- 05 9月, 2012 3 次提交
-
-
由 Mihai Caraman 提交于
Embedded.Hypervisor category defines GSPRG0..3 physical registers for guests. Avoid SPRG4-7 usage as scratch in host exception handlers, otherwise guest SPRG4-7 registers will be clobbered. For bolted TLB miss exception handlers, which is the version currently supported by KVM, use SPRN_SPRG_GEN_SCRATCH aka SPRG0 instead of SPRN_SPRG_TLB_SCRATCH aka SPRG6. Keep using TLB PACA slots to fit in one 64-byte cache line. For critical exception handlers use SPRG3 instead of SPRG7. Provide a routine to store and restore user-visible SPRGs. This will be subsequently used to restore VDSO information in SPRG3. Add EX_R13 to paca slots to free up SPRG3 and change the critical exception epilog to use it. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Mihai Caraman 提交于
Guest Doorbell interrupts use guest save and restore registers. Add a new Guest Doorbell exception type to accommodate GSRR0/1 SPRs usage in exception prolog and fix the exception handler. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Michael Ellerman 提交于
We have an old FIXME in reg.h which points out that we should standardise on PVR_foo for our PVR #defines. Currently we use PVR_ on 32-bit and PV_ on 64-bit. So do that rename and remove the FIXME. Seeing as we're touching all but one usage of __is_processor(), rename it to something less ugly and more indicative of what it does, which is simply to check the PVR version. Signed-off-by: NMichael Ellerman <michael@ellerman.id.au> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 11 7月, 2012 2 次提交
-
-
由 Tiejun Chen 提交于
Add "memory" attribute in inline assembly language as a compiler barrier to make sure 4.6.x GCC don't reorder mfmsr(). Signed-off-by: NTiejun Chen <tiejun.chen@windriver.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> CC: stable@vger.kernel.org
-
由 Anton Blanchard 提交于
We have a request for a fast method of getting CPU and NUMA node IDs from userspace. This patch implements a getcpu VDSO function, similar to x86. Ben suggested we use SPRG3 which is userspace readable. SPRG3 can be modified by a KVM guest, so we save the SPRG3 value in the paca and restore it when transitioning from the guest to the host. I have a glibc patch that implements sched_getcpu on top of this. Testing on a POWER7: baseline: 538 cycles vdso: 30 cycles Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 08 4月, 2012 1 次提交
-
-
由 Scott Wood 提交于
Chips such as e500mc that implement category E.HV in Power ISA 2.06 provide hardware virtualization features, including a new MSR mode for guest state. The guest OS can perform many operations without trapping into the hypervisor, including transitions to and from guest userspace. Since we can use SRR1[GS] to reliably tell whether an exception came from guest state, instead of messing around with IVPR, we use DO_KVM similarly to book3s. Current issues include: - Machine checks from guest state are not routed to the host handler. - The guest can cause a host oops by executing an emulated instruction in a page that lacks read permission. Existing e500/4xx support has the same problem. Includes work by Ashish Kalra <Ashish.Kalra@freescale.com>, Varun Sethi <Varun.Sethi@freescale.com>, and Liu Yu <yu.liu@freescale.com>. Signed-off-by: NScott Wood <scottwood@freescale.com> [agraf: remove pt_regs usage] Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
- 09 3月, 2012 1 次提交
-
-
由 Benjamin Herrenschmidt 提交于
This moves the inlines into system.h and changes the runlatch code to use the thread local flags (non-atomic) rather than the TIF flags (atomic) to keep track of the latch state. The code to turn it back on in an asynchronous interrupt is now simplified and partially inlined. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 05 3月, 2012 3 次提交
-
-
由 Paul Mackerras 提交于
This adds the infrastructure to enable us to page out pages underneath a Book3S HV guest, on processors that support virtualized partition memory, that is, POWER7. Instead of pinning all the guest's pages, we now look in the host userspace Linux page tables to find the mapping for a given guest page. Then, if the userspace Linux PTE gets invalidated, kvm_unmap_hva() gets called for that address, and we replace all the guest HPTEs that refer to that page with absent HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit set, which will cause an HDSI when the guest tries to access them. Finally, the page fault handler is extended to reinstantiate the guest HPTE when the guest tries to access a page which has been paged out. Since we can't intercept the guest DSI and ISI interrupts on PPC970, we still have to pin all the guest pages on PPC970. We have a new flag, kvm->arch.using_mmu_notifiers, that indicates whether we can page guest pages out. If it is not set, the MMU notifier callbacks do nothing and everything operates as before. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
由 Paul Mackerras 提交于
This provides the low-level support for MMIO emulation in Book3S HV guests. When the guest tries to map a page which is not covered by any memslot, that page is taken to be an MMIO emulation page. Instead of inserting a valid HPTE, we insert an HPTE that has the valid bit clear but another hypervisor software-use bit set, which we call HPTE_V_ABSENT, to indicate that this is an absent page. An absent page is treated much like a valid page as far as guest hcalls (H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that an absent HPTE doesn't need to be invalidated with tlbie since it was never valid as far as the hardware is concerned. When the guest accesses a page for which there is an absent HPTE, it will take a hypervisor data storage interrupt (HDSI) since we now set the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults looks up the hash table and if it finds an absent HPTE mapping the requested virtual address, will switch to kernel mode and handle the fault in kvmppc_book3s_hv_page_fault(), which at present just calls kvmppc_hv_emulate_mmio() to set up the MMIO emulation. This is based on an earlier patch by Benjamin Herrenschmidt, but since heavily reworked. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
由 Paul Mackerras 提交于
This relaxes the requirement that the guest memory be provided as 16MB huge pages, allowing it to be provided as normal memory, i.e. in pages of PAGE_SIZE bytes (4k or 64k). To allow this, we index the kvm->arch.slot_phys[] arrays with a small page index, even if huge pages are being used, and use the low-order 5 bits of each entry to store the order of the enclosing page with respect to normal pages, i.e. log_2(enclosing_page_size / PAGE_SIZE). Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
- 09 12月, 2011 1 次提交
-
-
由 Tony Breeds 提交于
Based on original work by David 'Shaggy' Kleikamp. Signed-off-by: NTony Breeds <tony@bakeyournoodle.com> Signed-off-by: NJosh Boyer <jwboyer@gmail.com>
-
- 05 8月, 2011 2 次提交
-
-
由 Peter Zijlstra 提交于
One definition of PV_POWER7 seems enough to me. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Scott Wood 提交于
Add a cast in case the caller passes in a different type, as it would if mtspr/mtmsr were functions. Previously, if a 64-bit type was passed in on 32-bit, GCC would bind the constraint to a pair of registers, and would substitute the first register in the pair in the asm code. This corresponds to the upper half of the 64-bit register, which is generally not the desired behavior. Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 12 7月, 2011 4 次提交
-
-
由 Paul Mackerras 提交于
This replaces the single CPU_FTR_HVMODE_206 bit with two bits, one to indicate that we have a usable hypervisor mode, and another to indicate that the processor conforms to PowerISA version 2.06. We also add another bit to indicate that the processor conforms to ISA version 2.01 and set that for PPC970 and derivatives. Some PPC970 chips (specifically those in Apple machines) have a hypervisor mode in that MSR[HV] is always 1, but the hypervisor mode is not useful in the sense that there is no way to run any code in supervisor mode (HV=0 PR=0). On these processors, the LPES0 and LPES1 bits in HID4 are always 0, and we use that as a way of detecting that hypervisor mode is not useful. Where we have a feature section in assembly code around code that only applies on POWER7 in hypervisor mode, we use a construct like END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) The definition of END_FTR_SECTION_IFSET is such that the code will be enabled (not overwritten with nops) only if all bits in the provided mask are set. Note that the CPU feature check in __tlbie() only needs to check the ARCH_206 bit, not the HVMODE bit, because __tlbie() can only get called if we are running bare-metal, i.e. in hypervisor mode. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This adds infrastructure which will be needed to allow book3s_hv KVM to run on older POWER processors, including PPC970, which don't support the Virtual Real Mode Area (VRMA) facility, but only the Real Mode Offset (RMO) facility. These processors require a physically contiguous, aligned area of memory for each guest. When the guest does an access in real mode (MMU off), the address is compared against a limit value, and if it is lower, the address is ORed with an offset value (from the Real Mode Offset Register (RMOR)) and the result becomes the real address for the access. The size of the RMA has to be one of a set of supported values, which usually includes 64MB, 128MB, 256MB and some larger powers of 2. Since we are unlikely to be able to allocate 64MB or more of physically contiguous memory after the kernel has been running for a while, we allocate a pool of RMAs at boot time using the bootmem allocator. The size and number of the RMAs can be set using the kvm_rma_size=xx and kvm_rma_count=xx kernel command line options. KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability of the pool of preallocated RMAs. The capability value is 1 if the processor can use an RMA but doesn't require one (because it supports the VRMA facility), or 2 if the processor requires an RMA for each guest. This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the pool and returns a file descriptor which can be used to map the RMA. It also returns the size of the RMA in the argument structure. Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION ioctl calls from userspace. To cope with this, we now preallocate the kvm->arch.ram_pginfo array when the VM is created with a size sufficient for up to 64GB of guest memory. Subsequently we will get rid of this array and use memory associated with each memslot instead. This moves most of the code that translates the user addresses into host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level to kvmppc_core_prepare_memory_region. Also, instead of having to look up the VMA for each page in order to check the page size, we now check that the pages we get are compound pages of 16MB. However, if we are adding memory that is mapped to an RMA, we don't bother with calling get_user_pages_fast and instead just offset from the base pfn for the RMA. Typically the RMA gets added after vcpus are created, which makes it inconvenient to have the LPCR (logical partition control register) value in the vcpu->arch struct, since the LPCR controls whether the processor uses RMA or VRMA for the guest. This moves the LPCR value into the kvm->arch struct and arranges for the MER (mediated external request) bit, which is the only bit that varies between vcpus, to be set in assembly code when going into the guest if there is a pending external interrupt request. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This adds support for KVM running on 64-bit Book 3S processors, specifically POWER7, in hypervisor mode. Using hypervisor mode means that the guest can use the processor's supervisor mode. That means that the guest can execute privileged instructions and access privileged registers itself without trapping to the host. This gives excellent performance, but does mean that KVM cannot emulate a processor architecture other than the one that the hardware implements. This code assumes that the guest is running paravirtualized using the PAPR (Power Architecture Platform Requirements) interface, which is the interface that IBM's PowerVM hypervisor uses. That means that existing Linux distributions that run on IBM pSeries machines will also run under KVM without modification. In order to communicate the PAPR hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code to include/linux/kvm.h. Currently the choice between book3s_hv support and book3s_pr support (i.e. the existing code, which runs the guest in user mode) has to be made at kernel configuration time, so a given kernel binary can only do one or the other. This new book3s_hv code doesn't support MMIO emulation at present. Since we are running paravirtualized guests, this isn't a serious restriction. With the guest running in supervisor mode, most exceptions go straight to the guest. We will never get data or instruction storage or segment interrupts, alignment interrupts, decrementer interrupts, program interrupts, single-step interrupts, etc., coming to the hypervisor from the guest. Therefore this introduces a new KVMTEST_NONHV macro for the exception entry path so that we don't have to do the KVM test on entry to those exception handlers. We do however get hypervisor decrementer, hypervisor data storage, hypervisor instruction storage, and hypervisor emulation assist interrupts, so we have to handle those. In hypervisor mode, real-mode accesses can access all of RAM, not just a limited amount. Therefore we put all the guest state in the vcpu.arch and use the shadow_vcpu in the PACA only for temporary scratch space. We allocate the vcpu with kzalloc rather than vzalloc, and we don't use anything in the kvmppc_vcpu_book3s struct, so we don't allocate it. We don't have a shared page with the guest, but we still need a kvm_vcpu_arch_shared struct to store the values of various registers, so we include one in the vcpu_arch struct. The POWER7 processor has a restriction that all threads in a core have to be in the same partition. MMU-on kernel code counts as a partition (partition 0), so we have to do a partition switch on every entry to and exit from the guest. At present we require the host and guest to run in single-thread mode because of this hardware restriction. This code allocates a hashed page table for the guest and initializes it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We require that the guest memory is allocated using 16MB huge pages, in order to simplify the low-level memory management. This also means that we can get away without tracking paging activity in the host for now, since huge pages can't be paged or swapped. This also adds a few new exports needed by the book3s_hv code. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
In hypervisor mode, the LPCR controls several aspects of guest partitions, including virtual partition memory mode, and also controls whether the hypervisor decrementer interrupts are enabled. This sets up LPCR at boot time so that guest partitions will use a virtual real memory area (VRMA) composed of 16MB large pages, and hypervisor decrementer interrupts are disabled. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 23 6月, 2011 1 次提交
-
-
由 Ashish Kalra 提交于
We expect this is actually faster, and we end up needing more space than we can get from the SPRGs in some instances. This is also useful when running as a guest OS - SPRGs4-7 do not have guest versions. 8 slots are allocated in thread_info for this even though we only actually use 4 of them - this allows space for future code to have more scratch space (and we know we'll need it for things like hugetlb). Signed-off-by: NAshish Kalra <Ashish.Kalra@freescale.com> Signed-off-by: NBecky Bruce <beckyb@kernel.crashing.org> Signed-off-by: NKumar Gala <galak@kernel.crashing.org>
-
- 20 5月, 2011 1 次提交
-
-
由 Paul Mackerras 提交于
Commits a5d4f3ad ("powerpc: Base support for exceptions using HSRR0/1") and 673b189a ("powerpc: Always use SPRN_SPRG_HSCRATCH0 when running in HV mode") cause compile and link errors for 32-bit classic Book 3S processors when KVM is enabled. This fixes these errors. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 04 5月, 2011 2 次提交
-
-
由 Paul Mackerras 提交于
Recent 64-bit server processors (POWER6 and POWER7) have a "Come-From Address Register" (CFAR), that records the address of the most recent branch or rfid (return from interrupt) instruction for debugging purposes. This saves the value of the CFAR in the exception entry code and stores it in the exception frame. We also make xmon print the CFAR value in its register dump code. Rather than extend the pt_regs struct at this time, we steal the orig_gpr3 field, which is only used for system calls, and use it for the CFAR value for all exceptions/interrupts other than system calls. This means we don't save the CFAR on system calls, which is not a great problem since system calls tend not to happen unexpectedly, and also avoids adding the overhead of reading the CFAR to the system call entry path. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Tseng-Hui (Frank) Lin 提交于
Icswx is a PowerPC instruction to send data to a co-processor. On Book-S processors the LPAR_ID and process ID (PID) of the owning process are registered in the window context of the co-processor at initialization time. When the icswx instruction is executed the L2 generates a cop-reg transaction on PowerBus. The transaction has no address and the processor does not perform an MMU access to authenticate the transaction. The co-processor compares the LPAR_ID and the PID included in the transaction and the LPAR_ID and PID held in the window context to determine if the process is authorized to generate the transaction. The OS needs to assign a 16-bit PID for the process. This cop-PID needs to be updated during context switch. The cop-PID needs to be destroyed when the context is destroyed. Signed-off-by: NSonny Rao <sonnyrao@linux.vnet.ibm.com> Signed-off-by: NTseng-Hui (Frank) Lin <thlin@linux.vnet.ibm.com> Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 27 4月, 2011 1 次提交
-
-
由 Michael Ellerman 提交于
The MSR bit which indicates 64-bit-ness is different between server and booke, so add a #define which gives you the right mask regardless. Signed-off-by: NMichael Ellerman <michael@ellerman.id.au> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 20 4月, 2011 3 次提交
-
-
由 Paul Mackerras 提交于
This uses feature sections to arrange that we always use HSPRG1 as the scratch register in the interrupt entry code rather than SPRG2 when we're running in hypervisor mode on POWER7. This will ensure that we don't trash the guest's SPRG2 when we are running KVM guests. To simplify the code, we define GET_SCRATCH0() and SET_SCRATCH0() macros like the GET_PACA/SET_PACA macros. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Benjamin Herrenschmidt 提交于
When running in Hypervisor mode (arch 2.06 or later), we store the PACA in HSPRG0 instead of SPRG1. The architecture specifies that SPRGs may be lost during a "nap" power management operation (though they aren't currently on POWER7) and this enables use of SPRG1 by KVM guests. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Benjamin Herrenschmidt 提交于
This adds more SPR definitions used on newer processors when running in hypervisor mode. Along with some other P7 specific bits and pieces Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 16 3月, 2011 1 次提交
-
-
由 Anton Blanchard 提交于
Events on POWER7 can roll back if a speculative event doesn't eventually complete. Unfortunately in some rare cases they will raise a performance monitor exception. We need to catch this to ensure we reset the PMC. In all cases the PMC will be 256 or less cycles from overflow. Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: <stable@kernel.org> # as far back as it applies cleanly LKML-Reference: <20110309143842.6c22845e@kryten> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 15 3月, 2011 1 次提交
-
-
由 Liu Yu 提交于
This erratum can occur if a single-precision floating-point, double-precision floating-point or vector floating-point instruction on a mispredicted branch path signals one of the floating-point data interrupts which are enabled by the SPEFSCR (FINVE, FDBZE, FUNFE or FOVFE bits). This interrupt must be recorded in a one-cycle window when the misprediction is resolved. If this extremely rare event should occur, the result could be: The SPE Data Exception from the mispredicted path may be reported erroneously if a single-precision floating-point, double-precision floating-point or vector floating-point instruction is the second instruction on the correct branch path. According to errata description, some efp instructions which are not supposed to trigger SPE exceptions can trigger the exceptions in this case. However, as we haven't emulated these instructions here, a signal will send to userspace, and userspace application would exit. This patch re-issue the efp instruction that we haven't emulated, so that hardware can properly execute it again if this case happen. Signed-off-by: NLiu Yu <yu.liu@freescale.com> Signed-off-by: NKumar Gala <galak@kernel.crashing.org>
-
- 04 3月, 2011 1 次提交
-
-
由 Tseng-Hui (Frank) Lin 提交于
Move SPRN_PID declearations in various locations into one place. Signed-off-by: NTseng-Hui (Frank) Lin <thlin@linux.vnet.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 13 1月, 2011 1 次提交
-
-
由 Li Yang 提交于
Also make 74xx HID1 definition conditional. Signed-off-by: NLi Yang <leoli@freescale.com> Signed-off-by: NShaohui Xie <b21989@freescale.com> Cc: Roy Zang <tie-fei.zang@freescale.com> Cc: Alexandre Bounine <alexandre.bounine@idt.com> Signed-off-by: NKumar Gala <galak@kernel.crashing.org>
-
- 24 8月, 2010 1 次提交
-
-
由 Anton Blanchard 提交于
I'm sick of seeing ppc64_runlatch_off in our profiles, so inline it into the callers. To avoid a mess of circular includes I didn't add it as an inline function. Signed-off-by: NAnton Blanchard <anton@samba.org> Acked-by: NOlof Johansson <olof@lixom.net> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 09 7月, 2010 1 次提交
-
-
由 Benjamin Herrenschmidt 提交于
Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 05 5月, 2010 2 次提交
-
-
由 Torez Smith 提交于
This is a trivial 4xx plaform that uses the new simple bsp from Josh and is handy to use in simulators such as ISS or even Mambo who don't properly implement most of the actual devices in the SoC but really only the core. Signed-off-by: NTorez Smith <lnxtorez@linux.vnet.ibm.com> Signed-off-by: NDave Kleikamp <shaggy@linux.vnet.ibm.com> Signed-off-by: NJosh Boyer <jwboyer@linux.vnet.ibm.com>
-
由 Dave Kleikamp 提交于
This patch adds the base support for the 476 processor. The code was primarily written by Ben Herrenschmidt and Torez Smith, but I've been maintaining it for a while. The goal is to have a single binary that will run on 44x and 47x, but we still have some details to work out. The biggest is that the L1 cache line size differs on the two platforms, but it's currently a compile-time option. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NTorez Smith <lnxtorez@linux.vnet.ibm.com> Signed-off-by: NDave Kleikamp <shaggy@linux.vnet.ibm.com> Signed-off-by: NJosh Boyer <jwboyer@linux.vnet.ibm.com>
-
- 25 4月, 2010 1 次提交
-
-
由 Alexander Graf 提交于
The Gekko has some SPR values that differ from other PPC core values and also some additional ones. Let's add support for them in our mfspr/mtspr emulator. Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
- 01 3月, 2010 1 次提交
-
-
由 Alexander Graf 提交于
Book3S needs some flags in SRR1 to get to know details about an interrupt. One such example is the trap instruction. It tells the guest kernel that a program interrupt is due to a trap using a bit in SRR1. This patch implements above behavior, making WARN_ON behave like WARN_ON. Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
- 28 10月, 2009 1 次提交
-
-
由 Anton Blanchard 提交于
In continuous sampling mode we want the SDAR to update. While we can select between dcache misses and ERAT (L1-TLB) misses, a decent default is to enable both. Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 20 8月, 2009 4 次提交
-
-
由 Benjamin Herrenschmidt 提交于
This adds various definitions and macros used by the exception and TLB miss handling on 64-bit BookE It also adds the definitions of the SPRGs used for various exception types Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Benjamin Herrenschmidt 提交于
This adds various SPRs defined on 64-bit BookE, along with changes to the definition of the base MSR values to add the values needed for 64-bit Book3E. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Benjamin Herrenschmidt 提交于
This change the SPRG used to store the PACA on ppc64 from SPRG3 to SPRG1. SPRG3 is user readable on most processors and we want to use it for other things. We change the scratch SPRG used by exception vectors from SRPG1 to SPRG2. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Benjamin Herrenschmidt 提交于
The STAB code used on Power3 and RS/64 uses a second scratch SPRG to save a GPR in order to decide whether to go to do_stab_bolted_* or to handle a normal data access exception. This prevents our scheme of freeing SPRG3 which is user visible for user uses since we cannot use SPRG0 which, on RS/64, seems to be read-only for supervisor mode (like POWER4). This reworks the STAB exception entry to use the PACA as temporary storage instead. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-