1. 28 2月, 2014 1 次提交
    • S
      arm64: mm: Add double logical invert to pte accessors · 84fe6826
      Steve Capper 提交于
      Page table entries on ARM64 are 64 bits, and some pte functions such as
      pte_dirty return a bitwise-and of a flag with the pte value. If the
      flag to be tested resides in the upper 32 bits of the pte, then we run
      into the danger of the result being dropped if downcast.
      
      For example:
      	gather_stats(page, md, pte_dirty(*pte), 1);
      where pte_dirty(*pte) is downcast to an int.
      
      This patch adds a double logical invert to all the pte_ accessors to
      ensure predictable downcasting.
      Signed-off-by: NSteve Capper <steve.capper@linaro.org>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
      84fe6826
  2. 31 1月, 2014 2 次提交
  3. 29 11月, 2013 2 次提交
  4. 06 11月, 2013 1 次提交
  5. 29 6月, 2013 1 次提交
  6. 14 6月, 2013 4 次提交
    • S
      ARM64: mm: THP support. · af074848
      Steve Capper 提交于
      Bring Transparent HugePage support to ARM. The size of a
      transparent huge page depends on the normal page size. A
      transparent huge page is always represented as a pmd.
      
      If PAGE_SIZE is 4KB, THPs are 2MB.
      If PAGE_SIZE is 64KB, THPs are 512MB.
      Signed-off-by: NSteve Capper <steve.capper@linaro.org>
      Acked-by: NCatalin Marinas <catalin.marinas@arm.com>
      af074848
    • S
      ARM64: mm: HugeTLB support. · 084bd298
      Steve Capper 提交于
      Add huge page support to ARM64, different huge page sizes are
      supported depending on the size of normal pages:
      
      PAGE_SIZE is 4KB:
         2MB - (pmds) these can be allocated at any time.
      1024MB - (puds) usually allocated on bootup with the command line
               with something like: hugepagesz=1G hugepages=6
      
      PAGE_SIZE is 64KB:
       512MB - (pmds) usually allocated on bootup via command line.
      Signed-off-by: NSteve Capper <steve.capper@linaro.org>
      Acked-by: NCatalin Marinas <catalin.marinas@arm.com>
      084bd298
    • S
      ARM64: mm: Move PTE_PROT_NONE bit. · 59911ca4
      Steve Capper 提交于
      Under ARM64, PTEs can be broadly categorised as follows:
         - Present and valid: Bit #0 is set. The PTE is valid and memory
           access to the region may fault.
      
         - Present and invalid: Bit #0 is clear and bit #1 is set.
           Represents present memory with PROT_NONE protection. The PTE
           is an invalid entry, and the user fault handler will raise a
           SIGSEGV.
      
         - Not present (file or swap): Bits #0 and #1 are clear.
           Memory represented has been paged out. The PTE is an invalid
           entry, and the fault handler will try and re-populate the
           memory where necessary.
      
      Huge PTEs are block descriptors that have bit #1 clear. If we wish
      to represent PROT_NONE huge PTEs we then run into a problem as
      there is no way to distinguish between regular and huge PTEs if we
      set bit #1.
      
      To resolve this ambiguity this patch moves PTE_PROT_NONE from
      bit #1 to bit #2 and moves PTE_FILE from bit #2 to bit #3. The
      number of swap/file bits is reduced by 1 as a consequence, leaving
      60 bits for file and swap entries.
      Signed-off-by: NSteve Capper <steve.capper@linaro.org>
      Acked-by: NCatalin Marinas <catalin.marinas@arm.com>
      59911ca4
    • S
      ARM64: mm: Make PAGE_NONE pages read only and no-execute. · 072b1b62
      Steve Capper 提交于
      If we consider the following code sequence:
      
      	my_pte = pte_modify(entry, myprot);
      	x = pte_write(my_pte);
      	y = pte_exec(my_pte);
      
      If myprot comes from a PROT_NONE page, then x and y will both be
      true which is undesireable behaviour.
      
      This patch sets the no-execute and read-only bits for PAGE_NONE
      such that the code above will return false for both x and y.
      Signed-off-by: NSteve Capper <steve.capper@linaro.org>
      Acked-by: NCatalin Marinas <catalin.marinas@arm.com>
      072b1b62
  7. 12 6月, 2013 1 次提交
  8. 07 6月, 2013 1 次提交
  9. 10 1月, 2013 2 次提交
  10. 29 11月, 2012 1 次提交
  11. 16 11月, 2012 1 次提交
  12. 17 9月, 2012 1 次提交