- 08 5月, 2020 6 次提交
-
-
由 Darrick J. Wong 提交于
Rename XFS_{EFI,BUI,RUI,CUI}_RECOVERED to XFS_LI_RECOVERED so that we track recovery status in the log item, then get rid of the now unused flags fields in each of those log item types. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChandan Babu R <chandanrlinux@gmail.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
During recovery, every intent that we recover from the log has to be added to the AIL. Replace the open-coded addition with a helper. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NChandan Babu R <chandanrlinux@gmail.com>
-
由 Darrick J. Wong 提交于
Replace the open-coded AIL item walking with a proper helper when we're trying to release an intent item that has been finished. We add a new ->iop_match method to decide if an intent item matches a supplied ID. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChandan Babu R <chandanrlinux@gmail.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Move the code that processes the log items created from the recovered log items into the per-item source code files and use dispatch functions to call them. No functional changes. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChandan Babu R <chandanrlinux@gmail.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Move the extent free intent and intent-done pass2 commit code into the per-item source code files and use dispatch functions to call them. We do these one at a time because there's a lot of code to move. No functional changes. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChandan Babu R <chandanrlinux@gmail.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Create a generic dispatch structure to delegate recovery of different log item types into various code modules. This will enable us to move code specific to a particular log item type out of xfs_log_recover.c and into the log item source. The first operation we virtualize is the log item sorting. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChandan Babu R <chandanrlinux@gmail.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 07 5月, 2020 1 次提交
-
-
由 Brian Foster 提交于
Various intent log items call xfs_trans_ail_remove() with a log I/O error shutdown type, but this helper historically checks whether an item is in the AIL before calling xfs_trans_ail_delete(). This means the shutdown check is essentially a no-op for users of xfs_trans_ail_remove(). It is possible that some items might not be AIL resident when the AIL remove attempt occurs, but this should be isolated to cases where the filesystem has already shutdown. For example, this includes abort of the transaction committing the intent and I/O error of the iclog buffer committing the intent to the log. Therefore, update these callsites to use xfs_trans_ail_delete() to provide AIL state validation for the common path of items being released and removed when associated done items commit to the physical log. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NAllison Collins <allison.henderson@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 05 5月, 2020 6 次提交
-
-
由 Christoph Hellwig 提交于
Given how XFS is all based around btrees it doesn't make much sense to offer a totally generic state when we can just use the btree cursor. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
All defer op instance place their own extension of the log item into the dfp_done field. Replace that with a xfs_log_item to improve type safety and make the code easier to follow. Also use the opportunity to improve the ->finish_item calling conventions to place the done log item as the higher level structure before the list_entry used for the individual items. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
All defer op instance place their own extension of the log item into the dfp_intent field. Replace that with a xfs_log_item to improve type safety and make the code easier to follow. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
This avoids a per-item indirect call, and also simplifies the interface a bit. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
These are aways called together, and my merging them we reduce the amount of indirect calls, improve type safety and in general clean up the code a bit. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 19 11月, 2019 1 次提交
-
-
由 Carlos Maiolino 提交于
We can remove it now, without needing to rework the KM_ flags. Use kmem_cache_free() directly. Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NCarlos Maiolino <cmaiolino@redhat.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 11 11月, 2019 1 次提交
-
-
由 Darrick J. Wong 提交于
Convert EIO to EFSCORRUPTED in the logging code when we can determine that the log contents are invalid. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 05 11月, 2019 1 次提交
-
-
由 Darrick J. Wong 提交于
Make sure we log something to dmesg whenever we return -EFSCORRUPTED up the call stack. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NCarlos Maiolino <cmaiolino@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 27 8月, 2019 1 次提交
-
-
由 Tetsuo Handa 提交于
Since no caller is using KM_NOSLEEP and no callee branches on KM_SLEEP, we can remove KM_NOSLEEP and replace KM_SLEEP with 0. Signed-off-by: NTetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 29 6月, 2019 8 次提交
-
-
由 Eric Sandeen 提交于
There are many, many xfs header files which are included but unneeded (or included twice) in the xfs code, so remove them. nb: xfs_linux.h includes about 9 headers for everyone, so those explicit includes get removed by this. I'm not sure what the preference is, but if we wanted explicit includes everywhere, a followup patch could remove those xfs_*.h includes from xfs_linux.h and move them into the files that need them. Or it could be left as-is. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Keep all the extree item related code together in one file. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
There is no good reason to keep these two functions separate. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
We have various items that are released from ->iop_comitting. Add a flag to just call ->iop_release from the commit path to avoid tons of boilerplate code. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
The iop_unlock method is called when comitting or cancelling a transaction. In the latter case, the transaction may or may not be aborted. While there is no known problem with the current code in practice, this implementation is limited in that any log item implementation that might want to differentiate between a commit and a cancellation must rely on the aborted state. The aborted bit is only set when the cancelled transaction is dirty, however. This means that there is no way to distinguish between a commit and a clean transaction cancellation. For example, intent log items currently rely on this distinction. The log item is either transferred to the CIL on commit or released on transaction cancel. There is currently no possibility for a clean intent log item in a transaction, but if that state is ever introduced a cancel of such a transaction will immediately result in memory leaks of the associated log item(s). This is an interface deficiency and landmine. To clean this up, replace the iop_unlock method with an iop_release method that is specific to transaction cancel. The existing iop_committing method occurs at the same time as iop_unlock in the commit path and there is no need for two separate callbacks here. Overload the iop_committing method with the current commit time iop_unlock implementations to eliminate the need for the latter and further simplify the interface. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Just check if they are present first. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Darrick J. Wong 提交于
The inode geometry structure isn't related to ondisk format; it's support for the mount structure. Move it to xfs_shared.h. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 13 12月, 2018 1 次提交
-
-
由 Darrick J. Wong 提交于
Owner information for static fs metadata can be defined readonly at build time because it never changes across filesystems. This enables us to reduce stack usage (particularly in scrub) because we can use the statically defined oinfo structures. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
- 07 6月, 2018 1 次提交
-
-
由 Dave Chinner 提交于
Remove the verbose license text from XFS files and replace them with SPDX tags. This does not change the license of any of the code, merely refers to the common, up-to-date license files in LICENSES/ This change was mostly scripted. fs/xfs/Makefile and fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected and modified by the following command: for f in `git grep -l "GNU General" fs/xfs/` ; do echo $f cat $f | awk -f hdr.awk > $f.new mv -f $f.new $f done And the hdr.awk script that did the modification (including detecting the difference between GPL-2.0 and GPL-2.0+ licenses) is as follows: $ cat hdr.awk BEGIN { hdr = 1.0 tag = "GPL-2.0" str = "" } /^ \* This program is free software/ { hdr = 2.0; next } /any later version./ { tag = "GPL-2.0+" next } /^ \*\// { if (hdr > 0.0) { print "// SPDX-License-Identifier: " tag print str print $0 str="" hdr = 0.0 next } print $0 next } /^ \* / { if (hdr > 1.0) next if (hdr > 0.0) { if (str != "") str = str "\n" str = str $0 next } print $0 next } /^ \*/ { if (hdr > 0.0) next print $0 next } // { if (hdr > 0.0) { if (str != "") str = str "\n" str = str $0 next } print $0 } END { } $ Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 10 5月, 2018 2 次提交
-
-
由 Brian Foster 提交于
Freed extents are unconditionally discarded when online discard is enabled. Define XFS_BMAPI_NODISCARD to allow callers to bypass discards when unnecessary. For example, this will be useful for eofblocks trimming. This patch does not change behavior. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Dave Chinner 提交于
The log item flags contain a field that is protected by the AIL lock - the XFS_LI_IN_AIL flag. We use non-atomic RMW operations to set and clear these flags, but most of the updates and checks are not done with the AIL lock held and so are susceptible to update races. Fix this by changing the log item flags to use atomic bitops rather than be reliant on the AIL lock for update serialisation. Signed-Off-By: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 03 4月, 2018 1 次提交
-
-
由 Dave Chinner 提交于
When an intent is aborted during it's initial commit through xfs_defer_trans_abort(), there is a use after free. The current report is for a RUI through this path in generic/388: Freed by task 6274: __kasan_slab_free+0x136/0x180 kmem_cache_free+0xe7/0x4b0 xfs_trans_free_items+0x198/0x2e0 __xfs_trans_commit+0x27f/0xcc0 xfs_trans_roll+0x17b/0x2a0 xfs_defer_trans_roll+0x6ad/0xe60 xfs_defer_finish+0x2a6/0x2140 xfs_alloc_file_space+0x53a/0xf90 xfs_file_fallocate+0x5c6/0xac0 vfs_fallocate+0x2f5/0x930 ioctl_preallocate+0x1dc/0x320 do_vfs_ioctl+0xfe4/0x1690 The problem is that the RUI has two active references - one in the current transaction, and another held by the defer_ops structure that is passed to the RUD (intent done) so that both the intent and the intent done structures are freed on commit of the intent done. Hence during abort, we need to release the intent item, because the defer_ops reference is released separately via ->abort_intent callback. Fix all the intent code to do this correctly. Signed-Off-By: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 22 12月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
Calling xfs_rmap_free with an unknown owner is supposed to remove any rmaps covering that range regardless of owner. This is used by the EFI recovery code to say "we're freeing this, it mustn't be owned by anything anymore", but for whatever reason xfs_free_ag_extent filters them out. Therefore, remove the filter and make xfs_rmap_unmap actually treat it as a wildcard owner -- free anything that's already there, and if there's no owner at all then that's fine too. There are two existing callers of bmap_add_free that take care the rmap deferred ops themselves and use OWN_UNKNOWN to skip the EFI-based rmap cleanup; convert these to use OWN_NULL (via helpers), and now we really require that an RUI (if any) gets added to the defer ops before any EFI. Lastly, now that xfs_free_extent filters out OWN_NULL rmap free requests, growfs will have to consult directly with the rmap to ensure that there aren't any rmaps in the grown region. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 26 4月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
Use ASSERTs on the log intent item refcounts so that we fail noisily if anyone tries to double-free the item. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 03 8月, 2016 3 次提交
-
-
由 Darrick J. Wong 提交于
Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Darrick J. Wong 提交于
For the rmap btree to work, we have to feed the extent owner information to the the allocation and freeing functions. This information is what will end up in the rmap btree that tracks allocated extents. While we technically don't need the owner information when freeing extents, passing it allows us to validate that the extent we are removing from the rmap btree actually belonged to the owner we expected it to belong to. We also define a special set of owner values for internal metadata that would otherwise have no owner. This allows us to tell the difference between metadata owned by different per-ag btrees, as well as static fs metadata (e.g. AG headers) and internal journal blocks. There are also a couple of special cases we need to take care of - during EFI recovery, we don't actually know who the original owner was, so we need to pass a wildcard to indicate that we aren't checking the owner for validity. We also need special handling in growfs, as we "free" the space in the last AG when extending it, but because it's new space it has no actual owner... While touching the xfs_bmap_add_free() function, re-order the parameters to put the struct xfs_mount first. Extend the owner field to include both the owner type and some sort of index within the owner. The index field will be used to support reverse mappings when reflink is enabled. When we're freeing extents from an EFI, we don't have the owner information available (rmap updates have their own redo items). xfs_free_extent therefore doesn't need to do an rmap update. Make sure that the log replay code signals this correctly. This is based upon a patch originally from Dave Chinner. It has been extended to add more owner information with the intent of helping recovery operations when things go wrong (e.g. offset of user data block in a file). [dchinner: de-shout the xfs_rmap_*_owner helpers] [darrick: minor style fixes suggested by Christoph Hellwig] Signed-off-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Darrick J. Wong 提交于
Refactor the EFI intent item recovery (and cancellation) functions into a general function that scans the AIL and an intent item type specific handler. Move the function that recovers a single EFI item into the extent free item code. We'll want the generalized function when we start wiring up more redo item types. Furthermore, ensure that log recovery only replays the redo items that were in the AIL prior to recovery by checking the item LSN against the largest LSN seen during log scanning. As written this should never happen, but we can be defensive anyway. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 22 7月, 2016 1 次提交
-
-
由 Dave Chinner 提交于
One of the problems we currently have with delayed logging is that under serious memory pressure we can deadlock memory reclaim. THis occurs when memory reclaim (such as run by kswapd) is reclaiming XFS inodes and issues a log force to unpin inodes that are dirty in the CIL. The CIL is pushed, but this will only occur once it gets the CIL context lock to ensure that all committing transactions are complete and no new transactions start being committed to the CIL while the push switches to a new context. The deadlock occurs when the CIL context lock is held by a committing process that is doing memory allocation for log vector buffers, and that allocation is then blocked on memory reclaim making progress. Memory reclaim, however, is blocked waiting for a log force to make progress, and so we effectively deadlock at this point. To solve this problem, we have to move the CIL log vector buffer allocation outside of the context lock so that memory reclaim can always make progress when it needs to force the log. The problem with doing this is that a CIL push can take place while we are determining if we need to allocate a new log vector buffer for an item and hence the current log vector may go away without warning. That means we canot rely on the existing log vector being present when we finally grab the context lock and so we must have a replacement buffer ready to go at all times. To ensure this, introduce a "shadow log vector" buffer that is always guaranteed to be present when we gain the CIL context lock and format the item. This shadow buffer may or may not be used during the formatting, but if the log item does not have an existing log vector buffer or that buffer is too small for the new modifications, we swap it for the new shadow buffer and format the modifications into that new log vector buffer. The result of this is that for any object we modify more than once in a given CIL checkpoint, we double the memory required to track dirty regions in the log. For single modifications then we consume the shadow log vectorwe allocate on commit, and that gets consumed by the checkpoint. However, if we make multiple modifications, then the second transaction commit will allocate a shadow log vector and hence we will end up with double the memory usage as only one of the log vectors is consumed by the CIL checkpoint. The remaining shadow vector will be freed when th elog item is freed. This can probably be optimised in future - access to the shadow log vector is serialised by the object lock (as opposited to the active log vector, which is controlled by the CIL context lock) and so we can probably free shadow log vector from some objects when the log item is marked clean on removal from the AIL. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 19 8月, 2015 4 次提交
-
-
由 Brian Foster 提交于
Several areas of code duplicate a pattern where we take the AIL lock, check whether an item is in the AIL and remove it if so. Create a new helper for this pattern and use it where appropriate. Signed-off-by: NBrian Foster <bfoster@redhat.com>
-
由 Brian Foster 提交于
The EFI is initialized with a reference count of 2. One for the EFI to ensure the item makes it to the AIL and one for the subsequently created EFD to release the EFI once the EFD is committed. Log recovery uses the EFI in a similar manner, but implements a hack to remove both references in one call once the EFD is handled. Update log recovery to use EFI reference counting in a manner consistent with the log. When an EFI is encountered during recovery, an EFI item is allocated and inserted to the AIL directly. Since the EFI reference is typically dropped when the EFI is unpinned and this is analogous with AIL insertion, drop the EFI reference at this point. When a corresponding EFD is encountered in the log, this indicates that the extents were freed, no processing is required and the EFI can be dropped. Update xlog_recover_efd_pass2() to simply drop the EFD reference at this point rather than open code the AIL removal and EFI free. Remaining EFIs (i.e., with no corresponding EFD) are processed in xlog_recover_finish(). An EFD transaction is allocated and the extents are freed, which transfers ownership of the EFI reference to the EFD item in the log. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Brian Foster 提交于
Freeing an extent in XFS involves logging an EFI (extent free intention), freeing the actual extent, and logging an EFD (extent free done). The EFI object is created with a reference count of 2: one for the current transaction and one for the subsequently created EFD. Under normal circumstances, the first reference is dropped when the EFI is unpinned and the second reference is dropped when the EFD is committed to the on-disk log. In event of errors or filesystem shutdown, there are various potential cleanup scenarios depending on the state of the EFI/EFD. The cleanup scenarios are confusing and racy, as demonstrated by the following test sequence: # mount $dev $mnt # fsstress -d $mnt -n 99999 -p 16 -z -f fallocate=1 \ -f punch=1 -f creat=1 -f unlink=1 & # sleep 5 # killall -9 fsstress; wait # godown -f $mnt # umount ... in which the final umount can hang due to the AIL being pinned indefinitely by one or more EFI items. This can occur due to several conditions. For example, if the shutdown occurs after the EFI is committed to the on-disk log and the EFD committed to the CIL, but before the EFD committed to the log, the EFD iop_committed() abort handler does not drop its reference to the EFI. Alternatively, manual error injection in the xfs_bmap_finish() codepath shows that if an error occurs after the EFI transaction is committed but before the EFD is constructed and logged, the EFI is never released from the AIL. Update the EFI/EFD item handling code to use a more straightforward and reliable approach to error handling. If an error occurs after the EFI transaction is committed and before the EFD is constructed, release the EFI explicitly from xfs_bmap_finish(). If the EFI transaction is cancelled, release the EFI in the unlock handler. Once the EFD is constructed, it is responsible for releasing the EFI under any circumstances (including whether the EFI item aborts due to log I/O error). Update the EFD item handlers to release the EFI if the transaction is cancelled or aborts due to log I/O error. Finally, update xfs_bmap_finish() to log at least one EFD extent to the transaction before xfs_free_extent() errors are handled to ensure the transaction is dirty and EFD item error handling is triggered. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Brian Foster 提交于
Release of the EFI either occurs based on the reference count or the extent count. The extent count used is either the count tracked in the EFI or EFD, depending on the particular situation. In either case, the count is initialized to the final value and thus always matches the current efi_next_extent value once the EFI is completely constructed. For example, the EFI extent count is increased as the extents are logged in xfs_bmap_finish() and the full free list is always completely processed. Therefore, the count is guaranteed to be complete once the EFI transaction is committed. The EFD uses the efd_nextents counter to release the EFI. This counter is initialized to the count of the EFI when the EFD is created. Thus the EFD, as currently used, has no concept of partial EFI release based on extent count. Given that the EFI extent count is always released in whole, use of the extent count for reference counting is unnecessary. Remove this level of the API and release the EFI based on the core reference count. The efi_next_extent counter remains because it is still used to track the slot to log the next extent to free. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-