- 08 8月, 2017 1 次提交
-
-
由 Chuck Lever 提交于
Transport header decoding deals with untrusted input data, therefore decoding this header needs to be hardened. Adopt the same infrastructure that is used when XDR decoding NFS replies. This is slightly more CPU-intensive than the replaced code, but we're not adding new atomics, locking, or context switches. The cost is manageable. Start by initializing an xdr_stream in rpcrdma_reply_handler(). Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 14 7月, 2017 4 次提交
-
-
由 Chuck Lever 提交于
Some have complained about the log messages generated when xprtrdma opens or closes a connection to a server. When an NFS mount is mostly idle these can appear every few minutes as the client idles out the connection and reconnects. Connection and disconnection is a normal part of operation, and not exceptional, so change these to dprintk's for now. At some point all of these will be converted to tracepoints, but that's for another day. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
After a signal, the RPC client aborts synchronous RPCs running on behalf of the signaled application. The server is still executing those RPCs, and will write the results back into the client's memory when it's done. By the time the server writes the results, that memory is likely being used for other purposes. Therefore xprtrdma has to immediately invalidate all memory regions used by those aborted RPCs to prevent the server's writes from clobbering that re-used memory. With FMR memory registration, invalidation takes a relatively long time. In fact, the invalidation is often still running when the server tries to write the results into the memory regions that are being invalidated. This sets up a race between two processes: 1. After the signal, xprt_rdma_free calls ro_unmap_safe. 2. While ro_unmap_safe is still running, the server replies and rpcrdma_reply_handler runs, calling ro_unmap_sync. Both processes invoke ib_unmap_fmr on the same FMR. The mlx4 driver allows two ib_unmap_fmr calls on the same FMR at the same time, but HCAs generally don't tolerate this. Sometimes this can result in a system crash. If the HCA happens to survive, rpcrdma_reply_handler continues. It removes the rpc_rqst from rq_list and releases the transport_lock. This enables xprt_rdma_free to run in another process, and the rpc_rqst is released while rpcrdma_reply_handler is still waiting for the ib_unmap_fmr call to finish. But further down in rpcrdma_reply_handler, the transport_lock is taken again, and "rqst" is dereferenced. If "rqst" has already been released, this triggers a general protection fault. Since bottom- halves are disabled, the system locks up. Address both issues by reversing the order of the xprt_lookup_rqst call and the ro_unmap_sync call. Introduce a separate lookup mechanism for rpcrdma_req's to enable calling ro_unmap_sync before xprt_lookup_rqst. Now the handler takes the transport_lock once and holds it for the XID lookup and RPC completion. BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=305 Fixes: 68791649 ('xprtrdma: Invalidate in the RPC reply ... ') Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: I'm about to use the rl_free field for purposes other than a free list. So use a more generic name. This is a refactoring change only. BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=305 Fixes: 68791649 ('xprtrdma: Invalidate in the RPC reply ... ') Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
There are rare cases where an rpcrdma_req and its matched rpcrdma_rep can be re-used, via rpcrdma_buffer_put, while the RPC reply handler is still using that req. This is typically due to a signal firing at just the wrong instant. As part of closing this race window, avoid using the wrong rpcrdma_rep to detect remotely invalidated MRs. Mark MRs as invalidated while we are sure the rep is still OK to use. BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=305 Fixes: 68791649 ('xprtrdma: Invalidate in the RPC reply ... ') Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 26 4月, 2017 8 次提交
-
-
由 Chuck Lever 提交于
Micro-optimize the receive workqueue by marking it's anchor "read- mostly." Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Device removal is now adequately supported. Pinning the underlying device driver to prevent removal while an NFS mount is active is no longer necessary. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
After a device removal, enable the transport connect worker to restore normal operation if there is another device with connectivity to the server. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
I'm about to add another arm to if (ep->rep_connected != 0) It will be cleaner to use a switch statement here. We'll be looking for a couple of specific errnos, or "anything else," basically to sort out the difference between a normal reconnect and recovery from device removal. This is a refactoring change only. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
The device driver for the underlying physical device associated with an RPC-over-RDMA transport can be removed while RPC-over-RDMA transports are still in use (ie, while NFS filesystems are still mounted and active). The IB core performs a connection event upcall to request that consumers free all RDMA resources associated with a transport. There may be pending RPCs when this occurs. Care must be taken to release associated resources without leaving references that can trigger a subsequent crash if a signal or soft timeout occurs. We rely on the caller of the transport's ->close method to ensure that the previous RPC task has invoked xprt_release but the transport remains write-locked. A DEVICE_REMOVE upcall forces a disconnect then sleeps. When ->close is invoked, it destroys the transport's H/W resources, then wakes the upcall, which completes and allows the core driver unload to continue. BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=266Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
When the underlying device driver is reloaded, ia->ri_device will be replaced. All cached copies of that device pointer have to be updated as well. Commit 54cbd6b0 ("xprtrdma: Delay DMA mapping Send and Receive buffers") added the rg_device field to each regbuf. As part of handling a device removal, rpcrdma_dma_unmap_regbuf is invoked on all regbufs for a transport. Simply calling rpcrdma_dma_map_regbuf for each Receive buffer after the driver has been reloaded should reinitialize rg_device correctly for every case except rpcrdma_wc_receive, which still uses rpcrdma_rep::rr_device. Ensure the same device that was used to map a Receive buffer is also used to sync it in rpcrdma_wc_receive by using rg_device there instead of rr_device. This is the only use of rr_device, so it can be removed. The use of regbufs in the send path is also updated, for completeness. Fixes: 54cbd6b0 ("xprtrdma: Delay DMA mapping Send and ... ") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
In order to unload a device driver and reload it, xprtrdma will need to close a transport's interface adapter, and then call rpcrdma_ia_open again, possibly finding a different interface adapter. Make rpcrdma_ia_open safe to call on the same transport multiple times. This is a refactoring change only. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Trying to create MRs while the transport is being torn down can cause a crash. Fixes: e2ac236c ("xprtrdma: Allocate MRs on demand") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 18 3月, 2017 1 次提交
-
-
由 Chuck Lever 提交于
New complaint from kbuild for 4.9.y: net/sunrpc/xprtrdma/verbs.c:489:19: sparse: incompatible types in comparison expression (different type sizes) verbs.c: 489 max_sge = min(ia->ri_device->attrs.max_sge, RPCRDMA_MAX_SEND_SGES); I can't reproduce this running sparse here. Likewise, "make W=1 net/sunrpc/xprtrdma/verbs.o" never indicated any issue. A little poking suggests that because the range of its values is small, gcc can make the actual width of RPCRDMA_MAX_SEND_SGES smaller than the width of an unsigned integer. Fixes: 16f906d6 ("xprtrdma: Reduce required number of send SGEs") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Cc: stable@kernel.org Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 11 2月, 2017 5 次提交
-
-
由 Chuck Lever 提交于
Clean up some duplicate code. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
A server rejects a connection attempt with STALE_CONNECTION when a client attempts to connect to a working remote service, but uses a QPN and GUID that corresponds to an old connection that was abandoned. This might occur after a client crashes and restarts. Fix rpcrdma_conn_upcall() to distinguish between a normal rejection and rejection of stale connection parameters. As an additional clean-up, remove the code that retries the connection attempt with different ORD/IRD values. Code audit of other ULP initiators shows no similar special case handling of initiator_depth or responder_resources. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
The MAX_SEND_SGES check introduced in commit 655fec69 ("xprtrdma: Use gathered Send for large inline messages") fails for devices that have a small max_sge. Instead of checking for a large fixed maximum number of SGEs, check for a minimum small number. RPC-over-RDMA will switch to using a Read chunk if an xdr_buf has more pages than can fit in the device's max_sge limit. This is considerably better than failing all together to mount the server. This fix supports devices that have as few as three send SGEs available. Reported-by: NSelvin Xavier <selvin.xavier@broadcom.com> Reported-by: NDevesh Sharma <devesh.sharma@broadcom.com> Reported-by: NHonggang Li <honli@redhat.com> Reported-by: NRam Amrani <Ram.Amrani@cavium.com> Fixes: 655fec69 ("xprtrdma: Use gathered Send for large ...") Cc: stable@vger.kernel.org # v4.9+ Tested-by: NHonggang Li <honli@redhat.com> Tested-by: NRam Amrani <Ram.Amrani@cavium.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Reviewed-by: NParav Pandit <parav@mellanox.com> Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Commit d5440e27 ("xprtrdma: Enable pad optimization") made the Linux client omit XDR round-up padding in normal Read and Write chunks so that the client doesn't have to register and invalidate 3-byte memory regions that contain no real data. Unfortunately, my cheery 2014 assessment that this optimization "is supported now by both Linux and Solaris servers" was premature. We've found bugs in Solaris in this area since commit d5440e27 ("xprtrdma: Enable pad optimization") was merged (SYMLINK is the main offender). So for maximum interoperability, I'm disabling this optimization again. If a CM private message is exchanged when connecting, the client recognizes that the server is Linux, and enables the optimization for that connection. Until now the Solaris server bugs did not impact common operations, and were thus largely benign. Soon, less capable devices on Linux NFS/RDMA clients will make use of Read chunks more often, and these Solaris bugs will prevent interoperation in more cases. Fixes: 677eb17e ("xprtrdma: Fix XDR tail buffer marshalling") Cc: stable@vger.kernel.org # v4.9+ Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Pad optimization is changed by echoing into /proc/sys/sunrpc/rdma_pad_optimize. This is a global setting, affecting all RPC-over-RDMA connections to all servers. The marshaling code picks up that value and uses it for decisions about how to construct each RPC-over-RDMA frame. Having it change suddenly in mid-operation can result in unexpected failures. And some servers a client mounts might need chunk round-up, while others don't. So instead, copy the pad_optimize setting into each connection's rpcrdma_ia when the transport is created, and use the copy, which can't change during the life of the connection, instead. This also removes a hack: rpcrdma_convert_iovs was using the remote-invalidation-expected flag to predict when it could leave out Write chunk padding. This is because the Linux server handles implicit XDR padding on Write chunks correctly, and only Linux servers can set the connection's remote-invalidation-expected flag. It's more sensible to use the pad optimization setting instead. Fixes: 677eb17e ("xprtrdma: Fix XDR tail buffer marshalling") Cc: stable@vger.kernel.org # v4.9+ Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 30 11月, 2016 4 次提交
-
-
由 Chuck Lever 提交于
Clean up: The convention for this type of warning message is not to show the function name or "RPC: ". Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: This message was intended to be a dprintk, as it is on the server-side. Fixes: 87cfb9a0 ('xprtrdma: Client-side support for ...') Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
> ** CID 114101: Error handling issues (CHECKED_RETURN) > /net/sunrpc/xprtrdma/verbs.c: 355 in rpcrdma_create_id() Commit 5675add3 ("RPC/RDMA: harden connection logic against missing/late rdma_cm upcalls.") replaced wait_for_completion() calls with these two call sites. The original wait_for_completion() calls were added in the initial commit of verbs.c, which was commit c56c65fb ("RPCRDMA: rpc rdma verbs interface implementation"), but these returned void. rpcrdma_create_id() is called by the RDMA connect worker, which probably won't ever be interrupted. It is also called by rpcrdma_ia_open which is in the synchronous mount path, and ^C is possible there. Add a bit of logic at those two call sites to return if the waits return ERESTARTSYS. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Verbs providers may perform house-keeping on the Send Queue during each signaled send completion. It is necessary therefore for a verbs consumer (like xprtrdma) to occasionally force a signaled send completion if it runs unsignaled most of the time. xprtrdma does not require signaled completions for Send or FastReg Work Requests, but does signal some LocalInv Work Requests. To ensure that Send Queue house-keeping can run before the Send Queue is more than half-consumed, xprtrdma forces a signaled completion on occasion by counting the number of Send Queue Entries it consumes. It currently does this by counting each ib_post_send as one Entry. Commit c9918ff5 ("xprtrdma: Add ro_unmap_sync method for FRWR") introduced the ability for frwr_op_unmap_sync to post more than one Work Request with a single post_send. Thus the underlying assumption of one Send Queue Entry per ib_post_send is no longer true. Also, FastReg Work Requests are currently never signaled. They should be signaled once in a while, just as Send is, to keep the accounting of consumed SQEs accurate. While we're here, convert the CQCOUNT macros to the currently preferred kernel coding style, which is inline functions. Fixes: c9918ff5 ("xprtrdma: Add ro_unmap_sync method for FRWR") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 24 9月, 2016 1 次提交
-
-
由 Christoph Hellwig 提交于
Instead of exposing ib_get_dma_mr to ULPs and letting them use it more or less unchecked, this moves the capability of creating a global rkey into the RDMA core, where it can be easily audited. It also prints a warning everytime this feature is used as well. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NSagi Grimberg <sagi@grimberg.me> Reviewed-by: NJason Gunthorpe <jgunthorpe@obsidianresearch.com> Reviewed-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NDoug Ledford <dledford@redhat.com>
-
- 20 9月, 2016 13 次提交
-
-
由 Chuck Lever 提交于
Clean up: the extra layer of indirection doesn't add value. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: When converting xprtrdma to use the new CQ API, I missed a spot. The naming convention elsewhere is: {svc_rdma,rpcrdma}_wc_{operation} Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
An RPC Call message that is sent inline but that has a data payload (ie, one or more items in rq_snd_buf's page list) must be "pulled up:" - call_allocate has to reserve enough RPC Call buffer space to accommodate the data payload - call_transmit has to memcopy the rq_snd_buf's page list and tail into its head iovec before it is sent As the inline threshold is increased beyond its current 1KB default, however, this means data payloads of more than a few KB are copied by the host CPU. For example, if the inline threshold is increased just to 4KB, then NFS WRITE requests up to 4KB would involve a memcpy of the NFS WRITE's payload data into the RPC Call buffer. This is an undesirable amount of participation by the host CPU. The inline threshold may be much larger than 4KB in the future, after negotiation with a peer server. Instead of copying the components of rq_snd_buf into its head iovec, construct a gather list of these components, and send them all in place. The same approach is already used in the Linux server's RPC-over-RDMA reply path. This mechanism also eliminates the need for rpcrdma_tail_pullup, which is used to manage the XDR pad and trailing inline content when a Read list is present. This requires that the pages in rq_snd_buf's page list be DMA-mapped during marshaling, and unmapped when a data-bearing RPC is completed. This is slightly less efficient for very small I/O payloads, but significantly more efficient as data payload size and inline threshold increase past a kilobyte. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Have frwr's ro_unmap_sync recognize an invalidated rkey that appears as part of a Receive completion. Local invalidation can be skipped for that rkey. Use an out-of-band signaling mechanism to indicate to the server that the client is prepared to receive RDMA Send With Invalidate. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Send an RDMA-CM private message on connect, and look for one during a connection-established event. Both sides can communicate their various implementation limits. Implementations that don't support this sideband protocol ignore it. Once the client knows the server's inline threshold maxima, it can adjust the use of Reply chunks, and eliminate most use of Position Zero Read chunks. Moderately-sized I/O can be done using a pure inline RDMA Send instead of RDMA operations that require memory registration. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: The fields in the recv_wr do not vary. There is no need to initialize them before each ib_post_recv(). This removes a large-ish data structure from the stack. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: Most of the fields in each send_wr do not vary. There is no need to initialize them before each ib_post_send(). This removes a large-ish data structure from the stack. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up. Since commit fc664485 ("xprtrdma: Split the completion queue"), rpcrdma_ep_post_recv() no longer uses the "ep" argument. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up. The "ia" argument is no longer used. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Currently, each regbuf is allocated and DMA mapped at the same time. This is done during transport creation. When a device driver is unloaded, every DMA-mapped buffer in use by a transport has to be unmapped, and then remapped to the new device if the driver is loaded again. Remapping will have to be done _after_ the connect worker has set up the new device. But there's an ordering problem: call_allocate, which invokes xprt_rdma_allocate which calls rpcrdma_alloc_regbuf to allocate Send buffers, happens _before_ the connect worker can run to set up the new device. Instead, at transport creation, allocate each buffer, but leave it unmapped. Once the RPC carries these buffers into ->send_request, by which time a transport connection should have been established, check to see that the RPC's buffers have been DMA mapped. If not, map them there. When device driver unplug support is added, it will simply unmap all the transport's regbufs, but it doesn't have to deallocate the underlying memory. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
The use of DMA_BIDIRECTIONAL is discouraged by DMA-API.txt. Fortunately, xprtrdma now knows which direction I/O is going as soon as it allocates each regbuf. The RPC Call and Reply buffers are no longer the same regbuf. They can each be labeled correctly now. The RPC Reply buffer is never part of either a Send or Receive WR, but it can be part of Reply chunk, which is mapped and registered via ->ro_map . So it is not DMA mapped when it is allocated (DMA_NONE), to avoid a double- mapping. Since Receive buffers are no longer DMA_BIDIRECTIONAL and their contents are never modified by the host CPU, DMA-API-HOWTO.txt suggests that a DMA sync before posting each buffer should be unnecessary. (See my_card_interrupt_handler). Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
RPC-over-RDMA needs to separate its RPC call and reply buffers. o When an RPC Call is sent, rq_snd_buf is DMA mapped for an RDMA Send operation using DMA_TO_DEVICE o If the client expects a large RPC reply, it DMA maps rq_rcv_buf as part of a Reply chunk using DMA_FROM_DEVICE The two mappings are for data movement in opposite directions. DMA-API.txt suggests that if these mappings share a DMA cacheline, bad things can happen. This could occur in the final bytes of rq_snd_buf and the first bytes of rq_rcv_buf if the two buffers happen to share a DMA cacheline. On x86_64 the cacheline size is typically 8 bytes, and RPC call messages are usually much smaller than the send buffer, so this hasn't been a noticeable problem. But the DMA cacheline size can be larger on other platforms. Also, often rq_rcv_buf starts most of the way into a page, thus an additional RDMA segment is needed to map and register the end of that buffer. Try to avoid that scenario to reduce the cost of registering and invalidating Reply chunks. Instead of carrying a single regbuf that covers both rq_snd_buf and rq_rcv_buf, each struct rpcrdma_req now carries one regbuf for rq_snd_buf and one regbuf for rq_rcv_buf. Some incidental changes worth noting: - To clear out some spaghetti, refactor xprt_rdma_allocate. - The value stored in rg_size is the same as the value stored in the iov.length field, so eliminate rg_size Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Currently there's a hidden and indirect mechanism for finding the rpcrdma_req that goes with an rpc_rqst. It depends on getting from the rq_buffer pointer in struct rpc_rqst to the struct rpcrdma_regbuf that controls that buffer, and then to the struct rpcrdma_req it goes with. This was done back in the day to avoid the need to add a per-rqst pointer or to alter the buf_free API when support for RPC-over-RDMA was introduced. I'm about to change the way regbuf's work to support larger inline thresholds. Now is a good time to replace this indirect mechanism with something that is more straightforward. I guess this should be considered a clean up. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 07 9月, 2016 2 次提交
-
-
由 Chuck Lever 提交于
An RPC can terminate before its reply arrives, if a credential problem or a soft timeout occurs. After this happens, xprtrdma reports it is out of Receive buffers. A Receive buffer is posted before each RPC is sent, and returned to the buffer pool when a reply is received. If no reply is received for an RPC, that Receive buffer remains posted. But xprtrdma tries to post another when the next RPC is sent. If this happens a few dozen times, there are no receive buffers left to be posted at send time. I don't see a way for a transport connection to recover at that point, and it will spit warnings and unnecessarily delay RPCs on occasion for its remaining lifetime. Commit 1e465fd4 ("xprtrdma: Replace send and receive arrays") removed a little bit of logic to detect this case and not provide a Receive buffer so no more buffers are posted, and then transport operation continues correctly. We didn't understand what that logic did, and it wasn't commented, so it was removed as part of the overhaul to support backchannel requests. Restore it, but be wary of the need to keep extra Receives posted to deal with backchannel requests. Fixes: 1e465fd4 ("xprtrdma: Replace send and receive arrays") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NAnna Schumaker <Anna.Schumaker@Netapp.com> Signed-off-by: NTrond Myklebust <trond.myklebust@primarydata.com>
-
由 Chuck Lever 提交于
Receive buffer exhaustion, if it were to actually occur, would be catastrophic. However, when there are no reply buffers to post, that means all of them have already been posted and are waiting for incoming replies. By design, there can never be more RPCs in flight than there are available receive buffers. A receive buffer can be left posted after an RPC exits without a received reply; say, due to a credential problem or a soft timeout. This does not result in fewer posted receive buffers than there are pending RPCs, and there is already logic in xprtrdma to deal appropriately with this case. It also looks like the "+ 2" that was removed was accidentally accommodating the number of extra receive buffers needed for receiving backchannel requests. That will need to be addressed by another patch. Fixes: 3d4cf35b ("xprtrdma: Reply buffer exhaustion can be...") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NAnna Schumaker <Anna.Schumaker@Netapp.com> Signed-off-by: NTrond Myklebust <trond.myklebust@primarydata.com>
-
- 20 7月, 2016 1 次提交
-
-
由 kbuild test robot 提交于
net/sunrpc/xprtrdma/verbs.c:798:2-3: Unneeded semicolon Remove unneeded semicolon. Generated by: scripts/coccinelle/misc/semicolon.cocci CC: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: NFengguang Wu <fengguang.wu@intel.com> Reviewed-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-