1. 03 10月, 2012 2 次提交
    • D
      KEYS: Reduce initial permissions on keys · 96b5c8fe
      David Howells 提交于
      Reduce the initial permissions on new keys to grant the possessor everything,
      view permission only to the user (so the keys can be seen in /proc/keys) and
      nothing else.
      
      This gives the creator a chance to adjust the permissions mask before other
      processes can access the new key or create a link to it.
      
      To aid with this, keyring_alloc() now takes a permission argument rather than
      setting the permissions itself.
      
      The following permissions are now set:
      
       (1) The user and user-session keyrings grant the user that owns them full
           permissions and grant a possessor everything bar SETATTR.
      
       (2) The process and thread keyrings grant the possessor full permissions but
           only grant the user VIEW.  This permits the user to see them in
           /proc/keys, but not to do anything with them.
      
       (3) Anonymous session keyrings grant the possessor full permissions, but only
           grant the user VIEW and READ.  This means that the user can see them in
           /proc/keys and can list them, but nothing else.  Possibly READ shouldn't
           be provided either.
      
       (4) Named session keyrings grant everything an anonymous session keyring does,
           plus they grant the user LINK permission.  The whole point of named
           session keyrings is that others can also subscribe to them.  Possibly this
           should be a separate permission to LINK.
      
       (5) The temporary session keyring created by call_sbin_request_key() gets the
           same permissions as an anonymous session keyring.
      
       (6) Keys created by add_key() get VIEW, SEARCH, LINK and SETATTR for the
           possessor, plus READ and/or WRITE if the key type supports them.  The used
           only gets VIEW now.
      
       (7) Keys created by request_key() now get the same as those created by
           add_key().
      Reported-by: NLennart Poettering <lennart@poettering.net>
      Reported-by: NStef Walter <stefw@redhat.com>
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      96b5c8fe
    • D
      KEYS: Make the session and process keyrings per-thread · 3a50597d
      David Howells 提交于
      Make the session keyring per-thread rather than per-process, but still
      inherited from the parent thread to solve a problem with PAM and gdm.
      
      The problem is that join_session_keyring() will reject attempts to change the
      session keyring of a multithreaded program but gdm is now multithreaded before
      it gets to the point of starting PAM and running pam_keyinit to create the
      session keyring.  See:
      
      	https://bugs.freedesktop.org/show_bug.cgi?id=49211
      
      The reason that join_session_keyring() will only change the session keyring
      under a single-threaded environment is that it's hard to alter the other
      thread's credentials to effect the change in a multi-threaded program.  The
      problems are such as:
      
       (1) How to prevent two threads both running join_session_keyring() from
           racing.
      
       (2) Another thread's credentials may not be modified directly by this process.
      
       (3) The number of threads is uncertain whilst we're not holding the
           appropriate spinlock, making preallocation slightly tricky.
      
       (4) We could use TIF_NOTIFY_RESUME and key_replace_session_keyring() to get
           another thread to replace its keyring, but that means preallocating for
           each thread.
      
      A reasonable way around this is to make the session keyring per-thread rather
      than per-process and just document that if you want a common session keyring,
      you must get it before you spawn any threads - which is the current situation
      anyway.
      
      Whilst we're at it, we can the process keyring behave in the same way.  This
      means we can clean up some of the ickyness in the creds code.
      
      Basically, after this patch, the session, process and thread keyrings are about
      inheritance rules only and not about sharing changes of keyring.
      Reported-by: NMantas M. <grawity@gmail.com>
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Tested-by: NRay Strode <rstrode@redhat.com>
      3a50597d
  2. 28 9月, 2012 2 次提交
  3. 23 8月, 2012 1 次提交
  4. 23 7月, 2012 3 次提交
  5. 01 6月, 2012 3 次提交
  6. 25 5月, 2012 1 次提交
    • D
      KEYS: Fix some sparse warnings · 423b9788
      David Howells 提交于
      Fix some sparse warnings in the keyrings code:
      
       (1) compat_keyctl_instantiate_key_iov() should be static.
      
       (2) There were a couple of places where a pointer was being compared against
           integer 0 rather than NULL.
      
       (3) keyctl_instantiate_key_common() should not take a __user-labelled iovec
           pointer as the caller must have copied the iovec to kernel space.
      
       (4) __key_link_begin() takes and __key_link_end() releases
           keyring_serialise_link_sem under some circumstances and so this should be
           declared.
      
           Note that adding __acquires() and __releases() for this doesn't help cure
           the warnings messages - something only commenting out both helps.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NJames Morris <james.l.morris@oracle.com>
      423b9788
  7. 24 5月, 2012 2 次提交
    • O
      keys: change keyctl_session_to_parent() to use task_work_add() · 413cd3d9
      Oleg Nesterov 提交于
      Change keyctl_session_to_parent() to use task_work_add() and move
      key_replace_session_keyring() logic into task_work->func().
      
      Note that we do task_work_cancel() before task_work_add() to ensure that
      only one work can be pending at any time.  This is important, we must not
      allow user-space to abuse the parent's ->task_works list.
      
      The callback, replace_session_keyring(), checks PF_EXITING.  I guess this
      is not really needed but looks better.
      
      As a side effect, this fixes the (unlikely) race.  The callers of
      key_replace_session_keyring() and keyctl_session_to_parent() lack the
      necessary barriers, the parent can miss the request.
      
      Now we can remove task_struct->replacement_session_keyring and related
      code.
      Signed-off-by: NOleg Nesterov <oleg@redhat.com>
      Acked-by: NDavid Howells <dhowells@redhat.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Richard Kuo <rkuo@codeaurora.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Alexander Gordeev <agordeev@redhat.com>
      Cc: Chris Zankel <chris@zankel.net>
      Cc: David Smith <dsmith@redhat.com>
      Cc: "Frank Ch. Eigler" <fche@redhat.com>
      Cc: Geert Uytterhoeven <geert@linux-m68k.org>
      Cc: Larry Woodman <lwoodman@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      413cd3d9
    • A
      TIF_NOTIFY_RESUME is defined on all targets now · 1227dd77
      Al Viro 提交于
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      1227dd77
  8. 15 5月, 2012 1 次提交
  9. 11 5月, 2012 7 次提交
    • D
      KEYS: Add invalidation support · fd75815f
      David Howells 提交于
      Add support for invalidating a key - which renders it immediately invisible to
      further searches and causes the garbage collector to immediately wake up,
      remove it from keyrings and then destroy it when it's no longer referenced.
      
      It's better not to do this with keyctl_revoke() as that marks the key to start
      returning -EKEYREVOKED to searches when what is actually desired is to have the
      key refetched.
      
      To invalidate a key the caller must be granted SEARCH permission by the key.
      This may be too strict.  It may be better to also permit invalidation if the
      caller has any of READ, WRITE or SETATTR permission.
      
      The primary use for this is to evict keys that are cached in special keyrings,
      such as the DNS resolver or an ID mapper.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      fd75815f
    • D
      KEYS: Do LRU discard in full keyrings · 31d5a79d
      David Howells 提交于
      Do an LRU discard in keyrings that are full rather than returning ENFILE.  To
      perform this, a time_t is added to the key struct and updated by the creation
      of a link to a key and by a key being found as the result of a search.  At the
      completion of a successful search, the keyrings in the path between the root of
      the search and the first found link to it also have their last-used times
      updated.
      
      Note that discarding a link to a key from a keyring does not necessarily
      destroy the key as there may be references held by other places.
      
      An alternate discard method that might suffice is to perform FIFO discard from
      the keyring, using the spare 2-byte hole in the keylist header as the index of
      the next link to be discarded.
      
      This is useful when using a keyring as a cache for DNS results or foreign
      filesystem IDs.
      
      
      This can be tested by the following.  As root do:
      
      	echo 1000 >/proc/sys/kernel/keys/root_maxkeys
      
      	kr=`keyctl newring foo @s`
      	for ((i=0; i<2000; i++)); do keyctl add user a$i a $kr; done
      
      Without this patch ENFILE should be reported when the keyring fills up.  With
      this patch, the keyring discards keys in an LRU fashion.  Note that the stored
      LRU time has a granularity of 1s.
      
      After doing this, /proc/key-users can be observed and should show that most of
      the 2000 keys have been discarded:
      
      	[root@andromeda ~]# cat /proc/key-users
      	    0:   517 516/516 513/1000 5249/20000
      
      The "513/1000" here is the number of quota-accounted keys present for this user
      out of the maximum permitted.
      
      In /proc/keys, the keyring shows the number of keys it has and the number of
      slots it has allocated:
      
      	[root@andromeda ~]# grep foo /proc/keys
      	200c64c4 I--Q--     1 perm 3b3f0000     0     0 keyring   foo: 509/509
      
      The maximum is (PAGE_SIZE - header) / key pointer size.  That's typically 509
      on a 64-bit system and 1020 on a 32-bit system.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      31d5a79d
    • D
      KEYS: Permit in-place link replacement in keyring list · 233e4735
      David Howells 提交于
      Make use of the previous patch that makes the garbage collector perform RCU
      synchronisation before destroying defunct keys.  Key pointers can now be
      replaced in-place without creating a new keyring payload and replacing the
      whole thing as the discarded keys will not be destroyed until all currently
      held RCU read locks are released.
      
      If the keyring payload space needs to be expanded or contracted, then a
      replacement will still need allocating, and the original will still have to be
      freed by RCU.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      233e4735
    • D
      KEYS: Perform RCU synchronisation on keys prior to key destruction · 65d87fe6
      David Howells 提交于
      Make the keys garbage collector invoke synchronize_rcu() prior to destroying
      keys with a zero usage count.  This means that a key can be examined under the
      RCU read lock in the safe knowledge that it won't get deallocated until after
      the lock is released - even if its usage count becomes zero whilst we're
      looking at it.
      
      This is useful in keyring search vs key link.  Consider a keyring containing a
      link to a key.  That link can be replaced in-place in the keyring without
      requiring an RCU copy-and-replace on the keyring contents without breaking a
      search underway on that keyring when the displaced key is released, provided
      the key is actually destroyed only after the RCU read lock held by the search
      algorithm is released.
      
      This permits __key_link() to replace a key without having to reallocate the key
      payload.  A key gets replaced if a new key being linked into a keyring has the
      same type and description.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NJeff Layton <jlayton@redhat.com>
      65d87fe6
    • D
      KEYS: Announce key type (un)registration · 1eb1bcf5
      David Howells 提交于
      Announce the (un)registration of a key type in the core key code rather than
      in the callers.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NMimi Zohar <zohar@us.ibm.com>
      1eb1bcf5
    • D
      KEYS: Reorganise keys Makefile · 9f7ce8e2
      David Howells 提交于
      Reorganise the keys directory Makefile to put all the core bits together and
      the type-specific bits after.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NMimi Zohar <zohar@us.ibm.com>
      9f7ce8e2
    • D
      KEYS: Move the key config into security/keys/Kconfig · f0894940
      David Howells 提交于
      Move the key config into security/keys/Kconfig as there are going to be a lot
      of key-related options.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NMimi Zohar <zohar@us.ibm.com>
      f0894940
  10. 03 5月, 2012 1 次提交
  11. 08 4月, 2012 2 次提交
  12. 24 3月, 2012 1 次提交
  13. 07 3月, 2012 1 次提交
  14. 02 3月, 2012 1 次提交
  15. 19 1月, 2012 2 次提交
  16. 18 1月, 2012 4 次提交
  17. 17 11月, 2011 3 次提交
  18. 16 11月, 2011 1 次提交
    • D
      KEYS: Fix a NULL pointer deref in the user-defined key type · 9f35a33b
      David Howells 提交于
      Fix a NULL pointer deref in the user-defined key type whereby updating a
      negative key into a fully instantiated key will cause an oops to occur
      when the code attempts to free the non-existent old payload.
      
      This results in an oops that looks something like the following:
      
        BUG: unable to handle kernel NULL pointer dereference at 0000000000000008
        IP: [<ffffffff81085fa1>] __call_rcu+0x11/0x13e
        PGD 3391d067 PUD 3894a067 PMD 0
        Oops: 0002 [#1] SMP
        CPU 1
        Pid: 4354, comm: keyctl Not tainted 3.1.0-fsdevel+ #1140                  /DG965RY
        RIP: 0010:[<ffffffff81085fa1>]  [<ffffffff81085fa1>] __call_rcu+0x11/0x13e
        RSP: 0018:ffff88003d591df8  EFLAGS: 00010246
        RAX: 0000000000000000 RBX: 0000000000000000 RCX: 000000000000006e
        RDX: ffffffff8161d0c0 RSI: 0000000000000000 RDI: 0000000000000000
        RBP: ffff88003d591e18 R08: 0000000000000000 R09: ffffffff8152fa6c
        R10: 0000000000000000 R11: 0000000000000300 R12: ffff88003b8f9538
        R13: ffffffff8161d0c0 R14: ffff88003b8f9d50 R15: ffff88003c69f908
        FS:  00007f97eb18c720(0000) GS:ffff88003bd00000(0000) knlGS:0000000000000000
        CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
        CR2: 0000000000000008 CR3: 000000003d47a000 CR4: 00000000000006e0
        DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
        DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
        Process keyctl (pid: 4354, threadinfo ffff88003d590000, task ffff88003c78a040)
        Stack:
         ffff88003e0ffde0 ffff88003b8f9538 0000000000000001 ffff88003b8f9d50
         ffff88003d591e28 ffffffff810860f0 ffff88003d591e68 ffffffff8117bfea
         ffff88003d591e68 ffffffff00000000 ffff88003e0ffde1 ffff88003e0ffde0
        Call Trace:
         [<ffffffff810860f0>] call_rcu_sched+0x10/0x12
         [<ffffffff8117bfea>] user_update+0x8d/0xa2
         [<ffffffff8117723a>] key_create_or_update+0x236/0x270
         [<ffffffff811789b1>] sys_add_key+0x123/0x17e
         [<ffffffff813b84bb>] system_call_fastpath+0x16/0x1b
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NJeff Layton <jlayton@redhat.com>
      Acked-by: NNeil Horman <nhorman@redhat.com>
      Acked-by: NSteve Dickson <steved@redhat.com>
      Acked-by: NJames Morris <jmorris@namei.org>
      Cc: stable@kernel.org
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      9f35a33b
  19. 01 11月, 2011 2 次提交
    • A
      security: follow rename pack_hex_byte() to hex_byte_pack() · 02473119
      Andy Shevchenko 提交于
      There is no functional change.
      Signed-off-by: NAndy Shevchenko <andriy.shevchenko@linux.intel.com>
      Cc: Mimi Zohar <zohar@us.ibm.com>
      Cc: James Morris <jmorris@namei.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      02473119
    • C
      Cross Memory Attach · fcf63409
      Christopher Yeoh 提交于
      The basic idea behind cross memory attach is to allow MPI programs doing
      intra-node communication to do a single copy of the message rather than a
      double copy of the message via shared memory.
      
      The following patch attempts to achieve this by allowing a destination
      process, given an address and size from a source process, to copy memory
      directly from the source process into its own address space via a system
      call.  There is also a symmetrical ability to copy from the current
      process's address space into a destination process's address space.
      
      - Use of /proc/pid/mem has been considered, but there are issues with
        using it:
        - Does not allow for specifying iovecs for both src and dest, assuming
          preadv or pwritev was implemented either the area read from or
        written to would need to be contiguous.
        - Currently mem_read allows only processes who are currently
        ptrace'ing the target and are still able to ptrace the target to read
        from the target. This check could possibly be moved to the open call,
        but its not clear exactly what race this restriction is stopping
        (reason  appears to have been lost)
        - Having to send the fd of /proc/self/mem via SCM_RIGHTS on unix
        domain socket is a bit ugly from a userspace point of view,
        especially when you may have hundreds if not (eventually) thousands
        of processes  that all need to do this with each other
        - Doesn't allow for some future use of the interface we would like to
        consider adding in the future (see below)
        - Interestingly reading from /proc/pid/mem currently actually
        involves two copies! (But this could be fixed pretty easily)
      
      As mentioned previously use of vmsplice instead was considered, but has
      problems.  Since you need the reader and writer working co-operatively if
      the pipe is not drained then you block.  Which requires some wrapping to
      do non blocking on the send side or polling on the receive.  In all to all
      communication it requires ordering otherwise you can deadlock.  And in the
      example of many MPI tasks writing to one MPI task vmsplice serialises the
      copying.
      
      There are some cases of MPI collectives where even a single copy interface
      does not get us the performance gain we could.  For example in an
      MPI_Reduce rather than copy the data from the source we would like to
      instead use it directly in a mathops (say the reduce is doing a sum) as
      this would save us doing a copy.  We don't need to keep a copy of the data
      from the source.  I haven't implemented this, but I think this interface
      could in the future do all this through the use of the flags - eg could
      specify the math operation and type and the kernel rather than just
      copying the data would apply the specified operation between the source
      and destination and store it in the destination.
      
      Although we don't have a "second user" of the interface (though I've had
      some nibbles from people who may be interested in using it for intra
      process messaging which is not MPI).  This interface is something which
      hardware vendors are already doing for their custom drivers to implement
      fast local communication.  And so in addition to this being useful for
      OpenMPI it would mean the driver maintainers don't have to fix things up
      when the mm changes.
      
      There was some discussion about how much faster a true zero copy would
      go. Here's a link back to the email with some testing I did on that:
      
      http://marc.info/?l=linux-mm&m=130105930902915&w=2
      
      There is a basic man page for the proposed interface here:
      
      http://ozlabs.org/~cyeoh/cma/process_vm_readv.txt
      
      This has been implemented for x86 and powerpc, other architecture should
      mainly (I think) just need to add syscall numbers for the process_vm_readv
      and process_vm_writev. There are 32 bit compatibility versions for
      64-bit kernels.
      
      For arch maintainers there are some simple tests to be able to quickly
      verify that the syscalls are working correctly here:
      
      http://ozlabs.org/~cyeoh/cma/cma-test-20110718.tgzSigned-off-by: NChris Yeoh <yeohc@au1.ibm.com>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Howells <dhowells@redhat.com>
      Cc: James Morris <jmorris@namei.org>
      Cc: <linux-man@vger.kernel.org>
      Cc: <linux-arch@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      fcf63409