- 26 6月, 2005 40 次提交
-
-
由 Vivek Goyal 提交于
This patch retrieves the max_pfn being used by previous kernel and stores it in a safe location (saved_max_pfn) before it is overwritten due to user defined memory map. This pfn is used to make sure that user does not try to read the physical memory beyond saved_max_pfn. Signed-off-by: NVivek Goyal <vgoyal@in.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Vivek Goyal 提交于
o Specify "irqpoll" command line option which loading second kernel. This helps in reducing driver initialization failures in second kernel due to shared interrupts. o Enabled LAPIC/IOAPIC support for UP kernels in second kernel. This reduces the chances of devices sharing the irq and hence reduces the chances of driver initialization failures in second kernel. o Build a UP capture kernel and disabled SMP support. Signed-off-by: NVivek Goyal <vgoyal@in.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Vivek Goyal 提交于
This patch contains the documentation for the kexec based crash dump tool. Quick kdump-howto ================================================================ 1) Download and build kexec-tools. 2) Download and build the latest kexec/kdump (-mm) kernel patchset. Two kernels need to be built in order to get this feature working. A) First kernel: a) Enable "kexec system call" feature: CONFIG_KEXEC=y b) Physical load address (use default): CONFIG_PHYSICAL_START=0x100000 c) Enable "sysfs file system support": CONFIG_SYSFS=y d) Boot into first kernel with the command line parameter "crashkernel=Y@X": For example: "crashkernel=64M@16M". B) Second kernel: a) Enable "kernel crash dumps" feature: CONFIG_CRASH_DUMP=y b) Physical load addreess, use same load address as X in "crashkernel" kernel parameter in d) above, e.g., 16 MB or 0x1000000. CONFIG_PHYSICAL_START=0x1000000 c) Enable "/proc/vmcore support" (Optional, in Pseudo filesystems). CONFIG_PROC_VMCORE=y 3) Boot into the first kernel. 4) Load the second kernel to be booted using: kexec -p <second-kernel> --crash-dump --args-linux --append="root=<root-dev> maxcpus=1 init 1" 5) System reboots into the second kernel when a panic occurs. A module can be written to force the panic, for testing purposes. 6) See Documentation/kdump.txt for how to read the first kernel's memory image and how to analyze it. Signed-off-by: NHariprasad Nellitheertha <hari@in.ibm.com> Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NVivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Nrandy_dunlap <rdunlap@xenotime.net> Signed-off-by: NManeesh Soni <maneesh@in.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Vivek Goyal 提交于
o Problem: Kexec on panic hangs if first kernel is booted with nmi_watchdog command line parameter. This problem occurs because kexec crash shutdown code replaces the NMI callback handler. This handler saves the cpu register states and halts the cpu. If system is booted with nmi_watchdog parameter, then crashing cpu also runs this nmi handler and halts itself. o This patch fixes the problem by keeping a track of crashing cpu and not executing the new nmi handler on crashing cpu. o There is a dependence on smp_processor_id() function which might return insane value for cpu, if cpu field of thread_info is corrupted. Signed-off-by: NVivek Goyal <vgoyal@in.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Vivek Goyal 提交于
CPU does not save ss and esp on stack if execution was already in kernel mode at the time of NMI occurrence. This leads to saving of erractic values for ss and esp. This patch fixes the issue. Signed-off-by: NVivek Goyal <vgoyal@in.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Vivek Goyal 提交于
o Following patch exports kexec global variable "crash_notes" to user space through sysfs as kernel attribute in /sys/kernel. Signed-off-by: NManeesh Soni <maneesh@in.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Heiko Carstens 提交于
Add kexec support for s390 architecture. From: Milton Miller <miltonm@bga.com> - Fix passing of first argument to relocate_kernel assembly. - Fix Kconfig description. - Remove wrong comment and comments that describe obvious things. - Allow only KEXEC_TYPE_DEFAULT as image type -> dump not supported. Acked-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 R Sharada 提交于
This patch implements the kexec support for ppc64 platforms. A couple of notes: 1) We copy the pages in virtual mode, using the full base kernel and a statically allocated stack. At kexec_prepare time we scan the pages and if any overlap our (0, _end[]) range we return -ETXTBSY. On PowerPC 64 systems running in LPAR (logical partitioning) mode, only a small region of memory, referred to as the RMO, can be accessed in real mode. Since Linux runs with only one zone of memory in the memory allocator, and it can be orders of magnitude more memory than the RMO, looping until we allocate pages in the source region is not feasible. Copying in virtual means we don't have to write a hash table generation and call hypervisor to insert translations, instead we rely on the pinned kernel linear mapping. The kernel already has move to linked location built in, so there is no requirement to load it at 0. If we want to load something other than a kernel, then a stub can be written to copy a linear chunk in real mode. 2) The start entry point gets passed parameters from the kernel. Slaves are started at a fixed address after copying code from the entry point. All CPUs get passed their firmware assigned physical id in r3 (most calling conventions use this register for the first argument). This is used to distinguish each CPU from all other CPUs. Since firmware is not around, there is no other way to obtain this information other than to pass it somewhere. A single CPU, referred to here as the master and the one executing the kexec call, branches to start with the address of start in r4. While this can be calculated, we have to load it through a gpr to branch to this point so defining the register this is contained in is free. A stack of unspecified size is available at r1 (also common calling convention). All remaining running CPUs are sent to start at absolute address 0x60 after copying the first 0x100 bytes from start to address 0. This convention was chosen because it matches what the kernel has been doing itself. (only gpr3 is defined). Note: This is not quite the convention of the kexec bootblock v2 in the kernel. A stub has been written to convert between them, and we may adjust the kernel in the future to allow this directly without any stub. 3) Destination pages can be placed anywhere, even where they would not be accessible in real mode. This will allow us to place ram disks above the RMO if we choose. Signed-off-by: NMilton Miller <miltonm@bga.com> Signed-off-by: NR Sharada <sharada@in.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 R Sharada 提交于
Add code to clear the hash table and invalidate the tlb for native (SMP, non-LPAR) mode. Supports 16M and 4k pages. Signed-off-by: NMilton Miller <miltonm@bga.com> Signed-off-by: NR Sharada <sharada@in.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
I have tweaked this patch slightly to handle an empty list of pages to relocate passed to relocate_new_kernel. And I have added ppc_md.machine_crash_shutdown. To keep up with the changes in the generic kexec infrastructure. From: Albert Herranz <albert_herranz@yahoo.es> The following patch adds support for kexec on the ppc32 platform. Non-OpenFirmware based platforms are likely to work directly without additional changes on the kernel side. The kexec-tools userland package may need to be slightly updated, though. For OpenFirmware based machines, additional work is still needed on the kernel side before kexec support is ready. Benjamin Herrenschmidt is kindly working on that part. In order for a ppc platform to use the kexec kernel services it must implement some ppc_md hooks. Otherwise, kexec will be explicitly disabled, as suggested by benh. There are 3+1 new ppc_md hooks that a platform supporting kexec may implement. Two of them are mandatory for kexec to work. See include/asm-ppc/machdep.h for details. - machine_kexec_prepare(image) This function is called to make any arrangements to the image before it is loaded. This hook _MUST_ be provided by a platform in order to activate kexec support for that platform. Otherwise, the platform is considered to not support kexec and the kexec_load system call will fail (that makes all existing platforms by default non-kexec'able). - machine_kexec_cleanup(image) This function is called to make any cleanups on image after the loaded image data it is freed. This hook is optional. A platform may or may not provide this hook. - machine_kexec(image) This function is called to perform the _actual_ kexec. This hook _MUST_ be provided by a platform in order to activate kexec support for that platform. If a platform provides machine_kexec_prepare but forgets to provide machine_kexec, a kexec will fall back to a reboot. A ready-to-use machine_kexec_simple() generic function is provided to, hopefully, simplify kexec adoption for embedded platforms. A platform may call this function from its specific machine_kexec hook, like this: void myplatform_kexec(struct kimage *image) { machine_kexec_simple(image); } - machine_shutdown() This function is called to perform any machine specific shutdowns, not already done by drivers. This hook is optional. A platform may or may not provide this hook. An example (trimmed) platform specific module for a platform supporting kexec through the existing machine_kexec_simple follows: /* ... */ #ifdef CONFIG_KEXEC int myplatform_kexec_prepare(struct kimage *image) { /* here, we can place additional preparations */ return 0; /* yes, we support kexec */ } void myplatform_kexec(struct kimage *image) { machine_kexec_simple(image); } #endif /* CONFIG_KEXEC */ /* ... */ void __init platform_init(unsigned long r3, unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7) { /* ... */ #ifdef CONFIG_KEXEC ppc_md.machine_kexec_prepare = myplatform_kexec_prepare; ppc_md.machine_kexec = myplatform_kexec; #endif /* CONFIG_KEXEC */ /* ... */ } The kexec ppc kernel support has been heavily tested on the GameCube Linux port, and, as reported in the fastboot mailing list, it has been tested too on a Moto 82xx ppc by Rick Richardson. Signed-off-by: NAlbert Herranz <albert_herranz@yahoo.es> Signed-off-by: NEric Biederman <ebiederm@xmission.com> Acked-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
This is the x86_64 implementation of the crashkernel option. It reserves a window of memory very early in the bootup process, so we never use it for anything but the kernel to switch to when the running kernel panics. In addition to reserving this memory a resource structure is registered so looking at /proc/iomem it is clear what happened to that memory. ISSUES: Is it possible to implement this in a architecture generic way? What should be done with architectures that always use an iommu and thus don't report their RAM memory resources in /proc/iomem? Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
This is the x86_64 implementation of machine kexec. 32bit compatibility support has been implemented, and machine_kexec has been enhanced to not care about the changing internal kernel paget table structures. From: Alexander Nyberg <alexn@dsv.su.se> build fix Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
Factor out the apic and smp shutdown code from machine_restart so it can be called by in the kexec reboot path as well. Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
This is the x86 implementation of the crashkernel option. It reserves a window of memory very early in the bootup process, so we never use it for anything but the kernel to switch to when the running kernel panics. In addition to reserving this memory a resource structure is registered so looking at /proc/iomem it is clear what happened to that memory. ISSUES: Is it possible to implement this in a architecture generic way? What should be done with architectures that always use an iommu and thus don't report their RAM memory resources in /proc/iomem? Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NVivek Goyal <vgoyal@in.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
In the case of a crash/panic an architecture specific function machine_crash_shutdown is called. This patch adds to the x86 machine_crash function the standard kernel code for shutting down apics. Every line of code added to that function increases the risk that we will call code after a kernel panic that is not safe. This patch should not make it to the stable kernel without a being reviewed a lot more. It is unclear how much a hardned kernel can take when it comes to misconfigured apics. So since a normal kernel has problems this patch does a clean shutdown. It is my expectation this patch will be dropped from future generations of the kexec work. But for the moment it is a crutch to keep from breaking everything. Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
After the kernel panics if we wish to generate an entire machine core file it is very nice to know the register state at the time the machine crashed. After long discussion it was realized that if you are going to be saving the information anyway it is reasonable to store the information in a format that it will be used and recognized in so the register state is stored in the standard ELF note format. Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
One of the dangers when switching from one kernel to another is what happens to all of the other cpus that were running in the crashed kernel. In an attempt to avoid that problem this patch adds a nmi handler and attempts to shoot down the other cpus by sending them non maskable interrupts. The code then waits for 1 second or until all known cpus have stopped running and then jumps from the running kernel that has crashed to the kernel in reserved memory. The kernel spin loop is used for the delay as that should behave continue to be safe even in after a crash. Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
This is the i386 implementation of kexec. Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
Factor out the apic and smp shutdown code from machine_restart so it can be called by in the kexec reboot path as well. By switching to the bootstrap cpu by default on reboot I can delete/simplify some motherboard fixups well. Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Vivek Goyal 提交于
This is a minor bug fix in kexec to resolve the problem of loading panic kernel with initrd. o Problem: Loading a capture kenrel fails if initrd is also being loaded. This has been observed for vmlinux image for kexec on panic case. o This patch fixes the problem. In segment location and size verification logic, minor correction has been done. Segment memory end (mend) should be mstart + memsz - 1. This one byte offset was source of failure for initrd loading which was being loaded at hole boundary. Signed-off-by: NVivek Goyal <vgoyal@in.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
This patch introduces the architecture independent implementation the sys_kexec_load, the compat_sys_kexec_load system calls. Kexec on panic support has been integrated into the core patch and is relatively clean. In addition the hopefully architecture independent option crashkernel=size@location has been docuemented. It's purpose is to reserve space for the panic kernel to live, and where no DMA transfer will ever be setup to access. Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAlexander Nyberg <alexn@telia.com> Signed-off-by: NAdrian Bunk <bunk@stusta.de> Signed-off-by: NVivek Goyal <vgoyal@in.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
For one kernel to report a crash another kernel has created we need to have 2 kernels loaded simultaneously in memory. To accomplish this the two kernels need to built to run at different physical addresses. This patch adds the CONFIG_PHYSICAL_START option to the x86_64 kernel so we can do just that. You need to know what you are doing and the ramifications are before changing this value, and most users won't care so I have made it depend on CONFIG_EMBEDDED bzImage kernels will work and run at a different address when compiled with this option but they will still load at 1MB. If you need a kernel loaded at a different address as well you need to boot a vmlinux. Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Vivek Goyal 提交于
This patch fixes a problem with reserving memory during boot up of a kernel built for non-default location. Currently boot memory allocator reserves the memory required by kernel image, boot allocaotor bitmap etc. It assumes that kernel is loaded at 1MB (HIGH_MEMORY hard coded to 1024*1024). But kernel can be built for non-default locatoin, hence existing hardcoding will lead to reserving unnecessary memory. This patch fixes it. Signed-off-by: NVivek Goyal <vgoyal@in.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
For one kernel to report a crash another kernel has created we need to have 2 kernels loaded simultaneously in memory. To accomplish this the two kernels need to built to run at different physical addresses. This patch adds the CONFIG_PHYSICAL_START option to the x86 kernel so we can do just that. You need to know what you are doing and the ramifications are before changing this value, and most users won't care so I have made it depend on CONFIG_EMBEDDED bzImage kernels will work and run at a different address when compiled with this option but they will still load at 1MB. If you need a kernel loaded at a different address as well you need to boot a vmlinux. Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
The vmlinux on x86_64 does not report the correct physical address of the kernel. Instead in the physical address field it currently reports the virtual address of the kernel. This is patch is a bug fix that corrects vmlinux to report the proper physical addresses. This is potentially a help for crash dump analysis tools. This definitiely allows bootloaders that load vmlinux as a standard ELF executable. Bootloaders directly loading vmlinux become of practical importance when we consider the kexec on panic case. Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
The vmlinux on i386 does not report the correct physical address of the kernel. Instead in the physical address field it currently reports the virtual address of the kernel. This is patch is a bug fix that corrects vmlinux to report the proper physical addresses. This is potentially a help for crash dump analysis tools. This definitiely allows bootloaders that load vmlinux as a standard ELF executable. Bootloaders directly loading vmlinux become of practical importance when we consider the kexec on panic case. Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
In vmlinux.lds.h the code is carefull to define every section so vmlinux properly reports the correct physical load address of code, as well as it's virtual address. The new SECURITY_INIT definition fails to follow that convention and and causes incorrect physical address to appear in the vmlinux if there are any security initcalls. This patch updates the SECURITY_INIT to follow the convention in the rest of the file. Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
When coming out of apic mode attempt to set the appropriate apic back into virtual wire mode. This improves on previous versions of this patch by by never setting bot the local apic and the ioapic into veritual wire mode. This code looks at data from the mptable to see if an ioapic has an ExtInt input to make this decision. A future improvement is to figure out which apic or ioapic was in virtual wire mode at boot time and to remember it. That is potentially a more accurate method, of selecting which apic to place in virutal wire mode. Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
When coming out of apic mode attempt to set the appropriate apic back into virtual wire mode. This improves on previous versions of this patch by by never setting bot the local apic and the ioapic into veritual wire mode. This code looks at data from the mptable to see if an ioapic has an ExtInt input to make this decision. A future improvement is to figure out which apic or ioapic was in virtual wire mode at boot time and to remember it. That is potentially a more accurate method, of selecting which apic to place in virutal wire mode. Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
From: Eric W. Biederman <ebiederm@xmission.com The following patch simply adds a shutdown method to the x86_64 i8259 code. Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
From: Eric W. Biederman <ebiederm@xmission.com> This patch disables interrupt generation from the legacy pic on reboot. Now that there is a sys_device class it should not be called while drivers are still using interrupts. There is a report about this breaking ACPI power off on some systems. http://bugme.osdl.org/show_bug.cgi?id=4041 However the final comment seems to exonerate this code. So until I get more information I believe that was a false positive. Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
From: Eric W. Biederman <ebiederm@xmission.com> It is ok to reserve resources > 4G on x86_64 struct resource is 64bit now :) Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
From: "Maciej W. Rozycki" <macro@linux-mips.org> Fix a kexec problem whcih causes local APIC detection failure. The problem is detect_init_APIC() is called early, before the command line have been processed. Therefore "lapic" (and "nolapic") have not been seen, yet. Signed-off-by: NMaciej W. Rozycki <macro@linux-mips.org> Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric W. Biederman 提交于
From: "Maciej W. Rozycki" <macro@linux-mips.org> Rename APIC_MODE_EXINT to APIC_MODE_EXTINT - I think it should be named after what the mode is called in documentation. From: "Eric W. Biederman" <ebiederm@lnxi.com> I have reduced this patch to just the name change in the header. And integrated the changes into the patches that add those lines. Otherwise I ran into some ugly dependencies. Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org Signed-off-by: NEric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Ingo Molnar 提交于
This patch adds a new preemption model: 'Voluntary Kernel Preemption'. The 3 models can be selected from a new menu: (X) No Forced Preemption (Server) ( ) Voluntary Kernel Preemption (Desktop) ( ) Preemptible Kernel (Low-Latency Desktop) we still default to the stock (Server) preemption model. Voluntary preemption works by adding a cond_resched() (reschedule-if-needed) call to every might_sleep() check. It is lighter than CONFIG_PREEMPT - at the cost of not having as tight latencies. It represents a different latency/complexity/overhead tradeoff. It has no runtime impact at all if disabled. Here are size stats that show how the various preemption models impact the kernel's size: text data bss dec hex filename 3618774 547184 179896 4345854 424ffe vmlinux.stock 3626406 547184 179896 4353486 426dce vmlinux.voluntary +0.2% 3748414 548640 179896 4476950 445016 vmlinux.preempt +3.5% voluntary-preempt is +0.2% of .text, preempt is +3.5%. This feature has been tested for many months by lots of people (and it's also included in the RHEL4 distribution and earlier variants were in Fedora as well), and it's intended for users and distributions who dont want to use full-blown CONFIG_PREEMPT for one reason or another. Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Ingo Molnar 提交于
The only sane way to clean up the current 3 lock_kernel() variants seems to be to remove the spinlock-based BKL implementations altogether, and to keep the semaphore-based one only. If we dont want to do that for whatever reason then i'm afraid we have to live with the current complexity. (but i'm open for other cleanup suggestions as well.) To explore this possibility we'll (at a minimum) have to know whether the semaphore-based BKL works fine on plain SMP too. The patch below enables this. The patch may make sense in isolation as well, as it might bring performance benefits: code that would formerly spin on the BKL spinlock will now schedule away and give up the CPU. It might introduce performance regressions as well, if any performance-critical code uses the BKL heavily and gets overscheduled due to the semaphore. I very much hope there is no such performance-critical codepath left though. Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Ingo Molnar 提交于
This patch consolidates the CONFIG_PREEMPT and CONFIG_PREEMPT_BKL preemption options into kernel/Kconfig.preempt. This, besides reducing source-code, also enables more centralized tweaking of preemption related options. Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Dinakar Guniguntala 提交于
ia64 changes similar to kernel/sched.c. Signed-off-by: NDinakar Guniguntala <dino@in.ibm.com> Acked-by: NPaul Jackson <pj@sgi.com> Acked-by: NNick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Dinakar Guniguntala 提交于
Adds the core update_cpu_domains code and updated cpusets documentation Signed-off-by: NDinakar Guniguntala <dino@in.ibm.com> Acked-by: NPaul Jackson <pj@sgi.com> Acked-by: NNick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Dinakar Guniguntala 提交于
The following patches add dynamic sched domains functionality that was extensively discussed on lkml and lse-tech. I would like to see this added to -mm o The main advantage with this feature is that it ensures that the scheduler load balacing code only balances against the cpus that are in the sched domain as defined by an exclusive cpuset and not all of the cpus in the system. This removes any overhead due to load balancing code trying to pull tasks outside of the cpu exclusive cpuset only to be prevented by the tasks' cpus_allowed mask. o cpu exclusive cpusets are useful for servers running orthogonal workloads such as RT applications requiring low latency and HPC applications that are throughput sensitive o It provides a new API partition_sched_domains in sched.c that makes dynamic sched domains possible. o cpu_exclusive cpusets sets are now associated with a sched domain. Which means that the users can dynamically modify the sched domains through the cpuset file system interface o ia64 sched domain code has been updated to support this feature as well o Currently, this does not support hotplug. (However some of my tests indicate hotplug+preempt is currently broken) o I have tested it extensively on x86. o This should have very minimal impact on performance as none of the fast paths are affected Signed-off-by: NDinakar Guniguntala <dino@in.ibm.com> Acked-by: NPaul Jackson <pj@sgi.com> Acked-by: NNick Piggin <nickpiggin@yahoo.com.au> Acked-by: NMatthew Dobson <colpatch@us.ibm.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-