- 12 7月, 2018 1 次提交
-
-
由 Christoph Hellwig 提交于
For file systems with a block size that equals the page size we never do partial reads, so we can use the buffer_head-less iomap versions of readpage and readpages without conflicting with the buffer_head structures create later in write_begin. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 09 6月, 2018 1 次提交
-
-
由 Dave Chinner 提交于
xfs_reflink_convert_cow() manipulates the incore extent list in GFP_KERNEL context in the IO submission path whilst holding locked pages under writeback. This is a memory reclaim deadlock vector. This code is not in a transaction, so any memory allocations it makes aren't protected via the memalloc_nofs_save() context that transactions carry. Hence we need to run this call under memalloc_nofs_save() context to prevent potential memory allocations from being run as GFP_KERNEL and deadlocking. Signed-Off-By: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAllison Henderson <allison.henderson@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 07 6月, 2018 1 次提交
-
-
由 Dave Chinner 提交于
Remove the verbose license text from XFS files and replace them with SPDX tags. This does not change the license of any of the code, merely refers to the common, up-to-date license files in LICENSES/ This change was mostly scripted. fs/xfs/Makefile and fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected and modified by the following command: for f in `git grep -l "GNU General" fs/xfs/` ; do echo $f cat $f | awk -f hdr.awk > $f.new mv -f $f.new $f done And the hdr.awk script that did the modification (including detecting the difference between GPL-2.0 and GPL-2.0+ licenses) is as follows: $ cat hdr.awk BEGIN { hdr = 1.0 tag = "GPL-2.0" str = "" } /^ \* This program is free software/ { hdr = 2.0; next } /any later version./ { tag = "GPL-2.0+" next } /^ \*\// { if (hdr > 0.0) { print "// SPDX-License-Identifier: " tag print str print $0 str="" hdr = 0.0 next } print $0 next } /^ \* / { if (hdr > 1.0) next if (hdr > 0.0) { if (str != "") str = str "\n" str = str $0 next } print $0 next } /^ \*/ { if (hdr > 0.0) next print $0 next } // { if (hdr > 0.0) { if (str != "") str = str "\n" str = str $0 next } print $0 } END { } $ Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 02 6月, 2018 1 次提交
-
-
由 Christoph Hellwig 提交于
Switch to the iomap based bmap implementation to get rid of one of the last users of xfs_get_blocks. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 31 5月, 2018 1 次提交
-
-
由 Kent Overstreet 提交于
Convert XFS to embedded bio sets. Acked-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NKent Overstreet <kent.overstreet@gmail.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 16 5月, 2018 1 次提交
-
-
由 Darrick J. Wong 提交于
Add a new iomap_swapfile_activate function so that filesystems can activate swap files without having to use the obsolete and slow bmap function. This enables XFS to support fallocate'd swap files and swap files on realtime devices. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NJan Kara <jack@suse.cz>
-
- 12 4月, 2018 1 次提交
-
-
由 Matthew Wilcox 提交于
XFS currently contains a copy-and-paste of __set_page_dirty(). Export it from buffer.c instead. Link: http://lkml.kernel.org/r/20180313132639.17387-6-willy@infradead.orgSigned-off-by: NMatthew Wilcox <mawilcox@microsoft.com> Acked-by: NJeff Layton <jlayton@kernel.org> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Dave Chinner <david@fromorbit.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 4月, 2018 1 次提交
-
-
由 Matthew Wilcox 提交于
XFS currently contains a copy-and-paste of __set_page_dirty(). Export it from buffer.c instead. Signed-off-by: NMatthew Wilcox <mawilcox@microsoft.com> Acked-by: NJeff Layton <jlayton@kernel.org> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 31 3月, 2018 1 次提交
-
-
由 Dan Williams 提交于
In preparation for the dax implementation to start associating dax pages to inodes via page->mapping, we need to provide a 'struct address_space_operations' instance for dax. Otherwise, direct-I/O triggers incorrect page cache assumptions and warnings like the following: WARNING: CPU: 27 PID: 1783 at fs/xfs/xfs_aops.c:1468 xfs_vm_set_page_dirty+0xf3/0x1b0 [xfs] [..] CPU: 27 PID: 1783 Comm: dma-collision Tainted: G O 4.15.0-rc2+ #984 [..] Call Trace: set_page_dirty_lock+0x40/0x60 bio_set_pages_dirty+0x37/0x50 iomap_dio_actor+0x2b7/0x3b0 ? iomap_dio_zero+0x110/0x110 iomap_apply+0xa4/0x110 iomap_dio_rw+0x29e/0x3b0 ? iomap_dio_zero+0x110/0x110 ? xfs_file_dio_aio_read+0x7c/0x1a0 [xfs] xfs_file_dio_aio_read+0x7c/0x1a0 [xfs] xfs_file_read_iter+0xa0/0xc0 [xfs] __vfs_read+0xf9/0x170 vfs_read+0xa6/0x150 SyS_pread64+0x93/0xb0 entry_SYSCALL_64_fastpath+0x1f/0x96 ...where the default set_page_dirty() handler assumes that dirty state is being tracked in 'struct page' flags. Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: NJan Kara <jack@suse.cz> Suggested-by: NDave Chinner <david@fromorbit.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 19 3月, 2018 1 次提交
-
-
由 Ingo Molnar 提交于
Signed-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 16 3月, 2018 2 次提交
-
-
由 Christoph Hellwig 提交于
Simplify the control flow a bit in preparation for O_ATOMIC-related changes. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
There is no reason to get a mapping bigger than what we were asked for. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 12 3月, 2018 1 次提交
-
-
由 Dave Chinner 提交于
xfs_trans_alloc() does GFP_KERNEL allocation, and we can call it while holding pages locked for writeback in the ->writepages path. The memory allocation is allowed to wait on pages under writeback, and so can wait on pages that are tagged as writeback by the caller. This affects both pre-IO submission and post-IO submission paths. Hence xfs_setsize_trans_alloc(), xfs_reflink_end_cow(), xfs_iomap_write_unwritten() and xfs_reflink_cancel_cow_range(). xfs_iomap_write_unwritten() already does the right thing, but the others don't. Fix them. Signed-Off-By: NDave Chinner <dchinner@redhat.com> Fixes: 281627df ("xfs: log file size updates at I/O completion time") Fixes: 43caeb18 ("xfs: move mappings from cow fork to data fork after copy-write)" Reviewed-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 29 1月, 2018 1 次提交
-
-
由 Darrick J. Wong 提交于
Every so often we blow the ASSERT(type != XFS_IO_COW) in xfs_map_blocks when running fsstress, as we do in generic/269. The cause of this is writeback racing with truncate -- writeback doesn't take the iolock, so truncate can sneak in to decrease i_size and truncate page cache while writeback is gathering buffer heads to schedule writeout. If we hit this race on a block that has a CoW mapping, we'll get a valid imap from the CoW fork but the reduced i_size trims the mapping to zero length (which makes it invalid), so we call xfs_map_blocks to try again. This doesn't do much anyway, since any mapping we get out of that will also be invalid, so we might as well skip the assert and just stop. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 13 1月, 2018 1 次提交
-
-
由 Darrick J. Wong 提交于
Starting with commit 57e73442 ("vsprintf: refactor %pK code out of pointer"), the behavior of the raw '%p' printk format specifier was changed to print a 32-bit hash of the pointer value to avoid leaking kernel pointers into dmesg. For most situations that's good. This is /undesirable/ behavior when we're trying to debug XFS, however, so define a PTR_FMT that prints the actual pointer when we're in debug mode. Note that %p for tracepoints still prints the raw pointer, so in the long run we could consider rewriting some of these messages as tracepoints. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
- 03 1月, 2018 1 次提交
-
-
由 Darrick J. Wong 提交于
Fix some integer overflow problems if offset + count happen to be large enough to cause an integer overflow. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 01 12月, 2017 2 次提交
-
-
由 Darrick J. Wong 提交于
The first thing that xfs_writepage_map does is clobber the offset parameter. Since we never use the passed-in value, turn the parameter into a local variable. This gets rid of an UBSAN warning in generic/466. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
由 Darrick J. Wong 提交于
Fix some complaints from the UBSAN about signed integer addition overflows. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
- 17 10月, 2017 2 次提交
-
-
由 Brian Foster 提交于
The writeback rework in commit fbcc0256 ("xfs: Introduce writeback context for writepages") introduced a subtle change in behavior with regard to the block mapping used across the ->writepages() sequence. The previous xfs_cluster_write() code would only flush pages up to EOF at the time of the writepage, thus ensuring that any pages due to file-extending writes would be handled on a separate cycle and with a new, updated block mapping. The updated code establishes a block mapping in xfs_writepage_map() that could extend beyond EOF if the file has post-eof preallocation. Because we now use the generic writeback infrastructure and pass the cached mapping to each writepage call, there is no implicit EOF limit in place. If eofblocks trimming occurs during ->writepages(), any post-eof portion of the cached mapping becomes invalid. The eofblocks code has no means to serialize against writeback because there are no pages associated with post-eof blocks. Therefore if an eofblocks trim occurs and is followed by a file-extending buffered write, not only has the mapping become invalid, but we could end up writing a page to disk based on the invalid mapping. Consider the following sequence of events: - A buffered write creates a delalloc extent and post-eof speculative preallocation. - Writeback starts and on the first writepage cycle, the delalloc extent is converted to real blocks (including the post-eof blocks) and the mapping is cached. - The file is closed and xfs_release() trims post-eof blocks. The cached writeback mapping is now invalid. - Another buffered write appends the file with a delalloc extent. - The concurrent writeback cycle picks up the just written page because the writeback range end is LLONG_MAX. xfs_writepage_map() attributes it to the (now invalid) cached mapping and writes the data to an incorrect location on disk (and where the file offset is still backed by a delalloc extent). This problem is reproduced by xfstests test generic/464, which triggers racing writes, appends, open/closes and writeback requests. To address this problem, trim the mapping used during writeback to within EOF when the mapping is validated. This ensures the mapping is revalidated for any pages encountered beyond EOF as of the time the current mapping was cached or last validated. Reported-by: NEryu Guan <eguan@redhat.com> Diagnosed-by: NEryu Guan <eguan@redhat.com> Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Dave Chinner 提交于
Recently we've had warnings arise from the vm handing us pages without bufferheads attached to them. This should not ever occur in XFS, but we don't defend against it properly if it does. The only place where we remove bufferheads from a page is in xfs_vm_releasepage(), but we can't tell the difference here between "page is dirty so don't release" and "page is dirty but is being invalidated so release it". In some places that are invalidating pages ask for pages to be released and follow up afterward calling ->releasepage by checking whether the page was dirty and then aborting the invalidation. This is a possible vector for releasing buffers from a page but then leaving it in the mapping, so we really do need to avoid dirty pages in xfs_vm_releasepage(). To differentiate between invalidated pages and normal pages, we need to clear the page dirty flag when invalidating the pages. This can be done through xfs_vm_invalidatepage(), and will result xfs_vm_releasepage() seeing the page as clean which matches the bufferhead state on the page after calling block_invalidatepage(). Hence we can re-add the page dirty check in xfs_vm_releasepage to catch the case where we might be releasing a page that is actually dirty and so should not have the bufferheads on it removed. This will remove one possible vector of "dirty page with no bufferheads" and so help narrow down the search for the root cause of that problem. Signed-Off-By: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 27 9月, 2017 1 次提交
-
-
由 Eryu Guan 提交于
Since commit d531d91d ("xfs: always use unwritten extents for direct I/O writes"), we start allocating unwritten extents for all direct writes to allow appending aio in XFS. But for dio writes that could extend file size we update the in-core inode size first, then convert the unwritten extents to real allocations at dio completion time in xfs_dio_write_end_io(). Thus a racing direct read could see the new i_size and find the unwritten extents first and read zeros instead of actual data, if the direct writer also takes a shared iolock. Fix it by updating the in-core inode size after the unwritten extent conversion. To do this, introduce a new boolean argument to xfs_iomap_write_unwritten() to tell if we want to update in-core i_size or not. Suggested-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NEryu Guan <eguan@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 04 9月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
Our loop in xfs_finish_page_writeback, which iterates over all buffer heads in a page and then calls end_buffer_async_write, which also iterates over all buffers in the page to check if any I/O is in flight is not only inefficient, but also potentially dangerous as end_buffer_async_write can cause the page and all buffers to be freed. Replace it with a single loop that does the work of end_buffer_async_write on a per-page basis. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 01 9月, 2017 1 次提交
-
-
由 Dan Williams 提交于
The ->iomap_begin() operation is a hot path, so cache the fs_dax_get_by_host() result at mount time to avoid the incurring the hash lookup overhead on a per-i/o basis. Reported-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 24 8月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
This way we don't need a block_device structure to submit I/O. The block_device has different life time rules from the gendisk and request_queue and is usually only available when the block device node is open. Other callers need to explicitly create one (e.g. the lightnvm passthrough code, or the new nvme multipathing code). For the actual I/O path all that we need is the gendisk, which exists once per block device. But given that the block layer also does partition remapping we additionally need a partition index, which is used for said remapping in generic_make_request. Note that all the block drivers generally want request_queue or sometimes the gendisk, so this removes a layer of indirection all over the stack. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 28 6月, 2017 1 次提交
-
-
由 Jens Axboe 提交于
Reviewed-by: NAndreas Dilger <adilger@dilger.ca> Reviewed-by: NMartin K. Petersen <martin.petersen@oracle.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 22 6月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
bmap returns a dumb LBA address but not the block device that goes with that LBA. Swapfiles don't care about this and will blindly assume that the data volume is the correct blockdev, which is totally bogus for files on the rt subvolume. This results in the swap code doing IOs to arbitrary locations on the data device(!) if the passed in mapping is a realtime file, so just turn off bmap for rt files. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 21 6月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
bmap returns a dumb LBA address but not the block device that goes with that LBA. Swapfiles don't care about this and will blindly assume that the data volume is the correct blockdev, which is totally bogus for files on the rt subvolume. This results in the swap code doing IOs to arbitrary locations on the data device(!) if the passed in mapping is a realtime file, so just turn off bmap for rt files. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 20 6月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
This is a purely mechanical patch that removes the private __{u,}int{8,16,32,64}_t typedefs in favor of using the system {u,}int{8,16,32,64}_t typedefs. This is the sed script used to perform the transformation and fix the resulting whitespace and indentation errors: s/typedef\t__uint8_t/typedef __uint8_t\t/g s/typedef\t__uint/typedef __uint/g s/typedef\t__int\([0-9]*\)_t/typedef int\1_t\t/g s/__uint8_t\t/__uint8_t\t\t/g s/__uint/uint/g s/__int\([0-9]*\)_t\t/__int\1_t\t\t/g s/__int/int/g /^typedef.*int[0-9]*_t;$/d Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 09 6月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
Replace bi_error with a new bi_status to allow for a clear conversion. Note that device mapper overloaded bi_error with a private value, which we'll have to keep arround at least for now and thus propagate to a proper blk_status_t value. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 06 5月, 2017 1 次提交
-
-
由 Eryu Guan 提交于
Commit 28b783e4 ("xfs: bufferhead chains are invalid after end_page_writeback") fixed one use-after-free issue by pre-calculating the loop conditionals before calling bh->b_end_io() in the end_io processing loop, but it assigned 'next' pointer before checking end offset boundary & breaking the loop, at which point the bh might be freed already, and caused use-after-free. This is caught by KASAN when running fstests generic/127 on sub-page block size XFS. [ 2517.244502] run fstests generic/127 at 2017-04-27 07:30:50 [ 2747.868840] ================================================================== [ 2747.876949] BUG: KASAN: use-after-free in xfs_destroy_ioend+0x3d3/0x4e0 [xfs] at addr ffff8801395ae698 ... [ 2747.918245] Call Trace: [ 2747.920975] dump_stack+0x63/0x84 [ 2747.924673] kasan_object_err+0x21/0x70 [ 2747.928950] kasan_report+0x271/0x530 [ 2747.933064] ? xfs_destroy_ioend+0x3d3/0x4e0 [xfs] [ 2747.938409] ? end_page_writeback+0xce/0x110 [ 2747.943171] __asan_report_load8_noabort+0x19/0x20 [ 2747.948545] xfs_destroy_ioend+0x3d3/0x4e0 [xfs] [ 2747.953724] xfs_end_io+0x1af/0x2b0 [xfs] [ 2747.958197] process_one_work+0x5ff/0x1000 [ 2747.962766] worker_thread+0xe4/0x10e0 [ 2747.966946] kthread+0x2d3/0x3d0 [ 2747.970546] ? process_one_work+0x1000/0x1000 [ 2747.975405] ? kthread_create_on_node+0xc0/0xc0 [ 2747.980457] ? syscall_return_slowpath+0xe6/0x140 [ 2747.985706] ? do_page_fault+0x30/0x80 [ 2747.989887] ret_from_fork+0x2c/0x40 [ 2747.993874] Object at ffff8801395ae690, in cache buffer_head size: 104 [ 2748.001155] Allocated: [ 2748.003782] PID = 8327 [ 2748.006411] save_stack_trace+0x1b/0x20 [ 2748.010688] save_stack+0x46/0xd0 [ 2748.014383] kasan_kmalloc+0xad/0xe0 [ 2748.018370] kasan_slab_alloc+0x12/0x20 [ 2748.022648] kmem_cache_alloc+0xb8/0x1b0 [ 2748.027024] alloc_buffer_head+0x22/0xc0 [ 2748.031399] alloc_page_buffers+0xd1/0x250 [ 2748.035968] create_empty_buffers+0x30/0x410 [ 2748.040730] create_page_buffers+0x120/0x1b0 [ 2748.045493] __block_write_begin_int+0x17a/0x1800 [ 2748.050740] iomap_write_begin+0x100/0x2f0 [ 2748.055308] iomap_zero_range_actor+0x253/0x5c0 [ 2748.060362] iomap_apply+0x157/0x270 [ 2748.064347] iomap_zero_range+0x5a/0x80 [ 2748.068624] iomap_truncate_page+0x6b/0xa0 [ 2748.073227] xfs_setattr_size+0x1f7/0xa10 [xfs] [ 2748.078312] xfs_vn_setattr_size+0x68/0x140 [xfs] [ 2748.083589] xfs_file_fallocate+0x4ac/0x820 [xfs] [ 2748.088838] vfs_fallocate+0x2cf/0x780 [ 2748.093021] SyS_fallocate+0x48/0x80 [ 2748.097006] do_syscall_64+0x18a/0x430 [ 2748.101186] return_from_SYSCALL_64+0x0/0x6a [ 2748.105948] Freed: [ 2748.108189] PID = 8327 [ 2748.110816] save_stack_trace+0x1b/0x20 [ 2748.115093] save_stack+0x46/0xd0 [ 2748.118788] kasan_slab_free+0x73/0xc0 [ 2748.122969] kmem_cache_free+0x7a/0x200 [ 2748.127247] free_buffer_head+0x41/0x80 [ 2748.131524] try_to_free_buffers+0x178/0x250 [ 2748.136316] xfs_vm_releasepage+0x2e9/0x3d0 [xfs] [ 2748.141563] try_to_release_page+0x100/0x180 [ 2748.146325] invalidate_inode_pages2_range+0x7da/0xcf0 [ 2748.152087] xfs_shift_file_space+0x37d/0x6e0 [xfs] [ 2748.157557] xfs_collapse_file_space+0x49/0x120 [xfs] [ 2748.163223] xfs_file_fallocate+0x2a7/0x820 [xfs] [ 2748.168462] vfs_fallocate+0x2cf/0x780 [ 2748.172642] SyS_fallocate+0x48/0x80 [ 2748.176629] do_syscall_64+0x18a/0x430 [ 2748.180810] return_from_SYSCALL_64+0x0/0x6a Fixed it by checking on offset against end & breaking out first, dereference bh only if there're still bufferheads to process. Signed-off-by: NEryu Guan <eguan@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 04 5月, 2017 1 次提交
-
-
由 Michal Hocko 提交于
xfs has defined PF_FSTRANS to declare a scope GFP_NOFS semantic quite some time ago. We would like to make this concept more generic and use it for other filesystems as well. Let's start by giving the flag a more generic name PF_MEMALLOC_NOFS which is in line with an exiting PF_MEMALLOC_NOIO already used for the same purpose for GFP_NOIO contexts. Replace all PF_FSTRANS usage from the xfs code in the first step before we introduce a full API for it as xfs uses the flag directly anyway. This patch doesn't introduce any functional change. Link: http://lkml.kernel.org/r/20170306131408.9828-4-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Dave Chinner <david@fromorbit.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Chris Mason <clm@fb.com> Cc: David Sterba <dsterba@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Nikolay Borisov <nborisov@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 04 4月, 2017 2 次提交
-
-
由 Christoph Hellwig 提交于
Opencoding the trivial checks makes it much easier to read (and grep..). Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
This checks for all the non-normal extent types, including handling both encodings of delayed allocations. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 08 3月, 2017 2 次提交
-
-
由 Christoph Hellwig 提交于
There are two different cases of buffered I/O errors: - first we can have an already shutdown fs. In that case we should skip any on-disk operations and just clean up the appen transaction if present and destroy the ioend - a real I/O error. In that case we should cleanup any lingering COW blocks. This gets skipped in the current code and is fixed by this patch. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
We only want to reclaim preallocations from our periodic work item. Currently this is archived by looking for a dirty inode, but that check is rather fragile. Instead add a flag to xfs_reflink_cancel_cow_* so that the caller can ask for just cancelling unwritten extents in the COW fork. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> [darrick: fix typos in commit message] Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 28 2月, 2017 1 次提交
-
-
由 Fabian Frederick 提交于
Replace all 1 << inode->i_blkbits and (1 << inode->i_blkbits) in fs branch. This patch also fixes multiple checkpatch warnings: WARNING: Prefer 'unsigned int' to bare use of 'unsigned' Thanks to Andrew Morton for suggesting more appropriate function instead of macro. [geliangtang@gmail.com: truncate: use i_blocksize()] Link: http://lkml.kernel.org/r/9c8b2cd83c8f5653805d43debde9fa8817e02fc4.1484895804.git.geliangtang@gmail.com Link: http://lkml.kernel.org/r/1481319905-10126-1-git-send-email-fabf@skynet.beSigned-off-by: NFabian Frederick <fabf@skynet.be> Signed-off-by: NGeliang Tang <geliangtang@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 2月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
Christoph Hellwig pointed out that there's a potentially nasty race when performing simultaneous nearby directio cow writes: "Thread 1 writes a range from B to c " B --------- C p "a little later thread 2 writes from A to B " A --------- B p [editor's note: the 'p' denote cowextsize boundaries, which I added to make this more clear] "but the code preallocates beyond B into the range where thread "1 has just written, but ->end_io hasn't been called yet. "But once ->end_io is called thread 2 has already allocated "up to the extent size hint into the write range of thread 1, "so the end_io handler will splice the unintialized blocks from "that preallocation back into the file right after B." We can avoid this race by ensuring that thread 1 cannot accidentally remap the blocks that thread 2 allocated (as part of speculative preallocation) as part of t2's write preparation in t1's end_io handler. The way we make this happen is by taking advantage of the unwritten extent flag as an intermediate step. Recall that when we begin the process of writing data to shared blocks, we create a delayed allocation extent in the CoW fork: D: --RRRRRRSSSRRRRRRRR--- C: ------DDDDDDD--------- When a thread prepares to CoW some dirty data out to disk, it will now convert the delalloc reservation into an /unwritten/ allocated extent in the cow fork. The da conversion code tries to opportunistically allocate as much of a (speculatively prealloc'd) extent as possible, so we may end up allocating a larger extent than we're actually writing out: D: --RRRRRRSSSRRRRRRRR--- U: ------UUUUUUU--------- Next, we convert only the part of the extent that we're actively planning to write to normal (i.e. not unwritten) status: D: --RRRRRRSSSRRRRRRRR--- U: ------UURRUUU--------- If the write succeeds, the end_cow function will now scan the relevant range of the CoW fork for real extents and remap only the real extents into the data fork: D: --RRRRRRRRSRRRRRRRR--- U: ------UU--UUU--------- This ensures that we never obliterate valid data fork extents with unwritten blocks from the CoW fork. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 12 1月, 2017 1 次提交
-
-
由 Jan Kara 提交于
Commit 99579cce "xfs: skip dirty pages in ->releasepage()" started to skip dirty pages in xfs_vm_releasepage() which also has the effect that if a dirty page is truncated, it does not get freed by block_invalidatepage() and is lingering in LRU list waiting for reclaim. So a simple loop like: while true; do dd if=/dev/zero of=file bs=1M count=100 rm file done will keep using more and more memory until we hit low watermarks and start pagecache reclaim which will eventually reclaim also the truncate pages. Keeping these truncated (and thus never usable) pages in memory is just a waste of memory, is unnecessarily stressing page cache reclaim, and reportedly also leads to anonymous mmap(2) returning ENOMEM prematurely. So instead of just skipping dirty pages in xfs_vm_releasepage(), return to old behavior of skipping them only if they have delalloc or unwritten buffers and fix the spurious warnings by warning only if the page is clean. CC: stable@vger.kernel.org CC: Brian Foster <bfoster@redhat.com> CC: Vlastimil Babka <vbabka@suse.cz> Reported-by: NPetr Tůma <petr.tuma@d3s.mff.cuni.cz> Fixes: 99579cceSigned-off-by: NJan Kara <jack@suse.cz> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 30 11月, 2016 2 次提交
-
-
由 Christoph Hellwig 提交于
Straight switch over to using iomap for direct I/O - we already have the non-COW dio path in write_begin for DAX and files with extent size hints, so nothing to add there. The COW path is ported over from the old get_blocks version and a bit of a mess, but I have some work in progress to make it look more like the buffered I/O COW path. This gets rid of xfs_get_blocks_direct and the last caller of xfs_get_blocks with the create flag set, so all that code can be removed. Last but not least I've removed a comment in xfs_filemap_fault that refers to xfs_get_blocks entirely instead of updating it - while the reference is correct, the whole DAX fault path looks different than the non-DAX one, so it seems rather pointless. Signed-off-by: NChristoph Hellwig <hch@lst.de> Tested-by: NJens Axboe <axboe@fb.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
This patch drops the XFS-own i_iolock and uses the VFS i_rwsem which recently replaced i_mutex instead. This means we only have to take one lock instead of two in many fast path operations, and we can also shrink the xfs_inode structure. Thanks to the xfs_ilock family there is very little churn, the only thing of note is that we need to switch to use the lock_two_directory helper for taking the i_rwsem on two inodes in a few places to make sure our lock order matches the one used in the VFS. Signed-off-by: NChristoph Hellwig <hch@lst.de> Tested-by: NJens Axboe <axboe@fb.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-