- 18 5月, 2016 4 次提交
-
-
由 Chuck Lever 提交于
rpcrdma_marshal_req() makes a simplifying assumption: that NFS operations with large Call messages have small Reply messages, and vice versa. Therefore with RPC-over-RDMA, only one chunk type is ever needed for each Call/Reply pair, because one direction needs chunks, the other direction will always fit inline. In fact, this assumption is asserted in the code: if (rtype != rpcrdma_noch && wtype != rpcrdma_noch) { dprintk("RPC: %s: cannot marshal multiple chunk lists\n", __func__); return -EIO; } But RPCGSS_SEC breaks this assumption. Because krb5i and krb5p perform data transformation on RPC messages before they are transmitted, direct data placement techniques cannot be used, thus RPC messages must be sent via a Long call in both directions. All such calls are sent with a Position Zero Read chunk, and all such replies are handled with a Reply chunk. Thus the client must provide every Call/Reply pair with both a Read list and a Reply chunk. Without any special security in effect, NFSv4 WRITEs may now also use the Read list and provide a Reply chunk. The marshal_req logic was preventing that, meaning an NFSv4 WRITE with a large payload that included a GETATTR result larger than the inline threshold would fail. The code that encodes each chunk list is now completely contained in its own function. There is some code duplication, but the trade-off is that the overall logic should be more clear. Note that all three chunk lists now share the rl_segments array. Some additional per-req accounting is necessary to track this usage. For the same reasons that the above simplifying assumption has held true for so long, I don't expect more array elements are needed at this time. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Reviewed-by: NSagi Grimberg <sagi@grimberg.me> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Update documenting comments to reflect code changes over the past year. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Reviewed-by: NSagi Grimberg <sagi@grimberg.me> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Avoid the latency and interrupt overhead of registering a Write chunk when handling NFS READ requests of a few hundred bytes or less. This change does not interoperate with Linux NFS/RDMA servers that do not have commit 9d11b51c ('svcrdma: Fix send_reply() scatter/gather set-up'). Commit 9d11b51c was introduced in v4.3, and is included in 4.2.y, 4.1.y, and 3.18.y. Oracle bug 22925946 has been filed to request that the above fix be included in the Oracle Linux UEK4 NFS/RDMA server. Red Hat bugzillas 1327280 and 1327554 have been filed to request that RHEL NFS/RDMA server backports include the above fix. Workaround: Replace the "proto=rdma,port=20049" mount options with "proto=tcp" until commit 9d11b51c is applied to your NFS server. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Reviewed-by: NSagi Grimberg <sagi@grimberg.me> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
When deciding whether to send a Call inline, rpcrdma_marshal_req doesn't take into account header bytes consumed by chunk lists. This results in Call messages on the wire that are sometimes larger than the inline threshold. Likewise, when a Write list or Reply chunk is in play, the server's reply has to emit an RDMA Send that includes a larger-than-minimal RPC-over-RDMA header. The actual size of a Call message cannot be estimated until after the chunk lists have been registered. Thus the size of each RPC-over-RDMA header can be estimated only after chunks are registered; but the decision to register chunks is based on the size of that header. Chicken, meet egg. The best a client can do is estimate header size based on the largest header that might occur, and then ensure that inline content is always smaller than that. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 15 3月, 2016 4 次提交
-
-
由 Chuck Lever 提交于
Commit fe97b47c ("xprtrdma: Use workqueue to process RPC/RDMA replies") replaced the reply tasklet with a workqueue that allows RPC replies to be processed in parallel. Thus the credit values in RPC-over-RDMA replies can be applied in a different order than in which the server sent them. To fix this, revert commit eba8ff66 ("xprtrdma: Move credit update to RPC reply handler"). Reverting is done by hand to accommodate code changes that have occurred since then. Fixes: fe97b47c ("xprtrdma: Use workqueue to process . . .") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
These are shorter than RPCRDMA_HDRLEN_MIN, and they need to complete the waiting RPC. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
A single memory allocation is used for the pair of buffers wherein the RPC client builds an RPC call message and decodes its matching reply. These buffers are sized based on the maximum possible size of the RPC call and reply messages for the operation in progress. This means that as the call buffer increases in size, the start of the reply buffer is pushed farther into the memory allocation. RPC requests are growing in size. It used to be that both the call and reply buffers fit inside a single page. But these days, thanks to NFSv4 (and especially security labels in NFSv4.2) the maximum call and reply sizes are large. NFSv4.0 OPEN, for example, now requires a 6KB allocation for a pair of call and reply buffers, and NFSv4 LOOKUP is not far behind. As the maximum size of a call increases, the reply buffer is pushed far enough into the buffer's memory allocation that a page boundary can appear in the middle of it. When the maximum possible reply size is larger than the client's RDMA receive buffers (currently 1KB), the client has to register a Reply chunk for the server to RDMA Write the reply into. The logic in rpcrdma_convert_iovs() assumes that xdr_buf head and tail buffers would always be contained on a single page. It supplies just one segment for the head and one for the tail. FMR, for example, registers up to a page boundary (only a portion of the reply buffer in the OPEN case above). But without additional segments, it doesn't register the rest of the buffer. When the server tries to write the OPEN reply, the RDMA Write fails with a remote access error since the client registered only part of the Reply chunk. rpcrdma_convert_iovs() must split the XDR buffer into multiple segments, each of which are guaranteed not to contain a page boundary. That way fmr_op_map is given the proper number of segments to register the whole reply buffer. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NDevesh Sharma <devesh.sharma@broadcom.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 19 12月, 2015 1 次提交
-
-
由 Chuck Lever 提交于
There is a window between the time the RPC reply handler wakes the waiting RPC task and when xprt_release() invokes ops->buf_free. During this time, memory regions containing the data payload may still be accessed by a broken or malicious server, but the RPC application has already been allowed access to the memory containing the RPC request's data payloads. The server should be fenced from client memory containing RPC data payloads _before_ the RPC application is allowed to continue. This change also more strongly enforces send queue accounting. There is a maximum number of RPC calls allowed to be outstanding. When an RPC/RDMA transport is set up, just enough send queue resources are allocated to handle registration, Send, and invalidation WRs for each those RPCs at the same time. Before, additional RPC calls could be dispatched while invalidation WRs were still consuming send WQEs. When invalidation WRs backed up, dispatching additional RPCs resulted in a send queue overrun. Now, the reply handler prevents RPC dispatch until invalidation is complete. This prevents RPC call dispatch until there are enough send queue resources to proceed. Still to do: If an RPC exits early (say, ^C), the reply handler has no opportunity to perform invalidation. Currently, xprt_rdma_free() still frees remaining RDMA resources, which could deadlock. Additional changes are needed to handle invalidation properly in this case. Reported-by: NJason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 03 11月, 2015 4 次提交
-
-
由 Chuck Lever 提交于
Introduce a code path in the rpcrdma_reply_handler() to catch incoming backward direction RPC calls and route them to the ULP's backchannel server. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Tested-By: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Backward direction RPC replies are sent via the client transport's send_request method, the same way forward direction RPC calls are sent. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Tested-By: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
The reply tasklet is fast, but it's single threaded. After reply traffic saturates a single CPU, there's no more reply processing capacity. Replace the tasklet with a workqueue to spread reply handling across all CPUs. This also moves RPC/RDMA reply handling out of the soft IRQ context and into a context that allows sleeps. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Tested-By: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: The error cases in rpcrdma_reply_handler() almost never execute. Ensure the compiler places them out of the hot path. No behavior change expected. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Reviewed-by: NDevesh Sharma <devesh.sharma@avagotech.com> Tested-By: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 06 8月, 2015 7 次提交
-
-
由 Chuck Lever 提交于
RDMA_NOMSG type calls are less efficient than RDMA_MSG. Count NOMSG calls so administrators can tell if they happen to be used more than expected. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Repair how rpcrdma_marshal_req() chooses which RDMA message type to use for large non-WRITE operations so that it picks RDMA_NOMSG in the correct situations, and sets up the marshaling logic to SEND only the RPC/RDMA header. Large NFSv2 SYMLINK requests now use RDMA_NOMSG calls. The Linux NFS server XDR decoder for NFSv2 SYMLINK does not handle having the pathname argument arrive in a separate buffer. The decoder could be fixed, but this is simpler and RDMA_NOMSG can be used in a variety of other situations. Ensure that the Linux client continues to use "RDMA_MSG + read list" when sending large NFSv3 SYMLINK requests, which is more efficient than using RDMA_NOMSG. Large NFSv4 CREATE(NF4LNK) requests are changed to use "RDMA_MSG + read list" just like NFSv3 (see Section 5 of RFC 5667). Before, these did not work at all. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Currently xprtrdma appends an extra chunk element to the RPC/RDMA read chunk list of each NFSv4 WRITE compound. The extra element contains the final GETATTR operation in the compound. The result is an extra RDMA READ operation to transfer a very short piece of each NFS WRITE compound (typically 16 bytes). This is inefficient. It is also incorrect. The client is sending the trailing GETATTR at the same Position as the preceding WRITE data payload. Whether or not RFC 5667 allows the GETATTR to appear in a read chunk, RFC 5666 requires that these two separate RPC arguments appear at two distinct Positions. It can also be argued that the GETATTR operation is not bulk data, and therefore RFC 5667 forbids its appearance in a read chunk at all. Although RFC 5667 is not precise about when using a read list with NFSv4 COMPOUND is allowed, the intent is that only data arguments not touched by NFS (ie, read and write payloads) are to be sent using RDMA READ or WRITE. The NFS client constructs GETATTR arguments itself, and therefore is required to send the trailing GETATTR operation as additional inline content, not as a data payload. NB: This change is not backwards compatible. Some older servers do not accept inline content following the read list. The Linux NFS server should handle this content correctly as of commit a97c331f ("svcrdma: Handle additional inline content"). Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Currently Linux always offers a reply chunk, even when the reply can be sent inline (ie. is smaller than 1KB). On the client, registering a memory region can be expensive. A server may choose not to use the reply chunk, wasting the cost of the registration. This is a change only for RPC replies smaller than 1KB which the server constructs in the RPC reply send buffer. Because the elements of the reply must be XDR encoded, a copy-free data transfer has no benefit in this case. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Tested-by: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
The client has been setting up a reply chunk for NFS READs that are smaller than the inline threshold. This is not efficient: both the server and client CPUs have to copy the reply's data payload into and out of the memory region that is then transferred via RDMA. Using the write list, the data payload is moved by the device and no extra data copying is necessary. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NDevesh Sharma <devesh.sharma@avagotech.com> Reviewed-By: NSagi Grimberg <sagig@mellanox.com> Tested-by: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
When the size of the RPC message is near the inline threshold (1KB), the client would allow messages to be sent that were a few bytes too large. When marshaling RPC/RDMA requests, ensure the combined size of RPC/RDMA header and RPC header do not exceed the inline threshold. Endpoints typically reject RPC/RDMA messages that exceed the size of their receive buffers. The two server implementations I test with (Linux and Solaris) use receive buffers that are larger than the client’s inline threshold. Thus so far this has been benign, observed only by code inspection. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NDevesh Sharma <devesh.sharma@avagotech.com> Tested-by: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
RDMA_MSGP type calls insert a zero pad in the middle of the RPC message to align the RPC request's data payload to the server's alignment preferences. A server can then "page flip" the payload into place to avoid a data copy in certain circumstances. However: 1. The client has to have a priori knowledge of the server's preferred alignment 2. Requests eligible for RDMA_MSGP are requests that are small enough to have been sent inline, and convey a data payload at the _end_ of the RPC message Today 1. is done with a sysctl, and is a global setting that is copied during mount. Linux does not support CCP to query the server's preferences (RFC 5666, Section 6). A small-ish NFSv3 WRITE might use RDMA_MSGP, but no NFSv4 compound fits bullet 2. Thus the Linux client currently leaves RDMA_MSGP disabled. The Linux server handles RDMA_MSGP, but does not use any special page flipping, so it confers no benefit. Clean up the marshaling code by removing the logic that constructs RDMA_MSGP type calls. This also reduces the maximum send iovec size from four to just two elements. /proc/sys/sunrpc/rdma_inline_write_padding is a kernel API, and thus is left in place. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 13 6月, 2015 3 次提交
-
-
由 Chuck Lever 提交于
Acquiring 64 MRs in rpcrdma_buffer_get() while holding the buffer pool lock is expensive, and unnecessary because most modern adapters can transfer 100s of KBs of payload using just a single MR. Instead, acquire MRs one-at-a-time as chunks are registered, and return them to rb_mws immediately during deregistration. Note: commit 539431a4 ("xprtrdma: Don't invalidate FRMRs if registration fails") is reverted: There is now a valid case where registration can fail (with -ENOMEM) but the QP is still in RTS. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSteve Wise <swise@opengridcomputing.com> Tested-By: NDevesh Sharma <devesh.sharma@avagotech.com> Reviewed-by: NDoug Ledford <dledford@redhat.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
A posted rpcrdma_rep never has rr_func set to anything but rpcrdma_reply_handler. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-By: NDevesh Sharma <devesh.sharma@avagotech.com> Reviewed-by: NDoug Ledford <dledford@redhat.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: Instead of carrying a pointer to the buffer pool and the rpc_xprt, carry a pointer to the controlling rpcrdma_xprt. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSteve Wise <swise@opengridcomputing.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Tested-By: NDevesh Sharma <devesh.sharma@avagotech.com> Reviewed-by: NDoug Ledford <dledford@redhat.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 31 3月, 2015 3 次提交
-
-
由 Chuck Lever 提交于
There is very little common processing among the different external memory deregistration functions. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NDevesh Sharma <Devesh.Sharma@Emulex.Com> Tested-by: NMeghana Cheripady <Meghana.Cheripady@Emulex.Com> Tested-by: NVeeresh U. Kokatnur <veereshuk@chelsio.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
There is very little common processing among the different external memory registration functions. Have rpcrdma_create_chunks() call the registration method directly. This removes a stack frame and a switch statement from the external registration path. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NDevesh Sharma <Devesh.Sharma@Emulex.Com> Tested-by: NMeghana Cheripady <Meghana.Cheripady@Emulex.Com> Tested-by: NVeeresh U. Kokatnur <veereshuk@chelsio.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Commit 6ab59945 ("xprtrdma: Update rkeys after transport reconnect" added logic in the ->send_request path to update the chunk list when an RPC/RDMA request is retransmitted. Note that rpc_xdr_encode() resets and re-encodes the entire RPC send buffer for each retransmit of an RPC. The RPC send buffer is not preserved from the previous transmission of an RPC. Revert 6ab59945, and instead, just force each request to be fully marshaled every time through ->send_request. This should preserve the fix from 6ab59945, while also performing pullup during retransmits. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Acked-by: NSagi Grimberg <sagig@mellanox.com> Tested-by: NDevesh Sharma <Devesh.Sharma@Emulex.Com> Tested-by: NMeghana Cheripady <Meghana.Cheripady@Emulex.Com> Tested-by: NVeeresh U. Kokatnur <veereshuk@chelsio.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 24 2月, 2015 1 次提交
-
-
由 Chuck Lever 提交于
Dan Carpenter's static checker pointed out: net/sunrpc/xprtrdma/rpc_rdma.c:879 rpcrdma_reply_handler() warn: can 'credits' be negative? "credits" is defined as an int. The credits value comes from the server as a 32-bit unsigned integer. A malicious or broken server can plant a large unsigned integer in that field which would result in an underflow in the following logic, potentially triggering a deadlock of the mount point by blocking the client from issuing more RPC requests. net/sunrpc/xprtrdma/rpc_rdma.c: 876 credits = be32_to_cpu(headerp->rm_credit); 877 if (credits == 0) 878 credits = 1; /* don't deadlock */ 879 else if (credits > r_xprt->rx_buf.rb_max_requests) 880 credits = r_xprt->rx_buf.rb_max_requests; 881 882 cwnd = xprt->cwnd; 883 xprt->cwnd = credits << RPC_CWNDSHIFT; 884 if (xprt->cwnd > cwnd) 885 xprt_release_rqst_cong(rqst->rq_task); Reported-by: NDan Carpenter <dan.carpenter@oracle.com> Fixes: eba8ff66 ("xprtrdma: Move credit update to RPC . . .") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 30 1月, 2015 9 次提交
-
-
由 Chuck Lever 提交于
Use the new rpcrdma_alloc_regbuf() API to shrink the amount of contiguous memory needed for a buffer pool by moving the zero pad buffer into a regbuf. This is for consistency with the other uses of internally registered memory. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
The rr_base field is currently the buffer where RPC replies land. An RPC/RDMA reply header lands in this buffer. In some cases an RPC reply header also lands in this buffer, just after the RPC/RDMA header. The inline threshold is an agreed-on size limit for RDMA SEND operations that pass from server and client. The sum of the RPC/RDMA reply header size and the RPC reply header size must be less than this threshold. The largest RDMA RECV that the client should have to handle is the size of the inline threshold. The receive buffer should thus be the size of the inline threshold, and not related to RPCRDMA_MAX_SEGS. RPC replies received via RDMA WRITE (long replies) are caught in rq_rcv_buf, which is the second half of the RPC send buffer. Ie, such replies are not involved in any way with rr_base. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
The rl_base field is currently the buffer where each RPC/RDMA call header is built. The inline threshold is an agreed-on size limit to for RDMA SEND operations that pass between client and server. The sum of the RPC/RDMA header size and the RPC header size must be less than or equal to this threshold. Increasing the r/wsize maximum will require MAX_SEGS to grow significantly, but the inline threshold size won't change (both sides agree on it). The server's inline threshold doesn't change. Since an RPC/RDMA header can never be larger than the inline threshold, make all RPC/RDMA header buffers the size of the inline threshold. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Because internal memory registration is an expensive and synchronous operation, xprtrdma pre-registers send and receive buffers at mount time, and then re-uses them for each RPC. A "hardway" allocation is a memory allocation and registration that replaces a send buffer during the processing of an RPC. Hardway must be done if the RPC send buffer is too small to accommodate an RPC's call and reply headers. For xprtrdma, each RPC send buffer is currently part of struct rpcrdma_req so that xprt_rdma_free(), which is passed nothing but the address of an RPC send buffer, can find its matching struct rpcrdma_req and rpcrdma_rep quickly via container_of / offsetof. That means that hardway currently has to replace a whole rpcrmda_req when it replaces an RPC send buffer. This is often a fairly hefty chunk of contiguous memory due to the size of the rl_segments array and the fact that both the send and receive buffers are part of struct rpcrdma_req. Some obscure re-use of fields in rpcrdma_req is done so that xprt_rdma_free() can detect replaced rpcrdma_req structs, and restore the original. This commit breaks apart the RPC send buffer and struct rpcrdma_req so that increasing the size of the rl_segments array does not change the alignment of each RPC send buffer. (Increasing rl_segments is needed to bump up the maximum r/wsize for NFS/RDMA). This change opens up some interesting possibilities for improving the design of xprt_rdma_allocate(). xprt_rdma_allocate() is now the one place where RPC send buffers are allocated or re-allocated, and they are now always left in place by xprt_rdma_free(). A large re-allocation that includes both the rl_segments array and the RPC send buffer is no longer needed. Send buffer re-allocation becomes quite rare. Good send buffer alignment is guaranteed no matter what the size of the rl_segments array is. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: The rep_func field always refers to rpcrdma_conn_func(). rep_func should have been removed by commit b45ccfd2 ("xprtrdma: Remove MEMWINDOWS registration modes"). Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Reduce work in the receive CQ handler, which can be run at hardware interrupt level, by moving the RPC/RDMA credit update logic to the RPC reply handler. This has some additional benefits: More header sanity checking is done before trusting the incoming credit value, and the receive CQ handler no longer touches the RPC/RDMA header (the CPU stalls while waiting for the header contents to be brought into the cache). This further extends work begun by commit e7ce710a ("xprtrdma: Avoid deadlock when credit window is reset"). Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: Replace naked integers with a documenting macro. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
xprtsock.c and the backchannel code display XIDs in host byte order. Follow suit in xprtrdma. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: Replace htonl and ntohl with the be32 equivalents. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 25 11月, 2014 1 次提交
-
-
由 Jeff Layton 提交于
It's always set to whatever CONFIG_SUNRPC_DEBUG is, so just use that. Signed-off-by: NJeff Layton <jlayton@primarydata.com> Signed-off-by: NTrond Myklebust <trond.myklebust@primarydata.com>
-
- 01 8月, 2014 2 次提交
-
-
由 Chuck Lever 提交于
If FRMR registration fails, it's likely to transition the QP to the error state. Or, registration may have failed because the QP is _already_ in ERROR. Thus calling rpcrdma_deregister_external() in rpcrdma_create_chunks() is useless in FRMR mode: the LOCAL_INVs just get flushed. It is safe to leave existing registrations: when FRMR registration is tried again, rpcrdma_register_frmr_external() checks if each FRMR is already/still VALID, and knocks it down first if it is. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Tested-by: NShirley Ma <shirley.ma@oracle.com> Tested-by: NDevesh Sharma <devesh.sharma@emulex.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Various reports of: rpcrdma_qp_async_error_upcall: QP error 3 on device mlx4_0 ep ffff8800bfd3e848 Ensure that rkeys in already-marshalled RPC/RDMA headers are refreshed after the QP has been replaced by a reconnect. BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=249Suggested-by: NSelvin Xavier <Selvin.Xavier@Emulex.Com> Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Tested-by: NShirley Ma <shirley.ma@oracle.com> Tested-by: NDevesh Sharma <devesh.sharma@emulex.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 04 6月, 2014 1 次提交
-
-
由 Chuck Lever 提交于
If rpcrdma_register_external() fails during request marshaling, the current RPC request is killed. Instead, this RPC should be retried after reconnecting the transport instance. The most likely reason for registration failure with FRMR is a failed post_send, which would be due to a remote transport disconnect or memory exhaustion. These issues can be recovered by a retry. Problems encountered in the marshaling logic itself will not be corrected by trying again, so these should still kill a request. Now that we've added a clean exit for marshaling errors, take the opportunity to defang some BUG_ON's. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-