- 17 1月, 2018 10 次提交
-
-
由 Chuck Lever 提交于
Clean up: struct rpcrdma_mw was named after Memory Windows, but xprtrdma no longer supports a Memory Window registration mode. Rename rpcrdma_mw and its fields to reduce confusion and make the code more sensible to read. Renaming "mw" was suggested by Tom Talpey, the author of the original xprtrdma implementation. It's a good idea, but I haven't done this until now because it's a huge diffstat for no benefit other than code readability. However, I'm about to introduce static trace points that expose a few of xprtrdma's internal data structures. They should make sense in the trace report, and it's reasonable to treat trace points as a kernel API contract which might be difficult to change later. While I'm churning things up, two additional changes: - rename variables unhelpfully called "r" to "mr", to improve code clarity, and - rename the MR-related helper functions using the form "rpcrdma_mr_<verb>", to be consistent with other areas of the code. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: Over time, the industry has adopted the term "frwr" instead of "frmr". The term "frwr" is now more widely recognized. For the past couple of years I've attempted to add new code using "frwr" , but there still remains plenty of older code that still uses "frmr". Replace all usage of "frmr" to avoid confusion. While we're churning code, rename variables unhelpfully called "f" to "frwr", to improve code clarity. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up. @rqst is set up differently for backchannel Replies. For example, rqst->rq_task and task->tk_client are both NULL. So it is easier to understand and maintain this code path if it is separated. Also, we can get rid of the confusing rl_connect_cookie hack in rpcrdma_bc_receive_call. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Since commit 5a6d1db4 ("SUNRPC: Add a transport-specific private field in rpc_rqst"), the rpc_rqst's for RPC-over-RDMA backchannel operations leave rq_buffer set to NULL. xprt_release does not invoke ->op->buf_free when rq_buffer is NULL. The RPCRDMA_REQ_F_BACKCHANNEL check in xprt_rdma_free is therefore redundant because xprt_rdma_free is not invoked for backchannel requests. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Save more space in struct rpcrdma_xprt by removing the redundant "addr" field from struct rpcrdma_create_data_internal. Wherever we have rpcrdma_xprt, we also have the rpc_xprt, which has a sockaddr_storage field with the same content. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
This makes the address strings available for debugging messages in earlier stages of transport set up. The first benefit is to get rid of the single-use rep_remote_addr field, saving 128+ bytes in struct rpcrdma_ep. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up. Remove fields that should have been removed by commit b3221d6a ("xprtrdma: Remove logic that constructs RDMA_MSGP type calls"). Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up. Commit b5f0afbe ("xprtrdma: Per-connection pad optimization") should have removed this. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Refactoring change: Remote Invalidation is particular to the memory registration mode that is use. Use a callout instead of a generic function to handle Remote Invalidation. This gets rid of the 8-byte flags field in struct rpcrdma_mw, of which only a single bit flag has been allocated. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
The backchannel code uses rpcrdma_recv_buffer_put to add new reps to the free rep list. This also decrements rb_recv_count, which spoofs the receive overrun logic in rpcrdma_buffer_get_rep. Commit 9b06688b ("xprtrdma: Fix additional uses of spin_lock_irqsave(rb_lock)") replaced the original open-coded list_add with a call to rpcrdma_recv_buffer_put(), but then a year later, commit 05c97466 ("xprtrdma: Fix receive buffer accounting") added rep accounting to rpcrdma_recv_buffer_put. It was an oversight to let the backchannel continue to use this function. The fix this, let's combine the "add to free list" logic with rpcrdma_create_rep. Also, do not allocate RPCRDMA_MAX_BC_REQUESTS rpcrdma_reps in rpcrdma_buffer_create and then allocate additional rpcrdma_reps in rpcrdma_bc_setup_reps. Allocating the extra reps during backchannel set-up is sufficient. Fixes: 05c97466 ("xprtrdma: Fix receive buffer accounting") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 16 12月, 2017 1 次提交
-
-
由 Chuck Lever 提交于
Commit d8f532d2 ("xprtrdma: Invoke rpcrdma_reply_handler directly from RECV completion") introduced a performance regression for NFS I/O small enough to not need memory registration. In multi- threaded benchmarks that generate primarily small I/O requests, IOPS throughput is reduced by nearly a third. This patch restores the previous level of throughput. Because workqueues are typically BOUND (in particular ib_comp_wq, nfsiod_workqueue, and rpciod_workqueue), NFS/RDMA workloads tend to aggregate on the CPU that is handling Receive completions. The usual approach to addressing this problem is to create a QP and CQ for each CPU, and then schedule transactions on the QP for the CPU where you want the transaction to complete. The transaction then does not require an extra context switch during completion to end up on the same CPU where the transaction was started. This approach doesn't work for the Linux NFS/RDMA client because currently the Linux NFS client does not support multiple connections per client-server pair, and the RDMA core API does not make it straightforward for ULPs to determine which CPU is responsible for handling Receive completions for a CQ. So for the moment, record the CPU number in the rpcrdma_req before the transport sends each RPC Call. Then during Receive completion, queue the RPC completion on that same CPU. Additionally, move all RPC completion processing to the deferred handler so that even RPCs with simple small replies complete on the CPU that sent the corresponding RPC Call. Fixes: d8f532d2 ("xprtrdma: Invoke rpcrdma_reply_handler ...") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 18 11月, 2017 12 次提交
-
-
由 Chuck Lever 提交于
Credit work contributed by Oracle engineers since 2014. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: C-structure style XDR encoding and decoding logic has been replaced over the past several merge windows on both the client and server. These data structures are no longer used. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NDevesh Sharma <devesh.sharma@broadcom.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
The sendctx circular queue now guarantees that xprtrdma cannot overflow the Send Queue, so remove the remaining bits of the original Send WQE counting mechanism. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
When an RPC Call includes a file data payload, that payload can come from pages in the page cache, or a user buffer (for direct I/O). If the payload can fit inline, xprtrdma includes it in the Send using a scatter-gather technique. xprtrdma mustn't allow the RPC consumer to re-use the memory where that payload resides before the Send completes. Otherwise, the new contents of that memory would be exposed by an HCA retransmit of the Send operation. So, block RPC completion on Send completion, but only in the case where a separate file data payload is part of the Send. This prevents the reuse of that memory while it is still part of a Send operation without an undue cost to other cases. Waiting is avoided in the common case because typically the Send will have completed long before the RPC Reply arrives. These days, an RPC timeout will trigger a disconnect, which tears down the QP. The disconnect flushes all waiting Sends. This bounds the amount of time the reply handler has to wait for a Send completion. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Invoke a common routine for releasing hardware resources (for example, invalidating MRs). This needs to be done whether an RPC Reply has arrived or the RPC was terminated early. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
We have one boolean flag in rpcrdma_req today. I'd like to add more flags, so convert that boolean to a bit flag. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Problem statement: Recently Sagi Grimberg <sagi@grimberg.me> observed that kernel RDMA- enabled storage initiators don't handle delayed Send completion correctly. If Send completion is delayed beyond the end of a ULP transaction, the ULP may release resources that are still being used by the HCA to complete a long-running Send operation. This is a common design trait amongst our initiators. Most Send operations are faster than the ULP transaction they are part of. Waiting for a completion for these is typically unnecessary. Infrequently, a network partition or some other problem crops up where an ordering problem can occur. In NFS parlance, the RPC Reply arrives and completes the RPC, but the HCA is still retrying the Send WR that conveyed the RPC Call. In this case, the HCA can try to use memory that has been invalidated or DMA unmapped, and the connection is lost. If that memory has been re-used for something else (possibly not related to NFS), and the Send retransmission exposes that data on the wire. Thus we cannot assume that it is safe to release Send-related resources just because a ULP reply has arrived. After some analysis, we have determined that the completion housekeeping will not be difficult for xprtrdma: - Inline Send buffers are registered via the local DMA key, and are already left DMA mapped for the lifetime of a transport connection, thus no additional handling is necessary for those - Gathered Sends involving page cache pages _will_ need to DMA unmap those pages after the Send completes. But like inline send buffers, they are registered via the local DMA key, and thus will not need to be invalidated In addition, RPC completion will need to wait for Send completion in the latter case. However, nearly always, the Send that conveys the RPC Call will have completed long before the RPC Reply arrives, and thus no additional latency will be accrued. Design notes: In this patch, the rpcrdma_sendctx object is introduced, and a lock-free circular queue is added to manage a set of them per transport. The RPC client's send path already prevents sending more than one RPC Call at the same time. This allows us to treat the consumer side of the queue (rpcrdma_sendctx_get_locked) as if there is a single consumer thread. The producer side of the queue (rpcrdma_sendctx_put_locked) is invoked only from the Send completion handler, which is a single thread of execution (soft IRQ). The only care that needs to be taken is with the tail index, which is shared between the producer and consumer. Only the producer updates the tail index. The consumer compares the head with the tail to ensure that the a sendctx that is in use is never handed out again (or, expressed more conventionally, the queue is empty). When the sendctx queue empties completely, there are enough Sends outstanding that posting more Send operations can result in a Send Queue overflow. In this case, the ULP is told to wait and try again. This introduces strong Send Queue accounting to xprtrdma. As a final touch, Jason Gunthorpe <jgunthorpe@obsidianresearch.com> suggested a mechanism that does not require signaling every Send. We signal once every N Sends, and perform SGE unmapping of N Send operations during that one completion. Reported-by: NSagi Grimberg <sagi@grimberg.me> Suggested-by: NJason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: Make rpcrdma_prepare_send_sges() return a negative errno instead of a bool. Soon callers will want distinct treatments of different types of failures. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
We need to decode and save the incoming rdma_credits field _after_ we know that the direction of the message is "forward direction Reply". Otherwise, the credits value in reverse direction Calls is also used to update the forward direction credits. It is safe to decode the rdma_credits field in rpcrdma_reply_handler now that rpcrdma_reply_handler is single-threaded. Receives complete in the same order as they were sent on the NFS server. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
I noticed that the soft IRQ thread looked pretty busy under heavy I/O workloads. perf suggested one area that was expensive was the queue_work() call in rpcrdma_wc_receive. That gave me some ideas. Instead of scheduling a separate worker to process RPC Replies, promote the Receive completion handler to IB_POLL_WORKQUEUE, and invoke rpcrdma_reply_handler directly. Note that the poll workqueue is single-threaded. In order to keep memory invalidation from serializing all RPC Replies, handle any necessary invalidation tasks in a separate multi-threaded workqueue. This provides a two-tier scheme, similar to OS I/O interrupt handlers: A fast interrupt handler that schedules the slow handler and re-enables the interrupt, and a slower handler that is invoked for any needed heavy lifting. Benefits include: - One less context switch for RPCs that don't register memory - Receive completion handling is moved out of soft IRQ context to make room for other users of soft IRQ - The same CPU core now DMA syncs and XDR decodes the Receive buffer Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: I'd like to be able to invoke the tail of rpcrdma_reply_handler in two different places. Split the tail out into its own helper function. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: Make it easier to pass the decoded XID, vers, credits, and proc fields around by moving these variables into struct rpcrdma_rep. Note: the credits field will be handled in a subsequent patch. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 17 10月, 2017 1 次提交
-
-
由 Chuck Lever 提交于
Clean up: There are no remaining callers of this method. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 06 9月, 2017 1 次提交
-
-
由 Chuck Lever 提交于
Adopt the use of xprt_pin_rqst to eliminate contention between Call-side users of rb_lock and the use of rb_lock in rpcrdma_reply_handler. This replaces the mechanism introduced in 431af645 ("xprtrdma: Fix client lock-up after application signal fires"). Use recv_lock to quickly find the completing rqst, pin it, then drop the lock. At that point invalidation and pull-up of the Reply XDR can be done. Both are often expensive operations. Finally, take recv_lock again to signal completion to the RPC layer. It also protects adjustment of "cwnd". This greatly reduces the amount of time a lock is held by the reply handler. Comparing lock_stat results shows a marked decrease in contention on rb_lock and recv_lock. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> [trond.myklebust@primarydata.com: Remove call to rpcrdma_buffer_put() from the "out_norqst:" path in rpcrdma_reply_handler.] Signed-off-by: NTrond Myklebust <trond.myklebust@primarydata.com>
-
- 23 8月, 2017 1 次提交
-
-
由 Chuck Lever 提交于
To reduce false cacheline sharing, separate counters that are likely to be accessed in the Call path from those accessed in the Reply path. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 16 8月, 2017 1 次提交
-
-
由 Chuck Lever 提交于
Re-arrange the pointer arithmetic in the chunk list encoders to eliminate several more integer multiplication instructions during Transport Header encoding. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 12 8月, 2017 2 次提交
-
-
由 Chuck Lever 提交于
Initialize an xdr_stream at the top of rpcrdma_marshal_req(), and use it to encode the fixed transport header fields. This xdr_stream will be used to encode the chunk lists in a subsequent patch. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: The caller already has rpcrdma_xprt, so pass that directly instead. And provide a documenting comment for this critical function. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 08 8月, 2017 3 次提交
-
-
由 Chuck Lever 提交于
Clean up: Replace C-structure based XDR decoding for consistency with other areas. struct rpcrdma_rep is rearranged slightly so that the relevant fields are in cache when the Receive completion handler is invoked. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
This field is no longer used outside the Receive completion handler. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Transport header decoding deals with untrusted input data, therefore decoding this header needs to be hardened. Adopt the same infrastructure that is used when XDR decoding NFS replies. This is slightly more CPU-intensive than the replaced code, but we're not adding new atomics, locking, or context switches. The cost is manageable. Start by initializing an xdr_stream in rpcrdma_reply_handler(). Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 14 7月, 2017 4 次提交
-
-
由 Chuck Lever 提交于
After a signal, the RPC client aborts synchronous RPCs running on behalf of the signaled application. The server is still executing those RPCs, and will write the results back into the client's memory when it's done. By the time the server writes the results, that memory is likely being used for other purposes. Therefore xprtrdma has to immediately invalidate all memory regions used by those aborted RPCs to prevent the server's writes from clobbering that re-used memory. With FMR memory registration, invalidation takes a relatively long time. In fact, the invalidation is often still running when the server tries to write the results into the memory regions that are being invalidated. This sets up a race between two processes: 1. After the signal, xprt_rdma_free calls ro_unmap_safe. 2. While ro_unmap_safe is still running, the server replies and rpcrdma_reply_handler runs, calling ro_unmap_sync. Both processes invoke ib_unmap_fmr on the same FMR. The mlx4 driver allows two ib_unmap_fmr calls on the same FMR at the same time, but HCAs generally don't tolerate this. Sometimes this can result in a system crash. If the HCA happens to survive, rpcrdma_reply_handler continues. It removes the rpc_rqst from rq_list and releases the transport_lock. This enables xprt_rdma_free to run in another process, and the rpc_rqst is released while rpcrdma_reply_handler is still waiting for the ib_unmap_fmr call to finish. But further down in rpcrdma_reply_handler, the transport_lock is taken again, and "rqst" is dereferenced. If "rqst" has already been released, this triggers a general protection fault. Since bottom- halves are disabled, the system locks up. Address both issues by reversing the order of the xprt_lookup_rqst call and the ro_unmap_sync call. Introduce a separate lookup mechanism for rpcrdma_req's to enable calling ro_unmap_sync before xprt_lookup_rqst. Now the handler takes the transport_lock once and holds it for the XID lookup and RPC completion. BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=305 Fixes: 68791649 ('xprtrdma: Invalidate in the RPC reply ... ') Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: I'm about to use the rl_free field for purposes other than a free list. So use a more generic name. This is a refactoring change only. BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=305 Fixes: 68791649 ('xprtrdma: Invalidate in the RPC reply ... ') Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
There are rare cases where an rpcrdma_req can be re-used (via rpcrdma_buffer_put) while the RPC reply handler is still running. This is due to a signal firing at just the wrong instant. Since commit 9d6b0409 ("xprtrdma: Place registered MWs on a per-req list"), rpcrdma_mws are self-contained; ie., they fully describe an MR and scatterlist, and no part of that information is stored in struct rpcrdma_req. As part of closing the above race window, pass only the req's list of registered MRs to ro_unmap_sync, rather than the rpcrdma_req itself. Some extra transport header sanity checking is removed. Since the client depends on its own recollection of what memory had been registered, there doesn't seem to be a way to abuse this change. And, the check was not terribly effective. If the client had sent Read chunks, the "list_empty" test is negative in both of the removed cases, which are actually looking for Write or Reply chunks. BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=305 Fixes: 68791649 ('xprtrdma: Invalidate in the RPC reply ... ') Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
There are rare cases where an rpcrdma_req and its matched rpcrdma_rep can be re-used, via rpcrdma_buffer_put, while the RPC reply handler is still using that req. This is typically due to a signal firing at just the wrong instant. As part of closing this race window, avoid using the wrong rpcrdma_rep to detect remotely invalidated MRs. Mark MRs as invalidated while we are sure the rep is still OK to use. BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=305 Fixes: 68791649 ('xprtrdma: Invalidate in the RPC reply ... ') Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 26 4月, 2017 4 次提交
-
-
由 Chuck Lever 提交于
Since commit 1e465fd4 ("xprtrdma: Replace send and receive arrays"), this field is no longer used. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
The device driver for the underlying physical device associated with an RPC-over-RDMA transport can be removed while RPC-over-RDMA transports are still in use (ie, while NFS filesystems are still mounted and active). The IB core performs a connection event upcall to request that consumers free all RDMA resources associated with a transport. There may be pending RPCs when this occurs. Care must be taken to release associated resources without leaving references that can trigger a subsequent crash if a signal or soft timeout occurs. We rely on the caller of the transport's ->close method to ensure that the previous RPC task has invoked xprt_release but the transport remains write-locked. A DEVICE_REMOVE upcall forces a disconnect then sleeps. When ->close is invoked, it destroys the transport's H/W resources, then wakes the upcall, which completes and allows the core driver unload to continue. BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=266Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
When the underlying device driver is reloaded, ia->ri_device will be replaced. All cached copies of that device pointer have to be updated as well. Commit 54cbd6b0 ("xprtrdma: Delay DMA mapping Send and Receive buffers") added the rg_device field to each regbuf. As part of handling a device removal, rpcrdma_dma_unmap_regbuf is invoked on all regbufs for a transport. Simply calling rpcrdma_dma_map_regbuf for each Receive buffer after the driver has been reloaded should reinitialize rg_device correctly for every case except rpcrdma_wc_receive, which still uses rpcrdma_rep::rr_device. Ensure the same device that was used to map a Receive buffer is also used to sync it in rpcrdma_wc_receive by using rg_device there instead of rr_device. This is the only use of rr_device, so it can be removed. The use of regbufs in the send path is also updated, for completeness. Fixes: 54cbd6b0 ("xprtrdma: Delay DMA mapping Send and ... ") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
In order to unload a device driver and reload it, xprtrdma will need to close a transport's interface adapter, and then call rpcrdma_ia_open again, possibly finding a different interface adapter. Make rpcrdma_ia_open safe to call on the same transport multiple times. This is a refactoring change only. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-