- 06 12月, 2012 20 次提交
-
-
由 Mihai Caraman 提交于
Mask high 32 bits of effective address in emulation layer for guests running in 32-bit mode. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> [agraf: fix indent] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Mihai Caraman 提交于
Add emulation helper for getting instruction ea and refactor tlb instruction emulation to use it. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> [agraf: keep rt variable around] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Mihai Caraman 提交于
Add interrupt handling support for 64-bit bookehv hosts. Unify 32 and 64 bit implementations using a common stack layout and a common execution flow starting from kvm_handler_common macro. Update documentation for 64-bit input register values. This patch only address the bolted TLB miss exception handlers version. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Mihai Caraman 提交于
GET_VCPU define will not be implemented for 64-bit for performance reasons so get rid of it also on 32-bit. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Mihai Caraman 提交于
Include header file for get_tb() declaration. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Mihai Caraman 提交于
64-bit GCC 4.5.1 warns about an uninitialized variable which was guarded by a flag. Initialize the variable to make it happy. Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com> [agraf: reword comment] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Currently, if a machine check interrupt happens while we are in the guest, we exit the guest and call the host's machine check handler, which tends to cause the host to panic. Some machine checks can be triggered by the guest; for example, if the guest creates two entries in the SLB that map the same effective address, and then accesses that effective address, the CPU will take a machine check interrupt. To handle this better, when a machine check happens inside the guest, we call a new function, kvmppc_realmode_machine_check(), while still in real mode before exiting the guest. On POWER7, it handles the cases that the guest can trigger, either by flushing and reloading the SLB, or by flushing the TLB, and then it delivers the machine check interrupt directly to the guest without going back to the host. On POWER7, the OPAL firmware patches the machine check interrupt vector so that it gets control first, and it leaves behind its analysis of the situation in a structure pointed to by the opal_mc_evt field of the paca. The kvmppc_realmode_machine_check() function looks at this, and if OPAL reports that there was no error, or that it has handled the error, we also go straight back to the guest with a machine check. We have to deliver a machine check to the guest since the machine check interrupt might have trashed valid values in SRR0/1. If the machine check is one we can't handle in real mode, and one that OPAL hasn't already handled, or on PPC970, we exit the guest and call the host's machine check handler. We do this by jumping to the machine_check_fwnmi label, rather than absolute address 0x200, because we don't want to re-execute OPAL's handler on POWER7. On PPC970, the two are equivalent because address 0x200 just contains a branch. Then, if the host machine check handler decides that the system can continue executing, kvmppc_handle_exit() delivers a machine check interrupt to the guest -- once again to let the guest know that SRR0/1 have been modified. Signed-off-by: NPaul Mackerras <paulus@samba.org> [agraf: fix checkpatch warnings] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
When we change or remove a HPT (hashed page table) entry, we can do either a global TLB invalidation (tlbie) that works across the whole machine, or a local invalidation (tlbiel) that only affects this core. Currently we do local invalidations if the VM has only one vcpu or if the guest requests it with the H_LOCAL flag, though the guest Linux kernel currently doesn't ever use H_LOCAL. Then, to cope with the possibility that vcpus moving around to different physical cores might expose stale TLB entries, there is some code in kvmppc_hv_entry to flush the whole TLB of entries for this VM if either this vcpu is now running on a different physical core from where it last ran, or if this physical core last ran a different vcpu. There are a number of problems on POWER7 with this as it stands: - The TLB invalidation is done per thread, whereas it only needs to be done per core, since the TLB is shared between the threads. - With the possibility of the host paging out guest pages, the use of H_LOCAL by an SMP guest is dangerous since the guest could possibly retain and use a stale TLB entry pointing to a page that had been removed from the guest. - The TLB invalidations that we do when a vcpu moves from one physical core to another are unnecessary in the case of an SMP guest that isn't using H_LOCAL. - The optimization of using local invalidations rather than global should apply to guests with one virtual core, not just one vcpu. (None of this applies on PPC970, since there we always have to invalidate the whole TLB when entering and leaving the guest, and we can't support paging out guest memory.) To fix these problems and simplify the code, we now maintain a simple cpumask of which cpus need to flush the TLB on entry to the guest. (This is indexed by cpu, though we only ever use the bits for thread 0 of each core.) Whenever we do a local TLB invalidation, we set the bits for every cpu except the bit for thread 0 of the core that we're currently running on. Whenever we enter a guest, we test and clear the bit for our core, and flush the TLB if it was set. On initial startup of the VM, and when resetting the HPT, we set all the bits in the need_tlb_flush cpumask, since any core could potentially have stale TLB entries from the previous VM to use the same LPID, or the previous contents of the HPT. Then, we maintain a count of the number of online virtual cores, and use that when deciding whether to use a local invalidation rather than the number of online vcpus. The code to make that decision is extracted out into a new function, global_invalidates(). For multi-core guests on POWER7 (i.e. when we are using mmu notifiers), we now never do local invalidations regardless of the H_LOCAL flag. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
The mask of MSR bits that get transferred from the guest MSR to the shadow MSR included MSR_DE. In fact that bit only exists on Book 3E processors, and it is assigned the same bit used for MSR_BE on Book 3S processors. Since we already had MSR_BE in the mask, this just removes MSR_DE. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This fixes various issues in how we were handling the VSX registers that exist on POWER7 machines. First, we were running off the end of the current->thread.fpr[] array. Ultimately this was because the vcpu->arch.vsr[] array is sized to be able to store both the FP registers and the extra VSX registers (i.e. 64 entries), but PR KVM only uses it for the extra VSX registers (i.e. 32 entries). Secondly, calling load_up_vsx() from C code is a really bad idea, because it jumps to fast_exception_return at the end, rather than returning with a blr instruction. This was causing it to jump off to a random location with random register contents, since it was using the largely uninitialized stack frame created by kvmppc_load_up_vsx. In fact, it isn't necessary to call either __giveup_vsx or load_up_vsx, since giveup_fpu and load_up_fpu handle the extra VSX registers as well as the standard FP registers on machines with VSX. Also, since VSX instructions can access the VMX registers and the FP registers as well as the extra VSX registers, we have to load up the FP and VMX registers before we can turn on the MSR_VSX bit for the guest. Conversely, if we save away any of the VSX or FP registers, we have to turn off MSR_VSX for the guest. To handle all this, it is more convenient for a single call to kvmppc_giveup_ext() to handle all the state saving that needs to be done, so we make it take a set of MSR bits rather than just one, and the switch statement becomes a series of if statements. Similarly kvmppc_handle_ext needs to be able to load up more than one set of registers. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This adds basic emulation of the PURR and SPURR registers. We assume we are emulating a single-threaded core, so these advance at the same rate as the timebase. A Linux kernel running on a POWER7 expects to be able to access these registers and is not prepared to handle a program interrupt on accessing them. This also adds a very minimal emulation of the DSCR (data stream control register). Writes are ignored and reads return zero. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Currently, if the guest does an H_PROTECT hcall requesting that the permissions on a HPT entry be changed to allow writing, we make the requested change even if the page is marked read-only in the host Linux page tables. This is a problem since it would for instance allow a guest to modify a page that KSM has decided can be shared between multiple guests. To fix this, if the new permissions for the page allow writing, we need to look up the memslot for the page, work out the host virtual address, and look up the Linux page tables to get the PTE for the page. If that PTE is read-only, we reduce the HPTE permissions to read-only. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This fixes a bug in the code which allows userspace to read out the contents of the guest's hashed page table (HPT). On the second and subsequent passes through the HPT, when we are reporting only those entries that have changed, we were incorrectly initializing the index field of the header with the index of the first entry we skipped rather than the first changed entry. This fixes it. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
With HV-style KVM, we maintain reverse-mapping lists that enable us to find all the HPT (hashed page table) entries that reference each guest physical page, with the heads of the lists in the memslot->arch.rmap arrays. When we reset the HPT (i.e. when we reboot the VM), we clear out all the HPT entries but we were not clearing out the reverse mapping lists. The result is that as we create new HPT entries, the lists get corrupted, which can easily lead to loops, resulting in the host kernel hanging when it tries to traverse those lists. This fixes the problem by zeroing out all the reverse mapping lists when we zero out the HPT. This incidentally means that we are also zeroing our record of the referenced and changed bits (not the bits in the Linux PTEs, used by the Linux MM subsystem, but the bits used by the KVM_GET_DIRTY_LOG ioctl, and those used by kvm_age_hva() and kvm_test_age_hva()). Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on this fd return the contents of the HPT (hashed page table), writes create and/or remove entries in the HPT. There is a new capability, KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl takes an argument structure with the index of the first HPT entry to read out and a set of flags. The flags indicate whether the user is intending to read or write the HPT, and whether to return all entries or only the "bolted" entries (those with the bolted bit, 0x10, set in the first doubleword). This is intended for use in implementing qemu's savevm/loadvm and for live migration. Therefore, on reads, the first pass returns information about all HPTEs (or all bolted HPTEs). When the first pass reaches the end of the HPT, it returns from the read. Subsequent reads only return information about HPTEs that have changed since they were last read. A read that finds no changed HPTEs in the HPT following where the last read finished will return 0 bytes. The format of the data provides a simple run-length compression of the invalid entries. Each block of data starts with a header that indicates the index (position in the HPT, which is just an array), the number of valid entries starting at that index (may be zero), and the number of invalid entries following those valid entries. The valid entries, 16 bytes each, follow the header. The invalid entries are not explicitly represented. Signed-off-by: NPaul Mackerras <paulus@samba.org> [agraf: fix documentation] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This makes a HPTE removal function, kvmppc_do_h_remove(), available outside book3s_hv_rm_mmu.c. This will be used by the HPT writing code. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This uses a bit in our record of the guest view of the HPTE to record when the HPTE gets modified. We use a reserved bit for this, and ensure that this bit is always cleared in HPTE values returned to the guest. The recording of modified HPTEs is only done if other code indicates its interest by setting kvm->arch.hpte_mod_interest to a non-zero value. The reason for this is that when later commits add facilities for userspace to read the HPT, the first pass of reading the HPT will be quicker if there are no (or very few) HPTEs marked as modified, rather than having most HPTEs marked as modified. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This fixes a bug where adding a new guest HPT entry via the H_ENTER hcall would lose the "changed" bit in the reverse map information for the guest physical page being mapped. The result was that the KVM_GET_DIRTY_LOG could return a zero bit for the page even though the page had been modified by the guest. This fixes it by only modifying the index and present bits in the reverse map entry, thus preserving the reference and change bits. We were also unnecessarily setting the reference bit, and this fixes that too. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This restructures the code that creates HPT (hashed page table) entries so that it can be called in situations where we don't have a struct vcpu pointer, only a struct kvm pointer. It also fixes a bug where kvmppc_map_vrma() would corrupt the guest R4 value. Most of the work of kvmppc_virtmode_h_enter is now done by a new function, kvmppc_virtmode_do_h_enter, which itself calls another new function, kvmppc_do_h_enter, which contains most of the old kvmppc_h_enter. The new kvmppc_do_h_enter takes explicit arguments for the place to return the HPTE index, the Linux page tables to use, and whether it is being called in real mode, thus removing the need for it to have the vcpu as an argument. Currently kvmppc_map_vrma creates the VRMA (virtual real mode area) HPTEs by calling kvmppc_virtmode_h_enter, which is designed primarily to handle H_ENTER hcalls from the guest that need to pin a page of memory. Since H_ENTER returns the index of the created HPTE in R4, kvmppc_virtmode_h_enter updates the guest R4, corrupting the guest R4 in the case when it gets called from kvmppc_map_vrma on the first VCPU_RUN ioctl. With this, kvmppc_map_vrma instead calls kvmppc_virtmode_do_h_enter with the address of a dummy word as the place to store the HPTE index, thus avoiding corrupting the guest R4. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
In order to support the generic eventfd infrastructure on PPC, we need to call into the generic KVM in-kernel device mmio code. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 28 11月, 2012 1 次提交
-
-
由 Marcelo Tosatti 提交于
TSC initialization will soon make use of online_vcpus. Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com>
-
- 31 10月, 2012 1 次提交
-
-
由 Alexander Graf 提交于
The new uapi framework splits kernel internal and user space exported bits of header files more cleanly. Adjust the ePAPR header accordingly. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 30 10月, 2012 12 次提交
-
-
由 Paul Mackerras 提交于
This fixes an error in the inline asm in try_lock_hpte() where we were erroneously using a register number as an immediate operand. The bug only affects an error path, and in fact the code will still work as long as the compiler chooses some register other than r0 for the "bits" variable. Nevertheless it should still be fixed. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Commit 55b665b0 ("KVM: PPC: Book3S HV: Provide a way for userspace to get/set per-vCPU areas") includes a check on the length of the dispatch trace log (DTL) to make sure the buffer is at least one entry long. This is appropriate when registering a buffer, but the interface also allows for any existing buffer to be unregistered by specifying a zero address. In this case the length check is not appropriate. This makes the check conditional on the address being non-zero. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Currently the code that accounts stolen time tends to overestimate the stolen time, and will sometimes report more stolen time in a DTL (dispatch trace log) entry than has elapsed since the last DTL entry. This can cause guests to underflow the user or system time measured for some tasks, leading to ridiculous CPU percentages and total runtimes being reported by top and other utilities. In addition, the current code was designed for the previous policy where a vcore would only run when all the vcpus in it were runnable, and so only counted stolen time on a per-vcore basis. Now that a vcore can run while some of the vcpus in it are doing other things in the kernel (e.g. handling a page fault), we need to count the time when a vcpu task is preempted while it is not running as part of a vcore as stolen also. To do this, we bring back the BUSY_IN_HOST vcpu state and extend the vcpu_load/put functions to count preemption time while the vcpu is in that state. Handling the transitions between the RUNNING and BUSY_IN_HOST states requires checking and updating two variables (accumulated time stolen and time last preempted), so we add a new spinlock, vcpu->arch.tbacct_lock. This protects both the per-vcpu stolen/preempt-time variables, and the per-vcore variables while this vcpu is running the vcore. Finally, we now don't count time spent in userspace as stolen time. The task could be executing in userspace on behalf of the vcpu, or it could be preempted, or the vcpu could be genuinely stopped. Since we have no way of dividing up the time between these cases, we don't count any of it as stolen. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Currently the Book3S HV code implements a policy on multi-threaded processors (i.e. POWER7) that requires all of the active vcpus in a virtual core to be ready to run before we run the virtual core. However, that causes problems on reset, because reset stops all vcpus except vcpu 0, and can also reduce throughput since all four threads in a virtual core have to wait whenever any one of them hits a hypervisor page fault. This relaxes the policy, allowing the virtual core to run as soon as any vcpu in it is runnable. With this, the KVMPPC_VCPU_STOPPED state and the KVMPPC_VCPU_BUSY_IN_HOST state have been combined into a single KVMPPC_VCPU_NOTREADY state, since we no longer need to distinguish between them. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
If a thread in a virtual core becomes runnable while other threads in the same virtual core are already running in the guest, it is possible for the latecomer to join the others on the core without first pulling them all out of the guest. Currently this only happens rarely, when a vcpu is first started. This fixes some bugs and omissions in the code in this case. First, we need to check for VPA updates for the latecomer and make a DTL entry for it. Secondly, if it comes along while the master vcpu is doing a VPA update, we don't need to do anything since the master will pick it up in kvmppc_run_core. To handle this correctly we introduce a new vcore state, VCORE_STARTING. Thirdly, there is a race because we currently clear the hardware thread's hwthread_req before waiting to see it get to nap. A latecomer thread could have its hwthread_req cleared before it gets to test it, and therefore never increment the nap_count, leading to messages about wait_for_nap timeouts. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
There were a few places where we were traversing the list of runnable threads in a virtual core, i.e. vc->runnable_threads, without holding the vcore spinlock. This extends the places where we hold the vcore spinlock to cover everywhere that we traverse that list. Since we possibly need to sleep inside kvmppc_book3s_hv_page_fault, this moves the call of it from kvmppc_handle_exit out to kvmppc_vcpu_run, where we don't hold the vcore lock. In kvmppc_vcore_blocked, we don't actually need to check whether all vcpus are ceded and don't have any pending exceptions, since the caller has already done that. The caller (kvmppc_run_vcpu) wasn't actually checking for pending exceptions, so we add that. The change of if to while in kvmppc_run_vcpu is to make sure that we never call kvmppc_remove_runnable() when the vcore state is RUNNING or EXITING. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Subsequent patches implementing in-kernel XICS emulation will make it possible for IPIs to arrive at secondary threads at arbitrary times. This fixes some races in how we start the secondary threads, which if not fixed could lead to occasional crashes of the host kernel. This makes sure that (a) we have grabbed all the secondary threads, and verified that they are no longer in the kernel, before we start any thread, (b) that the secondary thread loads its vcpu pointer after clearing the IPI that woke it up (so we don't miss a wakeup), and (c) that the secondary thread clears its vcpu pointer before incrementing the nap count. It also removes unnecessary setting of the vcpu and vcore pointers in the paca in kvmppc_core_vcpu_load. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
When a Book3S HV KVM guest is running, we need the host to be in single-thread mode, that is, all of the cores (or at least all of the cores where the KVM guest could run) to be running only one active hardware thread. This is because of the hardware restriction in POWER processors that all of the hardware threads in the core must be in the same logical partition. Complying with this restriction is much easier if, from the host kernel's point of view, only one hardware thread is active. This adds two hooks in the SMP hotplug code to allow the KVM code to make sure that secondary threads (i.e. hardware threads other than thread 0) cannot come online while any KVM guest exists. The KVM code still has to check that any core where it runs a guest has the secondary threads offline, but having done that check it can now be sure that they will not come online while the guest is running. Signed-off-by: NPaul Mackerras <paulus@samba.org> Acked-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
The new uapi framework splits kernel internal and user space exported bits of header files more cleanly. Adjust the ePAPR header accordingly. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
The mtspr/mfspr emulation code became quite big over time. Move it into its own function so things stay more readable. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
When remembering the direction of a DCR transaction, we should write to the same variable that we interpret on later when doing vcpu_run again. Signed-off-by: NAlexander Graf <agraf@suse.de> Cc: stable@vger.kernel.org
-
由 Xiao Guangrong 提交于
This patch filters noslot pfn out from error pfns based on Marcelo comment: noslot pfn is not a error pfn After this patch, - is_noslot_pfn indicates that the gfn is not in slot - is_error_pfn indicates that the gfn is in slot but the error is occurred when translate the gfn to pfn - is_error_noslot_pfn indicates that the pfn either it is error pfns or it is noslot pfn And is_invalid_pfn can be removed, it makes the code more clean Signed-off-by: NXiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com>
-
- 23 10月, 2012 1 次提交
-
-
由 Christoffer Dall 提交于
The mmu_notifier_retry is not specific to any vcpu (and never will be) so only take struct kvm as a parameter. The motivation is the ARM mmu code that needs to call this from somewhere where we long let go of the vcpu pointer. Signed-off-by: NChristoffer Dall <c.dall@virtualopensystems.com> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
- 18 10月, 2012 5 次提交
-
-
由 Deepthi Dharwar 提交于
Earlier without cpuidle framework on pseries, the native arch idle routine comprised of both snooze and nap states. smt_snooze_delay variable was used to delay the idle process entry to deeper idle state like nap. With the coming of cpuidle, this arch specific idle was replaced by two different idle routines, one for supporting snooze and other for nap. This enabled addition of more low level idle states on pseries in the future. On adopting the generic cpuidle framework for POWER systems, the decision of which idle state to choose from, given a predicted idle time is taken by the menu governor based on target_residency and exit_latency of the idle states. target_residency is the minimum time to be resident in that idle state. Exit_latency is time taken to exit out of idle state. Deeper the idle state, both the target residency and exit latency would be higher. In the current design, smt_snooze_delay is used as target_residency for the snooze state which is incorrect, as it is not the minimum but the maximum duration to be in snooze state. This would result in the governor in taking bad decision, as presently target_residency of nap < target_residency of snooze inspite of nap being deeper idle state. This patch aims to fix this problem by replacing the smt_snooze_delay loop in snooze state, with the need_resched() as the governor is aware of entry and exit of various idle transitions based on which next idle time prediction. The governor is intelligent enough to determine the idle state the needs to be transitioned to and maintains a whole of heuristics including io load, previous idle states predictions etc for the same, based on which idle state entry decision is taken. With this fix, of setting target_residency of snooze to 0 nap to smt_snooze_delay if the predicted idle time is less than smt_snooze_delay (target_residency of nap) value governor would pick snooze state, else nap. This adhers to the previous native idle design. Signed-off-by: NDeepthi Dharwar <deepthi@linux.vnet.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Deepthi Dharwar 提交于
smt_snooze_delay was designed to delay idle loop's nap entry in the native idle code before it got ported over to use as part of the cpuidle framework. A -ve value assigned to smt_snooze_delay should result in busy looping, in other words disabling the entry to nap state. - https://lists.ozlabs.org/pipermail/linuxppc-dev/2010-May/082450.html This particular functionality can be achieved currently by echo 1 > /sys/devices/system/cpu/cpu*/state1/disable but it is broken when one assigns -ve value to the smt_snooze_delay variable either via sysfs entry or ppc64_cpu util. This patch aims to fix this, by disabling nap state when smt_snooze_delay variable is set to -ve value. Signed-off-by: NDeepthi Dharwar <deepthi@linux.vnet.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Deepthi Dharwar 提交于
Remove the redundant target residency initialisation in pseries_cpuidle_driver_init(). This is currently over-writing the residency time updated as part of the static table, resulting in all the idle states having the same target residency of 100us which is incorrect. This may result in the menu governor making wrong state decisions. Signed-off-by: NDeepthi Dharwar <deepthi@linux.vnet.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Aneesh Kumar K.V 提交于
Fix build failure for powerpc KVM by adding missing VPN_SHIFT definition and the ';' arch/powerpc/kvm/book3s_32_mmu_host.c: In function 'kvmppc_mmu_map_page': arch/powerpc/kvm/book3s_32_mmu_host.c:176: error: 'VPN_SHIFT' undeclared (first use in this function) arch/powerpc/kvm/book3s_32_mmu_host.c:176: error: (Each undeclared identifier is reported only once arch/powerpc/kvm/book3s_32_mmu_host.c:176: error: for each function it appears in.) arch/powerpc/kvm/book3s_32_mmu_host.c:178: error: expected ';' before 'next_pteg' arch/powerpc/kvm/book3s_32_mmu_host.c:190: error: label 'next_pteg' used but not defined make[1]: *** [arch/powerpc/kvm/book3s_32_mmu_host.o] Error 1 Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Benjamin Herrenschmidt 提交于
This reverts commit 81331211. This revert was requested by the author of the patch as it seems to cause system hangs with some low frequency events
-