- 20 9月, 2020 3 次提交
-
-
由 Hugh Dickins 提交于
check_move_unevictable_pages() is used in making unevictable shmem pages evictable: by shmem_unlock_mapping(), drm_gem_check_release_pagevec() and i915/gem check_release_pagevec(). Those may pass down subpages of a huge page, when /sys/kernel/mm/transparent_hugepage/shmem_enabled is "force". That does not crash or warn at present, but the accounting of vmstats unevictable_pgs_scanned and unevictable_pgs_rescued is inconsistent: scanned being incremented on each subpage, rescued only on the head (since tails already appear evictable once the head has been updated). 5.8 commit 5d91f31f ("mm: swap: fix vmstats for huge page") has established that vm_events in general (and unevictable_pgs_rescued in particular) should count every subpage: so follow that precedent here. Do this in such a way that if mem_cgroup_page_lruvec() is made stricter (to check page->mem_cgroup is always set), no problem: skip the tails before calling it, and add thp_nr_pages() to vmstats on the head. Signed-off-by: NHugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NYang Shi <shy828301@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Qian Cai <cai@lca.pw> Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008301405000.5954@eggly.anvilsSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
hugetlbfs pages do not participate in memcg: so although they do find most of migrate_page_states() useful, it would be better if they did not call into mem_cgroup_migrate() - where Qian Cai reported that LTP's move_pages12 triggers the warning in Alex Shi's prospective commit "mm/memcg: warning on !memcg after readahead page charged". Signed-off-by: NHugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NJohannes Weiner <hannes@cmpxch.org> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Qian Cai <cai@lca.pw> Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008301359460.5954@eggly.anvilsSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
Patch series "mm: fixes to past from future testing". Here's a set of independent fixes against 5.9-rc2: prompted by testing Alex Shi's "warning on !memcg" and lru_lock series, but I think fit for 5.9 - though maybe only the first for stable. This patch (of 5): In 5.8 some instances of memcg charging in do_swap_page() and unuse_pte() were removed, on the understanding that swap cache is now already charged at those points; but a case was missed, when ksm_might_need_to_copy() has decided it must allocate a substitute page: such pages were never charged. Fix it inside ksm_might_need_to_copy(). This was discovered by Alex Shi's prospective commit "mm/memcg: warning on !memcg after readahead page charged". But there is a another surprise: this also fixes some rarer uncharged PageAnon cases, when KSM is configured in, but has never been activated. ksm_might_need_to_copy()'s anon_vma->root and linear_page_index() check sometimes catches a case which would need to have been copied if KSM were turned on. Or that's my optimistic interpretation (of my own old code), but it leaves some doubt as to whether everything is working as intended there - might it hint at rare anon ptes which rmap cannot find? A question not easily answered: put in the fix for missed memcg charges. Cc; Matthew Wilcox <willy@infradead.org> Fixes: 4c6355b2 ("mm: memcontrol: charge swapin pages on instantiation") Signed-off-by: NHugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Qian Cai <cai@lca.pw> Cc: <stable@vger.kernel.org> [5.8] Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008301343270.5954@eggly.anvils Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008301358020.5954@eggly.anvilsSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 18 9月, 2020 2 次提交
-
-
由 Sunghyun Jin 提交于
Variable populated, which is a member of struct pcpu_chunk, is used as a unit of size of unsigned long. However, size of populated is miscounted. So, I fix this minor part. Fixes: 8ab16c43 ("percpu: change the number of pages marked in the first_chunk pop bitmap") Cc: <stable@vger.kernel.org> # 4.14+ Signed-off-by: NSunghyun Jin <mcsmonk@gmail.com> Signed-off-by: NDennis Zhou <dennis@kernel.org>
-
由 Linus Torvalds 提交于
Commit 2a9127fc ("mm: rewrite wait_on_page_bit_common() logic") made the page locking entirely fair, in that if a waiter came in while the lock was held, the lock would be transferred to the lockers strictly in order. That was intended to finally get rid of the long-reported watchdog failures that involved the page lock under extreme load, where a process could end up waiting essentially forever, as other page lockers stole the lock from under it. It also improved some benchmarks, but it ended up causing huge performance regressions on others, simply because fair lock behavior doesn't end up giving out the lock as aggressively, causing better worst-case latency, but potentially much worse average latencies and throughput. Instead of reverting that change entirely, this introduces a controlled amount of unfairness, with a sysctl knob to tune it if somebody needs to. But the default value should hopefully be good for any normal load, allowing a few rounds of lock stealing, but enforcing the strict ordering before the lock has been stolen too many times. There is also a hint from Matthieu Baerts that the fair page coloring may end up exposing an ABBA deadlock that is hidden by the usual optimistic lock stealing, and while the unfairness doesn't fix the fundamental issue (and I'm still looking at that), it avoids it in practice. The amount of unfairness can be modified by writing a new value to the 'sysctl_page_lock_unfairness' variable (default value of 5, exposed through /proc/sys/vm/page_lock_unfairness), but that is hopefully something we'd use mainly for debugging rather than being necessary for any deep system tuning. This whole issue has exposed just how critical the page lock can be, and how contended it gets under certain locks. And the main contention doesn't really seem to be anything related to IO (which was the origin of this lock), but for things like just verifying that the page file mapping is stable while faulting in the page into a page table. Link: https://lore.kernel.org/linux-fsdevel/ed8442fd-6f54-dd84-cd4a-941e8b7ee603@MichaelLarabel.com/ Link: https://www.phoronix.com/scan.php?page=article&item=linux-50-59&num=1 Link: https://lore.kernel.org/linux-fsdevel/c560a38d-8313-51fb-b1ec-e904bd8836bc@tessares.net/Reported-and-tested-by: NMichael Larabel <Michael@michaellarabel.com> Tested-by: NMatthieu Baerts <matthieu.baerts@tessares.net> Cc: Dave Chinner <david@fromorbit.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Chris Mason <clm@fb.com> Cc: Jan Kara <jack@suse.cz> Cc: Amir Goldstein <amir73il@gmail.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 9月, 2020 12 次提交
-
-
由 David Howells 提交于
collapse_file() in khugepaged passes PAGE_SIZE as the number of pages to be read to page_cache_sync_readahead(). The intent was probably to read a single page. Fix it to use the number of pages to the end of the window instead. Fixes: 99cb0dbd ("mm,thp: add read-only THP support for (non-shmem) FS") Signed-off-by: NDavid Howells <dhowells@redhat.com> Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Acked-by: NSong Liu <songliubraving@fb.com> Acked-by: NYang Shi <shy828301@gmail.com> Acked-by: NPankaj Gupta <pankaj.gupta.linux@gmail.com> Cc: Eric Biggers <ebiggers@google.com> Link: https://lkml.kernel.org/r/20200903140844.14194-2-willy@infradead.orgSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Muchun Song 提交于
There is a race between the assignment of `table->data` and write value to the pointer of `table->data` in the __do_proc_doulongvec_minmax() on the other thread. CPU0: CPU1: proc_sys_write hugetlb_sysctl_handler proc_sys_call_handler hugetlb_sysctl_handler_common hugetlb_sysctl_handler table->data = &tmp; hugetlb_sysctl_handler_common table->data = &tmp; proc_doulongvec_minmax do_proc_doulongvec_minmax sysctl_head_finish __do_proc_doulongvec_minmax unuse_table i = table->data; *i = val; // corrupt CPU1's stack Fix this by duplicating the `table`, and only update the duplicate of it. And introduce a helper of proc_hugetlb_doulongvec_minmax() to simplify the code. The following oops was seen: BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor instruction fetch in kernel mode #PF: error_code(0x0010) - not-present page Code: Bad RIP value. ... Call Trace: ? set_max_huge_pages+0x3da/0x4f0 ? alloc_pool_huge_page+0x150/0x150 ? proc_doulongvec_minmax+0x46/0x60 ? hugetlb_sysctl_handler_common+0x1c7/0x200 ? nr_hugepages_store+0x20/0x20 ? copy_fd_bitmaps+0x170/0x170 ? hugetlb_sysctl_handler+0x1e/0x20 ? proc_sys_call_handler+0x2f1/0x300 ? unregister_sysctl_table+0xb0/0xb0 ? __fd_install+0x78/0x100 ? proc_sys_write+0x14/0x20 ? __vfs_write+0x4d/0x90 ? vfs_write+0xef/0x240 ? ksys_write+0xc0/0x160 ? __ia32_sys_read+0x50/0x50 ? __close_fd+0x129/0x150 ? __x64_sys_write+0x43/0x50 ? do_syscall_64+0x6c/0x200 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: e5ff2159 ("hugetlb: multiple hstates for multiple page sizes") Signed-off-by: NMuchun Song <songmuchun@bytedance.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: Andi Kleen <ak@linux.intel.com> Link: http://lkml.kernel.org/r/20200828031146.43035-1-songmuchun@bytedance.comSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Li Xinhai 提交于
Since commit cf11e85f ("mm: hugetlb: optionally allocate gigantic hugepages using cma"), the gigantic page would be allocated from node which is not the preferred node, although there are pages available from that node. The reason is that the nid parameter has been ignored in alloc_gigantic_page(). Besides, the __GFP_THISNODE also need be checked if user required to alloc only from the preferred node. After this patch, the preferred node is tried first before other allowed nodes, and don't try to allocate from other nodes if __GFP_THISNODE is specified. If user don't specify the preferred node, the current node will be used as preferred node, which makes sure consistent behavior of allocating gigantic and non-gigantic hugetlb page. Fixes: cf11e85f ("mm: hugetlb: optionally allocate gigantic hugepages using cma") Signed-off-by: NLi Xinhai <lixinhai.lxh@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Link: https://lkml.kernel.org/r/20200902025016.697260-1-lixinhai.lxh@gmail.comSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ralph Campbell 提交于
The code to remove a migration PTE and replace it with a device private PTE was not copying the soft dirty bit from the migration entry. This could lead to page contents not being marked dirty when faulting the page back from device private memory. Signed-off-by: NRalph Campbell <rcampbell@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Bharata B Rao <bharata@linux.ibm.com> Link: https://lkml.kernel.org/r/20200831212222.22409-3-rcampbell@nvidia.comSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ralph Campbell 提交于
Patch series "mm/migrate: preserve soft dirty in remove_migration_pte()". I happened to notice this from code inspection after seeing Alistair Popple's patch ("mm/rmap: Fixup copying of soft dirty and uffd ptes"). This patch (of 2): The check for is_zone_device_page() and is_device_private_page() is unnecessary since the latter is sufficient to determine if the page is a device private page. Simplify the code for easier reading. Signed-off-by: NRalph Campbell <rcampbell@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Bharata B Rao <bharata@linux.ibm.com> Link: https://lkml.kernel.org/r/20200831212222.22409-1-rcampbell@nvidia.com Link: https://lkml.kernel.org/r/20200831212222.22409-2-rcampbell@nvidia.comSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alistair Popple 提交于
During memory migration a pte is temporarily replaced with a migration swap pte. Some pte bits from the existing mapping such as the soft-dirty and uffd write-protect bits are preserved by copying these to the temporary migration swap pte. However these bits are not stored at the same location for swap and non-swap ptes. Therefore testing these bits requires using the appropriate helper function for the given pte type. Unfortunately several code locations were found where the wrong helper function is being used to test soft_dirty and uffd_wp bits which leads to them getting incorrectly set or cleared during page-migration. Fix these by using the correct tests based on pte type. Fixes: a5430dda ("mm/migrate: support un-addressable ZONE_DEVICE page in migration") Fixes: 8c3328f1 ("mm/migrate: migrate_vma() unmap page from vma while collecting pages") Fixes: f45ec5ff ("userfaultfd: wp: support swap and page migration") Signed-off-by: NAlistair Popple <alistair@popple.id.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NPeter Xu <peterx@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Alistair Popple <alistair@popple.id.au> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20200825064232.10023-2-alistair@popple.id.auSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alistair Popple 提交于
Commit f45ec5ff ("userfaultfd: wp: support swap and page migration") introduced support for tracking the uffd wp bit during page migration. However the non-swap PTE variant was used to set the flag for zone device private pages which are a type of swap page. This leads to corruption of the swap offset if the original PTE has the uffd_wp flag set. Fixes: f45ec5ff ("userfaultfd: wp: support swap and page migration") Signed-off-by: NAlistair Popple <alistair@popple.id.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NPeter Xu <peterx@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Link: https://lkml.kernel.org/r/20200825064232.10023-1-alistair@popple.id.auSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yang Shi 提交于
The syzbot reported the below use-after-free: BUG: KASAN: use-after-free in madvise_willneed mm/madvise.c:293 [inline] BUG: KASAN: use-after-free in madvise_vma mm/madvise.c:942 [inline] BUG: KASAN: use-after-free in do_madvise.part.0+0x1c8b/0x1cf0 mm/madvise.c:1145 Read of size 8 at addr ffff8880a6163eb0 by task syz-executor.0/9996 CPU: 0 PID: 9996 Comm: syz-executor.0 Not tainted 5.9.0-rc1-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x18f/0x20d lib/dump_stack.c:118 print_address_description.constprop.0.cold+0xae/0x497 mm/kasan/report.c:383 __kasan_report mm/kasan/report.c:513 [inline] kasan_report.cold+0x1f/0x37 mm/kasan/report.c:530 madvise_willneed mm/madvise.c:293 [inline] madvise_vma mm/madvise.c:942 [inline] do_madvise.part.0+0x1c8b/0x1cf0 mm/madvise.c:1145 do_madvise mm/madvise.c:1169 [inline] __do_sys_madvise mm/madvise.c:1171 [inline] __se_sys_madvise mm/madvise.c:1169 [inline] __x64_sys_madvise+0xd9/0x110 mm/madvise.c:1169 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Allocated by task 9992: kmem_cache_alloc+0x138/0x3a0 mm/slab.c:3482 vm_area_alloc+0x1c/0x110 kernel/fork.c:347 mmap_region+0x8e5/0x1780 mm/mmap.c:1743 do_mmap+0xcf9/0x11d0 mm/mmap.c:1545 vm_mmap_pgoff+0x195/0x200 mm/util.c:506 ksys_mmap_pgoff+0x43a/0x560 mm/mmap.c:1596 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Freed by task 9992: kmem_cache_free.part.0+0x67/0x1f0 mm/slab.c:3693 remove_vma+0x132/0x170 mm/mmap.c:184 remove_vma_list mm/mmap.c:2613 [inline] __do_munmap+0x743/0x1170 mm/mmap.c:2869 do_munmap mm/mmap.c:2877 [inline] mmap_region+0x257/0x1780 mm/mmap.c:1716 do_mmap+0xcf9/0x11d0 mm/mmap.c:1545 vm_mmap_pgoff+0x195/0x200 mm/util.c:506 ksys_mmap_pgoff+0x43a/0x560 mm/mmap.c:1596 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 It is because vma is accessed after releasing mmap_lock, but someone else acquired the mmap_lock and the vma is gone. Releasing mmap_lock after accessing vma should fix the problem. Fixes: 692fe624 ("mm: Handle MADV_WILLNEED through vfs_fadvise()") Reported-by: syzbot+b90df26038d1d5d85c97@syzkaller.appspotmail.com Signed-off-by: NYang Shi <shy828301@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NJan Kara <jack@suse.cz> Cc: <stable@vger.kernel.org> [5.4+] Link: https://lkml.kernel.org/r/20200816141204.162624-1-shy828301@gmail.comSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joerg Roedel 提交于
__apply_to_page_range() is also used to change and/or allocate page-table pages in the vmalloc area of the address space. Make sure these changes get synchronized to other page-tables in the system by calling arch_sync_kernel_mappings() when necessary. The impact appears limited to x86-32, where apply_to_page_range may miss updating the PMD. That leads to explosions in drivers like BUG: unable to handle page fault for address: fe036000 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page *pde = 00000000 Oops: 0002 [#1] SMP CPU: 3 PID: 1300 Comm: gem_concurrent_ Not tainted 5.9.0-rc1+ #16 Hardware name: /NUC6i3SYB, BIOS SYSKLi35.86A.0024.2015.1027.2142 10/27/2015 EIP: __execlists_context_alloc+0x132/0x2d0 [i915] Code: 31 d2 89 f0 e8 2f 55 02 00 89 45 e8 3d 00 f0 ff ff 0f 87 11 01 00 00 8b 4d e8 03 4b 30 b8 5a 5a 5a 5a ba 01 00 00 00 8d 79 04 <c7> 01 5a 5a 5a 5a c7 81 fc 0f 00 00 5a 5a 5a 5a 83 e7 fc 29 f9 81 EAX: 5a5a5a5a EBX: f60ca000 ECX: fe036000 EDX: 00000001 ESI: f43b7340 EDI: fe036004 EBP: f6389cb8 ESP: f6389c9c DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 EFLAGS: 00010286 CR0: 80050033 CR2: fe036000 CR3: 2d361000 CR4: 001506d0 DR0: 00000000 DR1: 00000000 DR2: 00000000 DR3: 00000000 DR6: fffe0ff0 DR7: 00000400 Call Trace: execlists_context_alloc+0x10/0x20 [i915] intel_context_alloc_state+0x3f/0x70 [i915] __intel_context_do_pin+0x117/0x170 [i915] i915_gem_do_execbuffer+0xcc7/0x2500 [i915] i915_gem_execbuffer2_ioctl+0xcd/0x1f0 [i915] drm_ioctl_kernel+0x8f/0xd0 drm_ioctl+0x223/0x3d0 __ia32_sys_ioctl+0x1ab/0x760 __do_fast_syscall_32+0x3f/0x70 do_fast_syscall_32+0x29/0x60 do_SYSENTER_32+0x15/0x20 entry_SYSENTER_32+0x9f/0xf2 EIP: 0xb7f28559 Code: 03 74 c0 01 10 05 03 74 b8 01 10 06 03 74 b4 01 10 07 03 74 b0 01 10 08 03 74 d8 01 00 00 00 00 00 51 52 55 89 e5 0f 34 cd 80 <5d> 5a 59 c3 90 90 90 90 8d 76 00 58 b8 77 00 00 00 cd 80 90 8d 76 EAX: ffffffda EBX: 00000005 ECX: c0406469 EDX: bf95556c ESI: b7e68000 EDI: c0406469 EBP: 00000005 ESP: bf9554d8 DS: 007b ES: 007b FS: 0000 GS: 0033 SS: 007b EFLAGS: 00000296 Modules linked in: i915 x86_pkg_temp_thermal intel_powerclamp crc32_pclmul crc32c_intel intel_cstate intel_uncore intel_gtt drm_kms_helper intel_pch_thermal video button autofs4 i2c_i801 i2c_smbus fan CR2: 00000000fe036000 It looks like kasan, xen and i915 are vulnerable. Actual impact is "on thinkpad X60 in 5.9-rc1, screen starts blinking after 30-or-so minutes, and machine is unusable" [sfr@canb.auug.org.au: ARCH_PAGE_TABLE_SYNC_MASK needs vmalloc.h] Link: https://lkml.kernel.org/r/20200825172508.16800a4f@canb.auug.org.au [chris@chris-wilson.co.uk: changelog addition] [pavel@ucw.cz: changelog addition] Fixes: 2ba3e694 ("mm/vmalloc: track which page-table levels were modified") Fixes: 86cf69f1 ("x86/mm/32: implement arch_sync_kernel_mappings()") Signed-off-by: NJoerg Roedel <jroedel@suse.de> Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Tested-by: Chris Wilson <chris@chris-wilson.co.uk> [x86-32] Tested-by: NPavel Machek <pavel@ucw.cz> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: <stable@vger.kernel.org> [5.8+] Link: https://lkml.kernel.org/r/20200821123746.16904-1-joro@8bytes.orgSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Eugeniu Rosca 提交于
Commit 52f23478 ("mm/slub.c: fix corrupted freechain in deactivate_slab()") suffered an update when picked up from LKML [1]. Specifically, relocating 'freelist = NULL' into 'freelist_corrupted()' created a no-op statement. Fix it by sticking to the behavior intended in the original patch [1]. In addition, make freelist_corrupted() immune to passing NULL instead of &freelist. The issue has been spotted via static analysis and code review. [1] https://lore.kernel.org/linux-mm/20200331031450.12182-1-dongli.zhang@oracle.com/ Fixes: 52f23478 ("mm/slub.c: fix corrupted freechain in deactivate_slab()") Signed-off-by: NEugeniu Rosca <erosca@de.adit-jv.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Dongli Zhang <dongli.zhang@oracle.com> Cc: Joe Jin <joe.jin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20200824130643.10291-1-erosca@de.adit-jv.comSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Xunlei Pang 提交于
We've met softlockup with "CONFIG_PREEMPT_NONE=y", when the target memcg doesn't have any reclaimable memory. It can be easily reproduced as below: watchdog: BUG: soft lockup - CPU#0 stuck for 111s![memcg_test:2204] CPU: 0 PID: 2204 Comm: memcg_test Not tainted 5.9.0-rc2+ #12 Call Trace: shrink_lruvec+0x49f/0x640 shrink_node+0x2a6/0x6f0 do_try_to_free_pages+0xe9/0x3e0 try_to_free_mem_cgroup_pages+0xef/0x1f0 try_charge+0x2c1/0x750 mem_cgroup_charge+0xd7/0x240 __add_to_page_cache_locked+0x2fd/0x370 add_to_page_cache_lru+0x4a/0xc0 pagecache_get_page+0x10b/0x2f0 filemap_fault+0x661/0xad0 ext4_filemap_fault+0x2c/0x40 __do_fault+0x4d/0xf9 handle_mm_fault+0x1080/0x1790 It only happens on our 1-vcpu instances, because there's no chance for oom reaper to run to reclaim the to-be-killed process. Add a cond_resched() at the upper shrink_node_memcgs() to solve this issue, this will mean that we will get a scheduling point for each memcg in the reclaimed hierarchy without any dependency on the reclaimable memory in that memcg thus making it more predictable. Suggested-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NXunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Acked-by: NChris Down <chris@chrisdown.name> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Link: http://lkml.kernel.org/r/1598495549-67324-1-git-send-email-xlpang@linux.alibaba.comSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
syzbot has reported an use-after-free in the uncharge_batch path BUG: KASAN: use-after-free in instrument_atomic_write include/linux/instrumented.h:71 [inline] BUG: KASAN: use-after-free in atomic64_sub_return include/asm-generic/atomic-instrumented.h:970 [inline] BUG: KASAN: use-after-free in atomic_long_sub_return include/asm-generic/atomic-long.h:113 [inline] BUG: KASAN: use-after-free in page_counter_cancel mm/page_counter.c:54 [inline] BUG: KASAN: use-after-free in page_counter_uncharge+0x3d/0xc0 mm/page_counter.c:155 Write of size 8 at addr ffff8880371c0148 by task syz-executor.0/9304 CPU: 0 PID: 9304 Comm: syz-executor.0 Not tainted 5.8.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1f0/0x31e lib/dump_stack.c:118 print_address_description+0x66/0x620 mm/kasan/report.c:383 __kasan_report mm/kasan/report.c:513 [inline] kasan_report+0x132/0x1d0 mm/kasan/report.c:530 check_memory_region_inline mm/kasan/generic.c:183 [inline] check_memory_region+0x2b5/0x2f0 mm/kasan/generic.c:192 instrument_atomic_write include/linux/instrumented.h:71 [inline] atomic64_sub_return include/asm-generic/atomic-instrumented.h:970 [inline] atomic_long_sub_return include/asm-generic/atomic-long.h:113 [inline] page_counter_cancel mm/page_counter.c:54 [inline] page_counter_uncharge+0x3d/0xc0 mm/page_counter.c:155 uncharge_batch+0x6c/0x350 mm/memcontrol.c:6764 uncharge_page+0x115/0x430 mm/memcontrol.c:6796 uncharge_list mm/memcontrol.c:6835 [inline] mem_cgroup_uncharge_list+0x70/0xe0 mm/memcontrol.c:6877 release_pages+0x13a2/0x1550 mm/swap.c:911 tlb_batch_pages_flush mm/mmu_gather.c:49 [inline] tlb_flush_mmu_free mm/mmu_gather.c:242 [inline] tlb_flush_mmu+0x780/0x910 mm/mmu_gather.c:249 tlb_finish_mmu+0xcb/0x200 mm/mmu_gather.c:328 exit_mmap+0x296/0x550 mm/mmap.c:3185 __mmput+0x113/0x370 kernel/fork.c:1076 exit_mm+0x4cd/0x550 kernel/exit.c:483 do_exit+0x576/0x1f20 kernel/exit.c:793 do_group_exit+0x161/0x2d0 kernel/exit.c:903 get_signal+0x139b/0x1d30 kernel/signal.c:2743 arch_do_signal+0x33/0x610 arch/x86/kernel/signal.c:811 exit_to_user_mode_loop kernel/entry/common.c:135 [inline] exit_to_user_mode_prepare+0x8d/0x1b0 kernel/entry/common.c:166 syscall_exit_to_user_mode+0x5e/0x1a0 kernel/entry/common.c:241 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Commit 1a3e1f40 ("mm: memcontrol: decouple reference counting from page accounting") reworked the memcg lifetime to be bound the the struct page rather than charges. It also removed the css_put_many from uncharge_batch and that is causing the above splat. uncharge_batch() is supposed to uncharge accumulated charges for all pages freed from the same memcg. The queuing is done by uncharge_page which however drops the memcg reference after it adds charges to the batch. If the current page happens to be the last one holding the reference for its memcg then the memcg is OK to go and the next page to be freed will trigger batched uncharge which needs to access the memcg which is gone already. Fix the issue by taking a reference for the memcg in the current batch. Fixes: 1a3e1f40 ("mm: memcontrol: decouple reference counting from page accounting") Reported-by: syzbot+b305848212deec86eabe@syzkaller.appspotmail.com Reported-by: syzbot+b5ea6fb6f139c8b9482b@syzkaller.appspotmail.com Signed-off-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Hugh Dickins <hughd@google.com> Link: https://lkml.kernel.org/r/20200820090341.GC5033@dhcp22.suse.czSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 05 9月, 2020 4 次提交
-
-
由 Peter Xu 提交于
This accounts for wp_page_reuse() case, where we reused a page for COW. Signed-off-by: NPeter Xu <peterx@redhat.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Peter Xu 提交于
With the more strict (but greatly simplified) page reuse logic in do_wp_page(), we can safely go back to the world where cow is not enforced with writes. This essentially reverts commit 17839856 ("gup: document and work around 'COW can break either way' issue"). There are some context differences due to some changes later on around it: 2170ecfa ("drm/i915: convert get_user_pages() --> pin_user_pages()", 2020-06-03) 376a34ef ("mm/gup: refactor and de-duplicate gup_fast() code", 2020-06-03) Some lines moved back and forth with those, but this revert patch should have striped out and covered all the enforced cow bits anyways. Suggested-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NPeter Xu <peterx@redhat.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Peter Xu 提交于
Remove the function as the last reference has gone away with the do_wp_page() changes. Signed-off-by: NPeter Xu <peterx@redhat.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Linus Torvalds 提交于
How about we just make sure we're the only possible valid user fo the page before we bother to reuse it? Simplify, simplify, simplify. And get rid of the nasty serialization on the page lock at the same time. [peterx: add subject prefix] Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NPeter Xu <peterx@redhat.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 04 9月, 2020 2 次提交
-
-
由 Roger Pau Monne 提交于
This is in preparation for the logic behind MEMORY_DEVICE_DEVDAX also being used by non DAX devices. No functional change intended. Signed-off-by: NRoger Pau Monné <roger.pau@citrix.com> Reviewed-by: NIra Weiny <ira.weiny@intel.com> Acked-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NPankaj Gupta <pankaj.gupta.linux@gmail.com> Link: https://lore.kernel.org/r/20200901083326.21264-3-roger.pau@citrix.comSigned-off-by: NJuergen Gross <jgross@suse.com>
-
由 Dave Hansen 提交于
Gate pages were missed when converting from get to pin_user_pages(). This can lead to refcount imbalances. This is reliably and quickly reproducible running the x86 selftests when vsyscall=emulate is enabled (the default). Fix by using try_grab_page() with appropriate flags passed. The long story: Today, pin_user_pages() and get_user_pages() are similar interfaces for manipulating page reference counts. However, "pins" use a "bias" value and manipulate the actual reference count by 1024 instead of 1 used by plain "gets". That means that pin_user_pages() must be matched with unpin_user_pages() and can't be mixed with a plain put_user_pages() or put_page(). Enter gate pages, like the vsyscall page. They are pages usually in the kernel image, but which are mapped to userspace. Userspace is allowed access to them, including interfaces using get/pin_user_pages(). The refcount of these kernel pages is manipulated just like a normal user page on the get/pin side so that the put/unpin side can work the same for normal user pages or gate pages. get_gate_page() uses try_get_page() which only bumps the refcount by 1, not 1024, even if called in the pin_user_pages() path. If someone pins a gate page, this happens: pin_user_pages() get_gate_page() try_get_page() // bump refcount +1 ... some time later unpin_user_pages() page_ref_sub_and_test(page, 1024)) ... and boom, we get a refcount off by 1023. This is reliably and quickly reproducible running the x86 selftests when booted with vsyscall=emulate (the default). The selftests use ptrace(), but I suspect anything using pin_user_pages() on gate pages could hit this. To fix it, simply use try_grab_page() instead of try_get_page(), and pass 'gup_flags' in so that FOLL_PIN can be respected. This bug traces back to the very beginning of the FOLL_PIN support in commit 3faa52c0 ("mm/gup: track FOLL_PIN pages"), which showed up in the 5.7 release. Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com> Fixes: 3faa52c0 ("mm/gup: track FOLL_PIN pages") Reported-by: NPeter Zijlstra <peterz@infradead.org> Reviewed-by: NJohn Hubbard <jhubbard@nvidia.com> Acked-by: NAndy Lutomirski <luto@kernel.org> Cc: x86@kernel.org Cc: Jann Horn <jannh@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 24 8月, 2020 1 次提交
-
-
由 Shawn Anastasio 提交于
This reverts commit 5c9fa16e. Since PROT_SAO can still be useful for certain classes of software, reintroduce it. Concerns about guest migration for LPARs using SAO will be addressed next. Signed-off-by: NShawn Anastasio <shawn@anastas.io> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200821185558.35561-2-shawn@anastas.io
-
- 22 8月, 2020 6 次提交
-
-
由 Charan Teja Reddy 提交于
The following race is observed with the repeated online, offline and a delay between two successive online of memory blocks of movable zone. P1 P2 Online the first memory block in the movable zone. The pcp struct values are initialized to default values,i.e., pcp->high = 0 & pcp->batch = 1. Allocate the pages from the movable zone. Try to Online the second memory block in the movable zone thus it entered the online_pages() but yet to call zone_pcp_update(). This process is entered into the exit path thus it tries to release the order-0 pages to pcp lists through free_unref_page_commit(). As pcp->high = 0, pcp->count = 1 proceed to call the function free_pcppages_bulk(). Update the pcp values thus the new pcp values are like, say, pcp->high = 378, pcp->batch = 63. Read the pcp's batch value using READ_ONCE() and pass the same to free_pcppages_bulk(), pcp values passed here are, batch = 63, count = 1. Since num of pages in the pcp lists are less than ->batch, then it will stuck in while(list_empty(list)) loop with interrupts disabled thus a core hung. Avoid this by ensuring free_pcppages_bulk() is called with proper count of pcp list pages. The mentioned race is some what easily reproducible without [1] because pcp's are not updated for the first memory block online and thus there is a enough race window for P2 between alloc+free and pcp struct values update through onlining of second memory block. With [1], the race still exists but it is very narrow as we update the pcp struct values for the first memory block online itself. This is not limited to the movable zone, it could also happen in cases with the normal zone (e.g., hotplug to a node that only has DMA memory, or no other memory yet). [1]: https://patchwork.kernel.org/patch/11696389/ Fixes: 5f8dcc21 ("page-allocator: split per-cpu list into one-list-per-migrate-type") Signed-off-by: NCharan Teja Reddy <charante@codeaurora.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Acked-by: NDavid Hildenbrand <david@redhat.com> Acked-by: NDavid Rientjes <rientjes@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: <stable@vger.kernel.org> [2.6+] Link: http://lkml.kernel.org/r/1597150703-19003-1-git-send-email-charante@codeaurora.orgSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Doug Berger 提交于
The lowmem_reserve arrays provide a means of applying pressure against allocations from lower zones that were targeted at higher zones. Its values are a function of the number of pages managed by higher zones and are assigned by a call to the setup_per_zone_lowmem_reserve() function. The function is initially called at boot time by the function init_per_zone_wmark_min() and may be called later by accesses of the /proc/sys/vm/lowmem_reserve_ratio sysctl file. The function init_per_zone_wmark_min() was moved up from a module_init to a core_initcall to resolve a sequencing issue with khugepaged. Unfortunately this created a sequencing issue with CMA page accounting. The CMA pages are added to the managed page count of a zone when cma_init_reserved_areas() is called at boot also as a core_initcall. This makes it uncertain whether the CMA pages will be added to the managed page counts of their zones before or after the call to init_per_zone_wmark_min() as it becomes dependent on link order. With the current link order the pages are added to the managed count after the lowmem_reserve arrays are initialized at boot. This means the lowmem_reserve values at boot may be lower than the values used later if /proc/sys/vm/lowmem_reserve_ratio is accessed even if the ratio values are unchanged. In many cases the difference is not significant, but for example an ARM platform with 1GB of memory and the following memory layout cma: Reserved 256 MiB at 0x0000000030000000 Zone ranges: DMA [mem 0x0000000000000000-0x000000002fffffff] Normal empty HighMem [mem 0x0000000030000000-0x000000003fffffff] would result in 0 lowmem_reserve for the DMA zone. This would allow userspace to deplete the DMA zone easily. Funnily enough $ cat /proc/sys/vm/lowmem_reserve_ratio would fix up the situation because as a side effect it forces setup_per_zone_lowmem_reserve. This commit breaks the link order dependency by invoking init_per_zone_wmark_min() as a postcore_initcall so that the CMA pages have the chance to be properly accounted in their zone(s) and allowing the lowmem_reserve arrays to receive consistent values. Fixes: bc22af74 ("mm: update min_free_kbytes from khugepaged after core initialization") Signed-off-by: NDoug Berger <opendmb@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Jason Baron <jbaron@akamai.com> Cc: David Rientjes <rientjes@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: <stable@vger.kernel.org> Link: http://lkml.kernel.org/r/1597423766-27849-1-git-send-email-opendmb@gmail.comSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Leon Romanovsky 提交于
The compilation with CONFIG_DEBUG_RODATA_TEST set produces the following warning due to the missing include. mm/rodata_test.c:15:6: warning: no previous prototype for 'rodata_test' [-Wmissing-prototypes] 15 | void rodata_test(void) | ^~~~~~~~~~~ Fixes: 2959a5f7 ("mm: add arch-independent testcases for RODATA") Signed-off-by: NLeon Romanovsky <leonro@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NAnshuman Khandual <anshuman.khandual@arm.com> Link: https://lkml.kernel.org/r/20200819080026.918134-1-leon@kernel.orgSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aneesh Kumar K.V 提交于
Like zap_pte_range add cond_resched so that we can avoid softlockups as reported below. On non-preemptible kernel with large I/O map region (like the one we get when using persistent memory with sector mode), an unmap of the namespace can report below softlockups. 22724.027334] watchdog: BUG: soft lockup - CPU#49 stuck for 23s! [ndctl:50777] NIP [c0000000000dc224] plpar_hcall+0x38/0x58 LR [c0000000000d8898] pSeries_lpar_hpte_invalidate+0x68/0xb0 Call Trace: flush_hash_page+0x114/0x200 hpte_need_flush+0x2dc/0x540 vunmap_page_range+0x538/0x6f0 free_unmap_vmap_area+0x30/0x70 remove_vm_area+0xfc/0x140 __vunmap+0x68/0x270 __iounmap.part.0+0x34/0x60 memunmap+0x54/0x70 release_nodes+0x28c/0x300 device_release_driver_internal+0x16c/0x280 unbind_store+0x124/0x170 drv_attr_store+0x44/0x60 sysfs_kf_write+0x64/0x90 kernfs_fop_write+0x1b0/0x290 __vfs_write+0x3c/0x70 vfs_write+0xd8/0x260 ksys_write+0xdc/0x130 system_call+0x5c/0x70 Reported-by: NHarish Sriram <harish@linux.ibm.com> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: <stable@vger.kernel.org> Link: http://lkml.kernel.org/r/20200807075933.310240-1-aneesh.kumar@linux.ibm.comSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
syzbot crashes on the VM_BUG_ON_MM(khugepaged_test_exit(mm), mm) in __khugepaged_enter(): yes, when one thread is about to dump core, has set core_state, and is waiting for others, another might do something calling __khugepaged_enter(), which now crashes because I lumped the core_state test (known as "mmget_still_valid") into khugepaged_test_exit(). I still think it's best to lump them together, so just in this exceptional case, check mm->mm_users directly instead of khugepaged_test_exit(). Fixes: bbe98f9c ("khugepaged: khugepaged_test_exit() check mmget_still_valid()") Reported-by: Nsyzbot <syzkaller@googlegroups.com> Signed-off-by: NHugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Acked-by: NYang Shi <shy828301@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Song Liu <songliubraving@fb.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Eric Dumazet <edumazet@google.com> Cc: <stable@vger.kernel.org> [4.8+] Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008141503370.18085@eggly.anvilsSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Xu Wang 提交于
Replace a comma between expression statements by a semicolon. Fixes: faced7e0 ("mm: hugetlb controller for cgroups v2") Signed-off-by: NXu Wang <vulab@iscas.ac.cn> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Tejun Heo <tj@kernel.org> Cc: Giuseppe Scrivano <gscrivan@redhat.com> Link: http://lkml.kernel.org/r/20200818064333.21759-1-vulab@iscas.ac.cnSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 19 8月, 2020 1 次提交
-
-
由 Yang Shi 提交于
Recently we found regression when running will_it_scale/page_fault3 test on ARM64. Over 70% down for the multi processes cases and over 20% down for the multi threads cases. It turns out the regression is caused by commit 89b15332 ("mm: drop mmap_sem before calling balance_dirty_pages() in write fault"). The test mmaps a memory size file then write to the mapping, this would make all memory dirty and trigger dirty pages throttle, that upstream commit would release mmap_sem then retry the page fault. The retried page fault would see correct PTEs installed then just fall through to spurious TLB flush. The regression is caused by the excessive spurious TLB flush. It is fine on x86 since x86's spurious TLB flush is no-op. We could just skip the spurious TLB flush to mitigate the regression. Suggested-by: NLinus Torvalds <torvalds@linux-foundation.org> Reported-by: NXu Yu <xuyu@linux.alibaba.com> Debugged-by: NXu Yu <xuyu@linux.alibaba.com> Tested-by: NXu Yu <xuyu@linux.alibaba.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: <stable@vger.kernel.org> Signed-off-by: NYang Shi <shy828301@gmail.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 8月, 2020 9 次提交
-
-
由 Qian Cai 提交于
Read to lru_add_pvec->nr could be interrupted and then write to the same variable. The write has local interrupt disabled, but the plain reads result in data races. However, it is unlikely the compilers could do much damage here given that lru_add_pvec->nr is a "unsigned char" and there is an existing compiler barrier. Thus, annotate the reads using the data_race() macro. The data races were reported by KCSAN, BUG: KCSAN: data-race in lru_add_drain_cpu / rotate_reclaimable_page write to 0xffff9291ebcb8a40 of 1 bytes by interrupt on cpu 23: rotate_reclaimable_page+0x2df/0x490 pagevec_add at include/linux/pagevec.h:81 (inlined by) rotate_reclaimable_page at mm/swap.c:259 end_page_writeback+0x1b5/0x2b0 end_swap_bio_write+0x1d0/0x280 bio_endio+0x297/0x560 dec_pending+0x218/0x430 [dm_mod] clone_endio+0xe4/0x2c0 [dm_mod] bio_endio+0x297/0x560 blk_update_request+0x201/0x920 scsi_end_request+0x6b/0x4a0 scsi_io_completion+0xb7/0x7e0 scsi_finish_command+0x1ed/0x2a0 scsi_softirq_done+0x1c9/0x1d0 blk_done_softirq+0x181/0x1d0 __do_softirq+0xd9/0x57c irq_exit+0xa2/0xc0 do_IRQ+0x8b/0x190 ret_from_intr+0x0/0x42 delay_tsc+0x46/0x80 __const_udelay+0x3c/0x40 __udelay+0x10/0x20 kcsan_setup_watchpoint+0x202/0x3a0 __tsan_read1+0xc2/0x100 lru_add_drain_cpu+0xb8/0x3f0 lru_add_drain+0x25/0x40 shrink_active_list+0xe1/0xc80 shrink_lruvec+0x766/0xb70 shrink_node+0x2d6/0xca0 do_try_to_free_pages+0x1f7/0x9a0 try_to_free_pages+0x252/0x5b0 __alloc_pages_slowpath+0x458/0x1290 __alloc_pages_nodemask+0x3bb/0x450 alloc_pages_vma+0x8a/0x2c0 do_anonymous_page+0x16e/0x6f0 __handle_mm_fault+0xcd5/0xd40 handle_mm_fault+0xfc/0x2f0 do_page_fault+0x263/0x6f9 page_fault+0x34/0x40 read to 0xffff9291ebcb8a40 of 1 bytes by task 37761 on cpu 23: lru_add_drain_cpu+0xb8/0x3f0 lru_add_drain_cpu at mm/swap.c:602 lru_add_drain+0x25/0x40 shrink_active_list+0xe1/0xc80 shrink_lruvec+0x766/0xb70 shrink_node+0x2d6/0xca0 do_try_to_free_pages+0x1f7/0x9a0 try_to_free_pages+0x252/0x5b0 __alloc_pages_slowpath+0x458/0x1290 __alloc_pages_nodemask+0x3bb/0x450 alloc_pages_vma+0x8a/0x2c0 do_anonymous_page+0x16e/0x6f0 __handle_mm_fault+0xcd5/0xd40 handle_mm_fault+0xfc/0x2f0 do_page_fault+0x263/0x6f9 page_fault+0x34/0x40 2 locks held by oom02/37761: #0: ffff9281e5928808 (&mm->mmap_sem#2){++++}, at: do_page_fault #1: ffffffffb3ade380 (fs_reclaim){+.+.}, at: fs_reclaim_acquire.part irq event stamp: 1949217 trace_hardirqs_on_thunk+0x1a/0x1c __do_softirq+0x2e7/0x57c __do_softirq+0x34c/0x57c irq_exit+0xa2/0xc0 Reported by Kernel Concurrency Sanitizer on: CPU: 23 PID: 37761 Comm: oom02 Not tainted 5.6.0-rc3-next-20200226+ #6 Hardware name: HP ProLiant BL660c Gen9, BIOS I38 10/17/2018 Signed-off-by: NQian Cai <cai@lca.pw> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Acked-by: NMarco Elver <elver@google.com> Link: http://lkml.kernel.org/r/20200228044018.1263-1-cai@lca.pwSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Qian Cai 提交于
mm->tlb_flush_batched could be accessed concurrently as noticed by KCSAN, BUG: KCSAN: data-race in flush_tlb_batched_pending / try_to_unmap_one write to 0xffff93f754880bd0 of 1 bytes by task 822 on cpu 6: try_to_unmap_one+0x59a/0x1ab0 set_tlb_ubc_flush_pending at mm/rmap.c:635 (inlined by) try_to_unmap_one at mm/rmap.c:1538 rmap_walk_anon+0x296/0x650 rmap_walk+0xdf/0x100 try_to_unmap+0x18a/0x2f0 shrink_page_list+0xef6/0x2870 shrink_inactive_list+0x316/0x880 shrink_lruvec+0x8dc/0x1380 shrink_node+0x317/0xd80 balance_pgdat+0x652/0xd90 kswapd+0x396/0x8d0 kthread+0x1e0/0x200 ret_from_fork+0x27/0x50 read to 0xffff93f754880bd0 of 1 bytes by task 6364 on cpu 4: flush_tlb_batched_pending+0x29/0x90 flush_tlb_batched_pending at mm/rmap.c:682 change_p4d_range+0x5dd/0x1030 change_pte_range at mm/mprotect.c:44 (inlined by) change_pmd_range at mm/mprotect.c:212 (inlined by) change_pud_range at mm/mprotect.c:240 (inlined by) change_p4d_range at mm/mprotect.c:260 change_protection+0x222/0x310 change_prot_numa+0x3e/0x60 task_numa_work+0x219/0x350 task_work_run+0xed/0x140 prepare_exit_to_usermode+0x2cc/0x2e0 ret_from_intr+0x32/0x42 Reported by Kernel Concurrency Sanitizer on: CPU: 4 PID: 6364 Comm: mtest01 Tainted: G W L 5.5.0-next-20200210+ #5 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019 flush_tlb_batched_pending() is under PTL but the write is not, but mm->tlb_flush_batched is only a bool type, so the value is unlikely to be shattered. Thus, mark it as an intentional data race by using the data race macro. Signed-off-by: NQian Cai <cai@lca.pw> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Marco Elver <elver@google.com> Link: http://lkml.kernel.org/r/1581450783-8262-1-git-send-email-cai@lca.pwSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Qian Cai 提交于
mempool_t pool.curr_nr could be accessed concurrently as noticed by KCSAN, BUG: KCSAN: data-race in mempool_free / remove_element write to 0xffffffffa937638c of 4 bytes by task 6359 on cpu 113: remove_element+0x4a/0x1c0 remove_element at mm/mempool.c:132 mempool_alloc+0x102/0x210 (inlined by) mempool_alloc at mm/mempool.c:399 bio_alloc_bioset+0x106/0x2c0 get_swap_bio+0x49/0x230 __swap_writepage+0x680/0xc30 swap_writepage+0x9c/0xf0 pageout+0x33e/0xae0 shrink_page_list+0x1f57/0x2870 shrink_inactive_list+0x316/0x880 shrink_lruvec+0x8dc/0x1380 shrink_node+0x317/0xd80 do_try_to_free_pages+0x1f7/0xa10 try_to_free_pages+0x26c/0x5e0 __alloc_pages_slowpath+0x458/0x1290 <snip> read to 0xffffffffa937638c of 4 bytes by interrupt on cpu 64: mempool_free+0x3e/0x150 mempool_free at mm/mempool.c:492 bio_free+0x192/0x280 bio_put+0x91/0xd0 end_swap_bio_write+0x1d8/0x280 bio_endio+0x2c2/0x5b0 dec_pending+0x22b/0x440 [dm_mod] clone_endio+0xe4/0x2c0 [dm_mod] bio_endio+0x2c2/0x5b0 blk_update_request+0x217/0x940 scsi_end_request+0x6b/0x4d0 scsi_io_completion+0xb7/0x7e0 scsi_finish_command+0x223/0x310 scsi_softirq_done+0x1d5/0x210 blk_mq_complete_request+0x224/0x250 scsi_mq_done+0xc2/0x250 pqi_raid_io_complete+0x5a/0x70 [smartpqi] pqi_irq_handler+0x150/0x1410 [smartpqi] __handle_irq_event_percpu+0x90/0x540 handle_irq_event_percpu+0x49/0xd0 handle_irq_event+0x85/0xca handle_edge_irq+0x13f/0x3e0 do_IRQ+0x86/0x190 <snip> Since the write is under pool->lock but the read is done as lockless. Even though the commit 5b990546 ("mempool: fix and document synchronization and memory barrier usage") introduced the smp_wmb() and smp_rmb() pair to improve the situation, it is adequate to protect it from data races which could lead to a logic bug, so fix it by adding READ_ONCE() for the read. Signed-off-by: NQian Cai <cai@lca.pw> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Marco Elver <elver@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/1581446384-2131-1-git-send-email-cai@lca.pwSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Qian Cai 提交于
struct list_lru_one l.nr_items could be accessed concurrently as noticed by KCSAN, BUG: KCSAN: data-race in list_lru_count_one / list_lru_isolate_move write to 0xffffa102789c4510 of 8 bytes by task 823 on cpu 39: list_lru_isolate_move+0xf9/0x130 list_lru_isolate_move at mm/list_lru.c:180 inode_lru_isolate+0x12b/0x2a0 __list_lru_walk_one+0x122/0x3d0 list_lru_walk_one+0x75/0xa0 prune_icache_sb+0x8b/0xc0 super_cache_scan+0x1b8/0x250 do_shrink_slab+0x256/0x6d0 shrink_slab+0x41b/0x4a0 shrink_node+0x35c/0xd80 balance_pgdat+0x652/0xd90 kswapd+0x396/0x8d0 kthread+0x1e0/0x200 ret_from_fork+0x27/0x50 read to 0xffffa102789c4510 of 8 bytes by task 6345 on cpu 56: list_lru_count_one+0x116/0x2f0 list_lru_count_one at mm/list_lru.c:193 super_cache_count+0xe8/0x170 do_shrink_slab+0x95/0x6d0 shrink_slab+0x41b/0x4a0 shrink_node+0x35c/0xd80 do_try_to_free_pages+0x1f7/0xa10 try_to_free_pages+0x26c/0x5e0 __alloc_pages_slowpath+0x458/0x1290 __alloc_pages_nodemask+0x3bb/0x450 alloc_pages_vma+0x8a/0x2c0 do_anonymous_page+0x170/0x700 __handle_mm_fault+0xc9f/0xd00 handle_mm_fault+0xfc/0x2f0 do_page_fault+0x263/0x6f9 page_fault+0x34/0x40 Reported by Kernel Concurrency Sanitizer on: CPU: 56 PID: 6345 Comm: oom01 Tainted: G W L 5.5.0-next-20200205+ #4 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019 A shattered l.nr_items could affect the shrinker behaviour due to a data race. Fix it by adding READ_ONCE() for the read. Since the writes are aligned and up to word-size, assume those are safe from data races to avoid readability issues of writing WRITE_ONCE(var, var + val). Signed-off-by: NQian Cai <cai@lca.pw> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Marco Elver <elver@google.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Link: http://lkml.kernel.org/r/1581114679-5488-1-git-send-email-cai@lca.pwSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Qian Cai 提交于
Commit 3e32cb2e ("mm: memcontrol: lockless page counters") could had memcg->memsw->watermark and memcg->memsw->failcnt been accessed concurrently as reported by KCSAN, BUG: KCSAN: data-race in page_counter_try_charge / page_counter_try_charge read to 0xffff8fb18c4cd190 of 8 bytes by task 1081 on cpu 59: page_counter_try_charge+0x4d/0x150 mm/page_counter.c:138 try_charge+0x131/0xd50 mm/memcontrol.c:2405 __memcg_kmem_charge_memcg+0x58/0x140 __memcg_kmem_charge+0xcc/0x280 __alloc_pages_nodemask+0x1e1/0x450 alloc_pages_current+0xa6/0x120 pte_alloc_one+0x17/0xd0 __pte_alloc+0x3a/0x1f0 copy_p4d_range+0xc36/0x1990 copy_page_range+0x21d/0x360 dup_mmap+0x5f5/0x7a0 dup_mm+0xa2/0x240 copy_process+0x1b3f/0x3460 _do_fork+0xaa/0xa20 __x64_sys_clone+0x13b/0x170 do_syscall_64+0x91/0xb47 entry_SYSCALL_64_after_hwframe+0x49/0xbe write to 0xffff8fb18c4cd190 of 8 bytes by task 1153 on cpu 120: page_counter_try_charge+0x5b/0x150 mm/page_counter.c:139 try_charge+0x131/0xd50 mm/memcontrol.c:2405 mem_cgroup_try_charge+0x159/0x460 mem_cgroup_try_charge_delay+0x3d/0xa0 wp_page_copy+0x14d/0x930 do_wp_page+0x107/0x7b0 __handle_mm_fault+0xce6/0xd40 handle_mm_fault+0xfc/0x2f0 do_page_fault+0x263/0x6f9 page_fault+0x34/0x40 BUG: KCSAN: data-race in page_counter_try_charge / page_counter_try_charge write to 0xffff88809bbf2158 of 8 bytes by task 11782 on cpu 0: page_counter_try_charge+0x100/0x170 mm/page_counter.c:129 try_charge+0x185/0xbf0 mm/memcontrol.c:2405 __memcg_kmem_charge_memcg+0x4a/0xe0 mm/memcontrol.c:2837 __memcg_kmem_charge+0xcf/0x1b0 mm/memcontrol.c:2877 __alloc_pages_nodemask+0x26c/0x310 mm/page_alloc.c:4780 read to 0xffff88809bbf2158 of 8 bytes by task 11814 on cpu 1: page_counter_try_charge+0xef/0x170 mm/page_counter.c:129 try_charge+0x185/0xbf0 mm/memcontrol.c:2405 __memcg_kmem_charge_memcg+0x4a/0xe0 mm/memcontrol.c:2837 __memcg_kmem_charge+0xcf/0x1b0 mm/memcontrol.c:2877 __alloc_pages_nodemask+0x26c/0x310 mm/page_alloc.c:4780 Since watermark could be compared or set to garbage due to a data race which would change the code logic, fix it by adding a pair of READ_ONCE() and WRITE_ONCE() in those places. The "failcnt" counter is tolerant of some degree of inaccuracy and is only used to report stats, a data race will not be harmful, thus mark it as an intentional data race using the data_race() macro. Fixes: 3e32cb2e ("mm: memcontrol: lockless page counters") Reported-by: syzbot+f36cfe60b1006a94f9dc@syzkaller.appspotmail.com Signed-off-by: NQian Cai <cai@lca.pw> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Marco Elver <elver@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Link: http://lkml.kernel.org/r/1581519682-23594-1-git-send-email-cai@lca.pwSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Qian Cai 提交于
swap_info_struct si.highest_bit, si.swap_map[offset] and si.flags could be accessed concurrently separately as noticed by KCSAN, === si.highest_bit === write to 0xffff8d5abccdc4d4 of 4 bytes by task 5353 on cpu 24: swap_range_alloc+0x81/0x130 swap_range_alloc at mm/swapfile.c:681 scan_swap_map_slots+0x371/0xb90 get_swap_pages+0x39d/0x5c0 get_swap_page+0xf2/0x524 add_to_swap+0xe4/0x1c0 shrink_page_list+0x1795/0x2870 shrink_inactive_list+0x316/0x880 shrink_lruvec+0x8dc/0x1380 shrink_node+0x317/0xd80 do_try_to_free_pages+0x1f7/0xa10 try_to_free_pages+0x26c/0x5e0 __alloc_pages_slowpath+0x458/0x1290 read to 0xffff8d5abccdc4d4 of 4 bytes by task 6672 on cpu 70: scan_swap_map_slots+0x4a6/0xb90 scan_swap_map_slots at mm/swapfile.c:892 get_swap_pages+0x39d/0x5c0 get_swap_page+0xf2/0x524 add_to_swap+0xe4/0x1c0 shrink_page_list+0x1795/0x2870 shrink_inactive_list+0x316/0x880 shrink_lruvec+0x8dc/0x1380 shrink_node+0x317/0xd80 do_try_to_free_pages+0x1f7/0xa10 try_to_free_pages+0x26c/0x5e0 __alloc_pages_slowpath+0x458/0x1290 Reported by Kernel Concurrency Sanitizer on: CPU: 70 PID: 6672 Comm: oom01 Tainted: G W L 5.5.0-next-20200205+ #3 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019 === si.swap_map[offset] === write to 0xffffbc370c29a64c of 1 bytes by task 6856 on cpu 86: __swap_entry_free_locked+0x8c/0x100 __swap_entry_free_locked at mm/swapfile.c:1209 (discriminator 4) __swap_entry_free.constprop.20+0x69/0xb0 free_swap_and_cache+0x53/0xa0 unmap_page_range+0x7f8/0x1d70 unmap_single_vma+0xcd/0x170 unmap_vmas+0x18b/0x220 exit_mmap+0xee/0x220 mmput+0x10e/0x270 do_exit+0x59b/0xf40 do_group_exit+0x8b/0x180 read to 0xffffbc370c29a64c of 1 bytes by task 6855 on cpu 20: _swap_info_get+0x81/0xa0 _swap_info_get at mm/swapfile.c:1140 free_swap_and_cache+0x40/0xa0 unmap_page_range+0x7f8/0x1d70 unmap_single_vma+0xcd/0x170 unmap_vmas+0x18b/0x220 exit_mmap+0xee/0x220 mmput+0x10e/0x270 do_exit+0x59b/0xf40 do_group_exit+0x8b/0x180 === si.flags === write to 0xffff956c8fc6c400 of 8 bytes by task 6087 on cpu 23: scan_swap_map_slots+0x6fe/0xb50 scan_swap_map_slots at mm/swapfile.c:887 get_swap_pages+0x39d/0x5c0 get_swap_page+0x377/0x524 add_to_swap+0xe4/0x1c0 shrink_page_list+0x1795/0x2870 shrink_inactive_list+0x316/0x880 shrink_lruvec+0x8dc/0x1380 shrink_node+0x317/0xd80 do_try_to_free_pages+0x1f7/0xa10 try_to_free_pages+0x26c/0x5e0 __alloc_pages_slowpath+0x458/0x1290 read to 0xffff956c8fc6c400 of 8 bytes by task 6207 on cpu 63: _swap_info_get+0x41/0xa0 __swap_info_get at mm/swapfile.c:1114 put_swap_page+0x84/0x490 __remove_mapping+0x384/0x5f0 shrink_page_list+0xff1/0x2870 shrink_inactive_list+0x316/0x880 shrink_lruvec+0x8dc/0x1380 shrink_node+0x317/0xd80 do_try_to_free_pages+0x1f7/0xa10 try_to_free_pages+0x26c/0x5e0 __alloc_pages_slowpath+0x458/0x1290 The writes are under si->lock but the reads are not. For si.highest_bit and si.swap_map[offset], data race could trigger logic bugs, so fix them by having WRITE_ONCE() for the writes and READ_ONCE() for the reads except those isolated reads where they compare against zero which a data race would cause no harm. Thus, annotate them as intentional data races using the data_race() macro. For si.flags, the readers are only interested in a single bit where a data race there would cause no issue there. [cai@lca.pw: add a missing annotation for si->flags in memory.c] Link: http://lkml.kernel.org/r/1581612647-5958-1-git-send-email-cai@lca.pwSigned-off-by: NQian Cai <cai@lca.pw> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Marco Elver <elver@google.com> Cc: Hugh Dickins <hughd@google.com> Link: http://lkml.kernel.org/r/1581095163-12198-1-git-send-email-cai@lca.pwSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill A. Shutemov 提交于
struct file_ra_state ra.mmap_miss could be accessed concurrently during page faults as noticed by KCSAN, BUG: KCSAN: data-race in filemap_fault / filemap_map_pages write to 0xffff9b1700a2c1b4 of 4 bytes by task 3292 on cpu 30: filemap_fault+0x920/0xfc0 do_sync_mmap_readahead at mm/filemap.c:2384 (inlined by) filemap_fault at mm/filemap.c:2486 __xfs_filemap_fault+0x112/0x3e0 [xfs] xfs_filemap_fault+0x74/0x90 [xfs] __do_fault+0x9e/0x220 do_fault+0x4a0/0x920 __handle_mm_fault+0xc69/0xd00 handle_mm_fault+0xfc/0x2f0 do_page_fault+0x263/0x6f9 page_fault+0x34/0x40 read to 0xffff9b1700a2c1b4 of 4 bytes by task 3313 on cpu 32: filemap_map_pages+0xc2e/0xd80 filemap_map_pages at mm/filemap.c:2625 do_fault+0x3da/0x920 __handle_mm_fault+0xc69/0xd00 handle_mm_fault+0xfc/0x2f0 do_page_fault+0x263/0x6f9 page_fault+0x34/0x40 Reported by Kernel Concurrency Sanitizer on: CPU: 32 PID: 3313 Comm: systemd-udevd Tainted: G W L 5.5.0-next-20200210+ #1 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019 ra.mmap_miss is used to contribute the readahead decisions, a data race could be undesirable. Both the read and write is only under non-exclusive mmap_sem, two concurrent writers could even underflow the counter. Fix the underflow by writing to a local variable before committing a final store to ra.mmap_miss given a small inaccuracy of the counter should be acceptable. Signed-off-by: NKirill A. Shutemov <kirill@shutemov.name> Signed-off-by: NQian Cai <cai@lca.pw> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Tested-by: NQian Cai <cai@lca.pw> Reviewed-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Cc: Marco Elver <elver@google.com> Link: http://lkml.kernel.org/r/20200211030134.1847-1-cai@lca.pwSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Qian Cai 提交于
swap_cache_info.* could be accessed concurrently as noticed by KCSAN, BUG: KCSAN: data-race in lookup_swap_cache / lookup_swap_cache write to 0xffffffff85517318 of 8 bytes by task 94138 on cpu 101: lookup_swap_cache+0x12e/0x460 lookup_swap_cache at mm/swap_state.c:322 do_swap_page+0x112/0xeb0 __handle_mm_fault+0xc7a/0xd00 handle_mm_fault+0xfc/0x2f0 do_page_fault+0x263/0x6f9 page_fault+0x34/0x40 read to 0xffffffff85517318 of 8 bytes by task 91655 on cpu 100: lookup_swap_cache+0x117/0x460 lookup_swap_cache at mm/swap_state.c:322 shmem_swapin_page+0xc7/0x9e0 shmem_getpage_gfp+0x2ca/0x16c0 shmem_fault+0xef/0x3c0 __do_fault+0x9e/0x220 do_fault+0x4a0/0x920 __handle_mm_fault+0xc69/0xd00 handle_mm_fault+0xfc/0x2f0 do_page_fault+0x263/0x6f9 page_fault+0x34/0x40 Reported by Kernel Concurrency Sanitizer on: CPU: 100 PID: 91655 Comm: systemd-journal Tainted: G W O L 5.5.0-next-20200204+ #6 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019 write to 0xffffffff8d717308 of 8 bytes by task 11365 on cpu 87: __delete_from_swap_cache+0x681/0x8b0 __delete_from_swap_cache at mm/swap_state.c:178 read to 0xffffffff8d717308 of 8 bytes by task 11275 on cpu 53: __delete_from_swap_cache+0x66e/0x8b0 __delete_from_swap_cache at mm/swap_state.c:178 Both the read and write are done as lockless. Since swap_cache_info.* are only used to print out counter information, even if any of them missed a few incremental due to data races, it will be harmless, so just mark it as an intentional data race using the data_race() macro. While at it, fix a checkpatch.pl warning, WARNING: Single statement macros should not use a do {} while (0) loop Signed-off-by: NQian Cai <cai@lca.pw> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Marco Elver <elver@google.com> Link: http://lkml.kernel.org/r/20200207003715.1578-1-cai@lca.pwSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Qian Cai 提交于
struct swap_info_struct si.flags could be accessed concurrently as noticed by KCSAN, BUG: KCSAN: data-race in scan_swap_map_slots / swap_readpage write to 0xffff9c77b80ac400 of 8 bytes by task 91325 on cpu 16: scan_swap_map_slots+0x6fe/0xb50 scan_swap_map_slots at mm/swapfile.c:887 get_swap_pages+0x39d/0x5c0 get_swap_page+0x377/0x524 add_to_swap+0xe4/0x1c0 shrink_page_list+0x1740/0x2820 shrink_inactive_list+0x316/0x8b0 shrink_lruvec+0x8dc/0x1380 shrink_node+0x317/0xd80 do_try_to_free_pages+0x1f7/0xa10 try_to_free_pages+0x26c/0x5e0 __alloc_pages_slowpath+0x458/0x1290 __alloc_pages_nodemask+0x3bb/0x450 alloc_pages_vma+0x8a/0x2c0 do_anonymous_page+0x170/0x700 __handle_mm_fault+0xc9f/0xd00 handle_mm_fault+0xfc/0x2f0 do_page_fault+0x263/0x6f9 page_fault+0x34/0x40 read to 0xffff9c77b80ac400 of 8 bytes by task 5422 on cpu 7: swap_readpage+0x204/0x6a0 swap_readpage at mm/page_io.c:380 read_swap_cache_async+0xa2/0xb0 swapin_readahead+0x6a0/0x890 do_swap_page+0x465/0xeb0 __handle_mm_fault+0xc7a/0xd00 handle_mm_fault+0xfc/0x2f0 do_page_fault+0x263/0x6f9 page_fault+0x34/0x40 Reported by Kernel Concurrency Sanitizer on: CPU: 7 PID: 5422 Comm: gmain Tainted: G W O L 5.5.0-next-20200204+ #6 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019 Other reads, read to 0xffff91ea33eac400 of 8 bytes by task 11276 on cpu 120: __swap_writepage+0x140/0xc20 __swap_writepage at mm/page_io.c:289 read to 0xffff91ea33eac400 of 8 bytes by task 11264 on cpu 16: swap_set_page_dirty+0x44/0x1f4 swap_set_page_dirty at mm/page_io.c:442 The write is under &si->lock, but the reads are done as lockless. Since the reads only check for a specific bit in the flag, it is harmless even if load tearing happens. Thus, just mark them as intentional data races using the data_race() macro. [cai@lca.pw: add a missing annotation] Link: http://lkml.kernel.org/r/1581612585-5812-1-git-send-email-cai@lca.pwSigned-off-by: NQian Cai <cai@lca.pw> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Marco Elver <elver@google.com> Link: http://lkml.kernel.org/r/20200207003601.1526-1-cai@lca.pwSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-