services() implementation to return 0 on conditions that are not in fact errors, and return a meaningful error code otherwise. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Ard Biesheuvel 提交于
Add NULL return value checks to two invocations of early_memremap() in the UEFI init code. For the UEFI configuration tables, we just warn since we have a better chance of being able to report the issue in a way that can actually be noticed by a human operator if we don't abort right away. For the UEFI memory map, however, all we can do is panic() since we cannot proceed without a description of memory. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 25 11月, 2015 1 次提交
-
-
由 Mark Rutland 提交于
The kernel may use a page granularity of 4K, 16K, or 64K depending on configuration. When mapping EFI runtime regions, we use memrange_efi_to_native to round the physical base address of a region down to a kernel page boundary, and round the size up to a kernel page boundary, adding the residue left over from rounding down the physical base address. We do not round down the virtual base address. In __create_mapping we account for the offset of the virtual base from a granule boundary, adding the residue to the size before rounding the base down to said granule boundary. Thus we account for the residue twice, and when the residue is non-zero will cause __create_mapping to map an additional page at the end of the region. Depending on the memory map, this page may be in a region we are not intended/permitted to map, or may clash with a different region that we wish to map. In typical cases, mapping the next item in the memory map will overwrite the erroneously created entry, as we sort the memory map in the stub. As __create_mapping can cope with base addresses which are not page aligned, we can instead rely on it to map the region appropriately, and simplify efi_virtmap_init by removing the unnecessary code. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 18 11月, 2015 1 次提交
-
-
由 Ard Biesheuvel 提交于
As pointed out by Russell King in response to the proposed ARM version of this code, the sequence to switch between the UEFI runtime mapping and current's actual userland mapping (and vice versa) is potentially unsafe, since it leaves a time window between the switch to the new page tables and the TLB flush where speculative accesses may hit on stale global TLB entries. So instead, use non-global mappings, and perform the switch via the ordinary ASID-aware context switch routines. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NWill Deacon <will.deacon@arm.com> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 28 10月, 2015 1 次提交
-
-
由 Ard Biesheuvel 提交于
We have been getting away with using a void* for the physical address of the UEFI memory map, since, even on 32-bit platforms with 64-bit physical addresses, no truncation takes place if the memory map has been allocated by the firmware (which only uses 1:1 virtually addressable memory), which is usually the case. However, commit: 0f96a99d ("efi: Add "efi_fake_mem" boot option") adds code that clones and modifies the UEFI memory map, and the clone may live above 4 GB on 32-bit platforms. This means our use of void* for struct efi_memory_map::phys_map has graduated from 'incorrect but working' to 'incorrect and broken', and we need to fix it. So redefine struct efi_memory_map::phys_map as phys_addr_t, and get rid of a bunch of casts that are now unneeded. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: NMatt Fleming <matt@codeblueprint.co.uk> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: izumi.taku@jp.fujitsu.com Cc: kamezawa.hiroyu@jp.fujitsu.com Cc: linux-efi@vger.kernel.org Cc: matt.fleming@intel.com Link: http://lkml.kernel.org/r/1445593697-1342-1-git-send-email-ard.biesheuvel@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 12 10月, 2015 2 次提交
-
-
由 Leif Lindholm 提交于
As we now have a common debug infrastructure between core and arm64 efi, drop the bit of the interface passing verbose output flags around. Signed-off-by: NLeif Lindholm <leif.lindholm@linaro.org> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Mark Salter <msalter@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Leif Lindholm 提交于
Now that we have an efi=debug command line option in the core code, use this instead of the arm64-specific uefi_debug option. Signed-off-by: NLeif Lindholm <leif.lindholm@linaro.org> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Mark Salter <msalter@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 07 10月, 2015 1 次提交
-
-
由 Will Deacon 提交于
Our current switch_mm implementation suffers from a number of problems: (1) The ASID allocator relies on IPIs to synchronise the CPUs on a rollover event (2) Because of (1), we cannot allocate ASIDs with interrupts disabled and therefore make use of a TIF_SWITCH_MM flag to postpone the actual switch to finish_arch_post_lock_switch (3) We run context switch with a reserved (invalid) TTBR0 value, even though the ASID and pgd are updated atomically (4) We take a global spinlock (cpu_asid_lock) during context-switch (5) We use h/w broadcast TLB operations when they are not required (e.g. in flush_context) This patch addresses these problems by rewriting the ASID algorithm to match the bitmap-based arch/arm/ implementation more closely. This in turn allows us to remove much of the complications surrounding switch_mm, including the ugly thread flag. Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-