- 30 5月, 2012 40 次提交
-
-
由 Hugh Dickins 提交于
tmpfs has supported hole-punching since 2.6.16, via madvise(,,MADV_REMOVE). But nowadays fallocate(,FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE,,) is the agreed way to punch holes. So add shmem_fallocate() to support that, and tweak shmem_truncate_range() to support partial pages at both the beginning and end of range (never needed for madvise, which demands rounded addr and rounds up length). Based-on-patch-by: NCong Wang <amwang@redhat.com> Signed-off-by: NHugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Cong Wang <amwang@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
Nick proposed years ago that tmpfs should avoid clearing its pages where write will overwrite them with new data, as ramfs has long done. But I messed it up and just got bad data. Tried again recently, it works fine. Here's time output for writing 4GiB 16 times on this Core i5 laptop: before: real 0m21.169s user 0m0.028s sys 0m21.057s real 0m21.382s user 0m0.016s sys 0m21.289s real 0m21.311s user 0m0.020s sys 0m21.217s after: real 0m18.273s user 0m0.032s sys 0m18.165s real 0m18.354s user 0m0.020s sys 0m18.265s real 0m18.440s user 0m0.032s sys 0m18.337s ramfs: real 0m16.860s user 0m0.028s sys 0m16.765s real 0m17.382s user 0m0.040s sys 0m17.273s real 0m17.133s user 0m0.044s sys 0m17.021s Yes, I have done perf reports, but they need more explanation than they deserve: in summary, clear_page vanishes, its cache loading shifts into copy_user_generic_unrolled; shmem_getpage_gfp goes down, and surprisingly mark_page_accessed goes way up - I think because they are respectively where the cache gets to be reloaded after being purged by clear or copy. Suggested-by: NNick Piggin <npiggin@gmail.com> Signed-off-by: NHugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
Let tmpfs into the NOSEC optimization (avoiding file_remove_suid() overhead on most common writes): set MS_NOSEC on its superblocks. Signed-off-by: NHugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Andi Kleen <andi@firstfloor.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
The GMA500 GPU driver uses GEM shmem objects, but with a new twist: the backing RAM has to be below 4GB. Not a problem while the boards supported only 4GB: but now Intel's D2700MUD boards support 8GB, and their GMA3600 is managed by the GMA500 driver. shmem/tmpfs has never pretended to support hardware restrictions on the backing memory, but it might have appeared to do so before v3.1, and even now it works fine until a page is swapped out then back in. When read_cache_page_gfp() supplied a freshly allocated page for copy, that compensated for whatever choice might have been made by earlier swapin readahead; but swapoff was likely to destroy the illusion. We'd like to continue to support GMA500, so now add a new shmem_should_replace_page() check on the zone when about to move a page from swapcache to filecache (in swapin and swapoff cases), with shmem_replace_page() to allocate and substitute a suitable page (given gma500/gem.c's mapping_set_gfp_mask GFP_KERNEL | __GFP_DMA32). This does involve a minor extension to mem_cgroup_replace_page_cache() (the page may or may not have already been charged); and I've removed a comment and call to mem_cgroup_uncharge_cache_page(), which in fact is always a no-op while PageSwapCache. Also removed optimization of an unlikely path in shmem_getpage_gfp(), now that we need to check PageSwapCache more carefully (a racing caller might already have made the copy). And at one point shmem_unuse_inode() needs to use the hitherto private page_swapcount(), to guard against racing with inode eviction. It would make sense to extend shmem_should_replace_page(), to cover cpuset and NUMA mempolicy restrictions too, but set that aside for now: needs a cleanup of shmem mempolicy handling, and more testing, and ought to handle swap faults in do_swap_page() as well as shmem. Signed-off-by: NHugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@infradead.org> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: Stephane Marchesin <marcheu@chromium.org> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Rob Clark <rob.clark@linaro.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
When MIGRATE_UNMOVABLE pages are freed from MIGRATE_UNMOVABLE type pageblock (and some MIGRATE_MOVABLE pages are left in it) waiting until an allocation takes ownership of the block may take too long. The type of the pageblock remains unchanged so the pageblock cannot be used as a migration target during compaction. Fix it by: * Adding enum compact_mode (COMPACT_ASYNC_[MOVABLE,UNMOVABLE], and COMPACT_SYNC) and then converting sync field in struct compact_control to use it. * Adding nr_pageblocks_skipped field to struct compact_control and tracking how many destination pageblocks were of MIGRATE_UNMOVABLE type. If COMPACT_ASYNC_MOVABLE mode compaction ran fully in try_to_compact_pages() (COMPACT_COMPLETE) it implies that there is not a suitable page for allocation. In this case then check how if there were enough MIGRATE_UNMOVABLE pageblocks to try a second pass in COMPACT_ASYNC_UNMOVABLE mode. * Scanning the MIGRATE_UNMOVABLE pageblocks (during COMPACT_SYNC and COMPACT_ASYNC_UNMOVABLE compaction modes) and building a count based on finding PageBuddy pages, page_count(page) == 0 or PageLRU pages. If all pages within the MIGRATE_UNMOVABLE pageblock are in one of those three sets change the whole pageblock type to MIGRATE_MOVABLE. My particular test case (on a ARM EXYNOS4 device with 512 MiB, which means 131072 standard 4KiB pages in 'Normal' zone) is to: - allocate 120000 pages for kernel's usage - free every second page (60000 pages) of memory just allocated - allocate and use 60000 pages from user space - free remaining 60000 pages of kernel memory (now we have fragmented memory occupied mostly by user space pages) - try to allocate 100 order-9 (2048 KiB) pages for kernel's usage The results: - with compaction disabled I get 11 successful allocations - with compaction enabled - 14 successful allocations - with this patch I'm able to get all 100 successful allocations NOTE: If we can make kswapd aware of order-0 request during compaction, we can enhance kswapd with changing mode to COMPACT_ASYNC_FULL (COMPACT_ASYNC_MOVABLE + COMPACT_ASYNC_UNMOVABLE). Please see the following thread: http://marc.info/?l=linux-mm&m=133552069417068&w=2 [minchan@kernel.org: minor cleanups] Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: NBartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Signed-off-by: NKyungmin Park <kyungmin.park@samsung.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
alloc_bootmem_section() derives allocation area constraints from the specified sparsemem section. This is a bit specific for a generic memory allocator like bootmem, though, so move it over to sparsemem. As __alloc_bootmem_node_nopanic() already retries failed allocations with relaxed area constraints, the fallback code in sparsemem.c can be removed and the code becomes a bit more compact overall. [akpm@linux-foundation.org: fix build] Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NTejun Heo <tj@kernel.org> Acked-by: NDavid S. Miller <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Gavin Shan <shangw@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Pass down the node descriptor instead of the more specific bootmem node descriptor down the call stack, like nobootmem does, when there is no good reason for the two to be different. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NTejun Heo <tj@kernel.org> Acked-by: NDavid S. Miller <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Gavin Shan <shangw@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
While the panicking node-specific allocation function tries to satisfy node+goal, goal, node, anywhere, the non-panicking function still does node+goal, goal, anywhere. Make it simpler: define the panicking version in terms of the non-panicking one, like the node-agnostic interface, so they always behave the same way apart from how to deal with allocation failure. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NYinghai Lu <yinghai@kernel.org> Acked-by: NTejun Heo <tj@kernel.org> Acked-by: NDavid S. Miller <davem@davemloft.net> Cc: Gavin Shan <shangw@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
__alloc_bootmem_node and __alloc_bootmem_low_node documentation claims the functions panic on allocation failure. Do it. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NYinghai Lu <yinghai@kernel.org> Acked-by: NTejun Heo <tj@kernel.org> Acked-by: NDavid S. Miller <davem@davemloft.net> Cc: Gavin Shan <shangw@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
While the panicking node-specific allocation function tries to satisfy node+goal, goal, node, anywhere, the non-panicking function still does node+goal, goal, anywhere. Make it simpler: define the panicking version in terms of the non-panicking one, like the node-agnostic interface, so they always behave the same way apart from how to deal with allocation failure. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NTejun Heo <tj@kernel.org> Acked-by: NDavid S. Miller <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Gavin Shan <shangw@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Match the nobootmem version of __alloc_bootmem_node. Try to satisfy both the node and the goal, then just the goal, then just the node, then allocate anywhere before panicking. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NTejun Heo <tj@kernel.org> Acked-by: NDavid S. Miller <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Gavin Shan <shangw@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Matching the desired goal to the right node is one thing, dropping the goal when it can not be satisfied is another. Split this into separate functions so that subsequent patches can use the node-finding but drop and handle the goal fallback on their own terms. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NTejun Heo <tj@kernel.org> Acked-by: NDavid S. Miller <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Gavin Shan <shangw@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Callsites need to provide a bootmem_data_t *, make the naming more descriptive. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NTejun Heo <tj@kernel.org> Acked-by: NDavid S. Miller <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Gavin Shan <shangw@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
When bootmem releases an unaligned BITS_PER_LONG pages chunk of memory to the page allocator, it checks the bitmap if there are still unreserved pages in the chunk (set bits), but also if the offset in the chunk indicates BITS_PER_LONG loop iterations already. But since the consulted bitmap is only a one-word-excerpt of the full per-node bitmap, there can not be more than BITS_PER_LONG bits set in it. The additional offset check is unnecessary. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NTejun Heo <tj@kernel.org> Acked-by: NDavid S. Miller <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Gavin Shan 提交于
When bootmem releases an unaligned chunk of memory at the beginning of a node to the page allocator, it iterates from that unaligned PFN but checks an aligned word of the page bitmap. The checked bits do not correspond to the PFNs and, as a result, reserved pages can be freed. Properly shift the bitmap word so that the lowest bit corresponds to the starting PFN before entering the freeing loop. This bug has been around since commit 41546c17 ("bootmem: clean up free_all_bootmem_core") (2.6.27) without known reports. Signed-off-by: NGavin Shan <shangw@linux.vnet.ibm.com> Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NTejun Heo <tj@kernel.org> Acked-by: NDavid S. Miller <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrew Morton 提交于
This has always been broken: one version takes an unsigned int and the other version takes no arguments. This bug was hidden because one version of set_pageblock_order() was a macro which doesn't evaluate its argument. Simplify it all and remove pageblock_default_order() altogether. Reported-by: Nrajman mekaco <rajman.mekaco@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alex Shi 提交于
When transparent_hugepage_enabled() is used outside mm/, such as in arch/x86/xx/tlb.c: + if (!cpu_has_invlpg || vma->vm_flags & VM_HUGETLB + || transparent_hugepage_enabled(vma)) { + flush_tlb_mm(vma->vm_mm); is_vma_temporary_stack() isn't referenced in huge_mm.h, so it has compile errors: arch/x86/mm/tlb.c: In function `flush_tlb_range': arch/x86/mm/tlb.c:324:4: error: implicit declaration of function `is_vma_temporary_stack' [-Werror=implicit-function-declaration] Since is_vma_temporay_stack() is just used in rmap.c and huge_memory.c, it is better to move it to huge_mm.h from rmap.h to avoid such errors. Signed-off-by: NAlex Shi <alex.shi@intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ulrich Drepper 提交于
Compiling page-type.c with a recent compiler produces many warnings, mostly related to signed/unsigned comparisons. This patch cleans up most of them. One remaining warning is about an unused parameter. The <compiler.h> file doesn't define a __unused macro (or the like) yet. This can be addressed later. Signed-off-by: NUlrich Drepper <drepper@gmail.com> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: NFengguang Wu <fengguang.wu@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ulrich Drepper 提交于
Programs using /proc/kpageflags need to know about the various flags. The <linux/kernel-page-flags.h> provides them and the comments in the file indicate that it is supposed to be used by user-level code. But the file is not installed. Install the headers and mark the unstable flags as out-of-bounds. The page-type tool is also adjusted to not duplicate the definitions Signed-off-by: NUlrich Drepper <drepper@gmail.com> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: NFengguang Wu <fengguang.wu@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Bjorn Helgaas 提交于
Print physical address info in a style consistent with the %pR style used elsewhere in the kernel. For example: -Zone PFN ranges: +Zone ranges: - DMA32 0x00000010 -> 0x00100000 + DMA32 [mem 0x00010000-0xffffffff] - Normal 0x00100000 -> 0x01080000 + Normal [mem 0x100000000-0x107fffffff] Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Bjorn Helgaas 提交于
Print swiotlb info in a style consistent with the %pR style used elsewhere in the kernel. For example: -Placing 64MB software IO TLB between ffff88007a662000 - ffff88007e662000 -software IO TLB at phys 0x7a662000 - 0x7e662000 +software IO TLB [mem 0x7a662000-0x7e661fff] (64MB) mapped at [ffff88007a662000-ffff88007e661fff] Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Bjorn Helgaas 提交于
Print physical address info in a style consistent with the %pR style used elsewhere in the kernel. For example: -found SMP MP-table at [ffff8800000fce90] fce90 +found SMP MP-table at [mem 0x000fce90-0x000fce9f] mapped at [ffff8800000fce90] -initial memory mapped : 0 - 20000000 +initial memory mapped: [mem 0x00000000-0x1fffffff] -Base memory trampoline at [ffff88000009c000] 9c000 size 8192 +Base memory trampoline [mem 0x0009c000-0x0009dfff] mapped at [ffff88000009c000] -SRAT: Node 0 PXM 0 0-80000000 +SRAT: Node 0 PXM 0 [mem 0x00000000-0x7fffffff] Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Bjorn Helgaas 提交于
Print physical address info in a style consistent with the %pR style used elsewhere in the kernel. For example: -BIOS-provided physical RAM map: +e820: BIOS-provided physical RAM map: - BIOS-e820: 0000000000000100 - 000000000009e000 (usable) +BIOS-e820: [mem 0x0000000000000100-0x000000000009dfff] usable -Allocating PCI resources starting at 90000000 (gap: 90000000:6ed1c000) +e820: [mem 0x90000000-0xfed1bfff] available for PCI devices -reserve RAM buffer: 000000000009e000 - 000000000009ffff +e820: reserve RAM buffer [mem 0x0009e000-0x0009ffff] Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Konstantin Khlebnikov 提交于
Even if CONFIG_DEBUG_VM=n gcc genereates code for some VM_BUG_ON() for example VM_BUG_ON(!PageCompound(page) || !PageHead(page)); in do_huge_pmd_wp_page() generates 114 bytes of code. But they mostly disappears when I split this VM_BUG_ON into two: -VM_BUG_ON(!PageCompound(page) || !PageHead(page)); +VM_BUG_ON(!PageCompound(page)); +VM_BUG_ON(!PageHead(page)); weird... but anyway after this patch code disappears completely. add/remove: 0/0 grow/shrink: 7/97 up/down: 135/-1784 (-1649) Signed-off-by: NKonstantin Khlebnikov <khlebnikov@openvz.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Konstantin Khlebnikov 提交于
Sometimes we want to check some expressions correctness at compile time. "(void)(e);" or "if (e);" can be dangerous if the expression has side-effects, and gcc sometimes generates a lot of code, even if the expression has no effect. This patch introduces macro BUILD_BUG_ON_INVALID() for such checks, it forces a compilation error if expression is invalid without any extra code. [Cast to "long" required because sizeof does not work for bit-fields.] Signed-off-by: NKonstantin Khlebnikov <khlebnikov@openvz.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Christopher Yeoh 提交于
Add a Kconfig option to allow people who don't want cross memory attach to not have it included in their build. Signed-off-by: NChris Yeoh <yeohc@au1.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The hierarchical versions of per-memcg counters in memory.stat are all calculated the same way and are all named total_<counter>. Documenting the pattern is easier for maintenance than listing each counter twice. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: NYing Han <yinghan@google.com> Randy Dunlap <rdunlap@xenotime.net> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Rientjes 提交于
mm->page_table_lock is hotly contested for page fault tests and isn't necessary to do mem_cgroup_uncharge_page() in do_huge_pmd_wp_page(). Signed-off-by: NDavid Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NAndrea Arcangeli <aarcange@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ying Han 提交于
Andrew pointed out that the is_mlocked_vma() is misnamed. A function with name like that would expect bool return and no side-effects. Since it is called on the fault path for new page, rename it in this patch. Signed-off-by: NYing Han <yinghan@google.com> Reviewed-by: NRik van Riel <riel@redhat.com> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtisu.com> Reviewed-by: NMinchan Kim <minchan@kernel.org> [akpm@linux-foundation.org: s/mlock_vma_newpage/mlock_vma_newpage/, per Minchan] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The rmap walker checking page table references has historically ignored references from VMAs that were not part of the memcg that was being reclaimed during memcg hard limit reclaim. When transitioning global reclaim to memcg hierarchy reclaim, I missed that bit and now references from outside a memcg are ignored even during global reclaim. Reverting back to traditional behaviour - count all references during global reclaim and only mind references of the memcg being reclaimed during limit reclaim would be one option. However, the more generic idea is to ignore references exactly then when they are outside the hierarchy that is currently under reclaim; because only then will their reclamation be of any use to help the pressure situation. It makes no sense to ignore references from a sibling memcg and then evict a page that will be immediately refaulted by that sibling which contributes to the same usage of the common ancestor under reclaim. The solution: make the rmap walker ignore references from VMAs that are not part of the hierarchy that is being reclaimed. Flat limit reclaim will stay the same, hierarchical limit reclaim will mind the references only to pages that the hierarchy owns. Global reclaim, since it reclaims from all memcgs, will be fixed to regard all references. [akpm@linux-foundation.org: name the args in the declaration] Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reported-by: NKonstantin Khlebnikov <khlebnikov@openvz.org> Acked-by: Konstantin Khlebnikov<khlebnikov@openvz.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Library functions should not grab locks when the callsites can do it, even if the lock nests like the rcu read-side lock does. Push the rcu_read_lock() from css_is_ancestor() to its single user, mem_cgroup_same_or_subtree() in preparation for another user that may already hold the rcu read-side lock. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NLi Zefan <lizf@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrew Morton 提交于
s/from_nodes/from and s/to_nodes/to/. The "_nodes" is redundant - it duplicates the argument's type. Done in a fit of irritation over 80-col issues :( Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <mkosaki@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Larry Woodman 提交于
While running an application that moves tasks from one cpuset to another I noticed that it takes much longer and moves many more pages than expected. The reason for this is do_migrate_pages() does its best to preserve the relative node differential from the first node of the cpuset because the application may have been written with that in mind. If memory was interleaved on the nodes of the source cpuset by an application do_migrate_pages() will try its best to maintain that interleaving on the nodes of the destination cpuset. This means copying the memory from all source nodes to the destination nodes even if the source and destination nodes overlap. This is a problem for userspace NUMA placement tools. The amount of time spent doing extra memory moves cancels out some of the NUMA performance improvements. Furthermore, if the number of source and destination nodes are to maintain the previous interleaving layout anyway. This patch changes do_migrate_pages() to only preserve the relative layout inside the program if the number of NUMA nodes in the source and destination mask are the same. If the number is different, we do a much more efficient migration by not touching memory that is in an allowed node. This preserves the old behaviour for programs that want it, while allowing a userspace NUMA placement tool to use the new, faster migration. This improves performance in our tests by up to a factor of 7. Without this change migrating tasks from a cpuset containing nodes 0-7 to a cpuset containing nodes 3-4, we migrate from ALL the nodes even if they are in the both the source and destination nodesets: Migrating 7 to 4 Migrating 6 to 3 Migrating 5 to 4 Migrating 4 to 3 Migrating 1 to 4 Migrating 3 to 4 Migrating 0 to 3 Migrating 2 to 3 With this change we only migrate from nodes that are not in the destination nodesets: Migrating 7 to 4 Migrating 6 to 3 Migrating 5 to 4 Migrating 2 to 3 Migrating 1 to 4 Migrating 0 to 3 Yet if we move from a cpuset containing nodes 2,3,4 to a cpuset containing 3,4,5 we still do move everything so that we preserve the desired NUMA offsets: Migrating 4 to 5 Migrating 3 to 4 Migrating 2 to 3 As far as performance is concerned this simple patch improves the time it takes to move 14, 20 and 26 large tasks from a cpuset containing nodes 0-7 to a cpuset containing nodes 1 & 3 by up to a factor of 7. Here are the timings with and without the patch: BEFORE PATCH -- Move times: 59, 140, 651 seconds ============ Moving 14 tasks from nodes (0-7) to nodes (1,3) numad(8780) do_migrate_pages (mm=0xffff88081d414400 from_nodes=0xffff880818c81d28 to_nodes=0xffff880818c81ce8 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x7 dest=0x3 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x6 dest=0x1 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x5 dest=0x3 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x4 dest=0x1 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x2 dest=0x1 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x1 dest=0x3 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x0 dest=0x1 flags=0x4) (Above moves repeated for each of the 14 tasks...) PID 8890 moved to node(s) 1,3 in 59.2 seconds Moving 20 tasks from nodes (0-7) to nodes (1,4-5) numad(8780) do_migrate_pages (mm=0xffff88081d88c700 from_nodes=0xffff880818c81d28 to_nodes=0xffff880818c81ce8 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d88c700 source=0x7 dest=0x4 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d88c700 source=0x6 dest=0x1 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d88c700 source=0x3 dest=0x1 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d88c700 source=0x2 dest=0x5 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d88c700 source=0x1 dest=0x4 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d88c700 source=0x0 dest=0x1 flags=0x4) (Above moves repeated for each of the 20 tasks...) PID 8962 moved to node(s) 1,4-5 in 139.88 seconds Moving 26 tasks from nodes (0-7) to nodes (1-3,5) numad(8780) do_migrate_pages (mm=0xffff88081d5bc740 from_nodes=0xffff880818c81d28 to_nodes=0xffff880818c81ce8 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x7 dest=0x5 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x6 dest=0x3 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x5 dest=0x2 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x3 dest=0x5 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x2 dest=0x3 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x1 dest=0x2 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x0 dest=0x1 flags=0x4) numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x4 dest=0x1 flags=0x4) (Above moves repeated for each of the 26 tasks...) PID 9058 moved to node(s) 1-3,5 in 651.45 seconds AFTER PATCH -- Move times: 42, 56, 93 seconds =========== Moving 14 tasks from nodes (0-7) to nodes (5,7) numad(33209) do_migrate_pages (mm=0xffff88101d5ff140 from_nodes=0xffff88101e7b5d28 to_nodes=0xffff88101e7b5ce8 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d5ff140 source=0x6 dest=0x5 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d5ff140 source=0x4 dest=0x5 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d5ff140 source=0x3 dest=0x7 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d5ff140 source=0x2 dest=0x5 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d5ff140 source=0x1 dest=0x7 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d5ff140 source=0x0 dest=0x5 flags=0x4) (Above moves repeated for each of the 14 tasks...) PID 33221 moved to node(s) 5,7 in 41.67 seconds Moving 20 tasks from nodes (0-7) to nodes (1,3,5) numad(33209) do_migrate_pages (mm=0xffff88101d6c37c0 from_nodes=0xffff88101e7b5d28 to_nodes=0xffff88101e7b5ce8 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d6c37c0 source=0x7 dest=0x3 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d6c37c0 source=0x6 dest=0x1 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d6c37c0 source=0x4 dest=0x3 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d6c37c0 source=0x2 dest=0x5 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d6c37c0 source=0x0 dest=0x1 flags=0x4) (Above moves repeated for each of the 20 tasks...) PID 33289 moved to node(s) 1,3,5 in 56.3 seconds Moving 26 tasks from nodes (0-7) to nodes (1,3,5,7) numad(33209) do_migrate_pages (mm=0xffff88101d924400 from_nodes=0xffff88101e7b5d28 to_nodes=0xffff88101e7b5ce8 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d924400 source=0x6 dest=0x5 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d924400 source=0x4 dest=0x1 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d924400 source=0x2 dest=0x5 flags=0x4) numad(33209) migrate_to_node (mm=0xffff88101d924400 source=0x0 dest=0x1 flags=0x4) (Above moves repeated for each of the 26 tasks...) PID 33372 moved to node(s) 1,3,5,7 in 92.67 seconds [akpm@linux-foundation.org: clean up comment layout] Signed-off-by: NLarry Woodman <lwoodman@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Reviewed-by: NRik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Rientjes 提交于
On COW, a new hugepage is allocated and charged to the memcg. If the system is oom or the charge to the memcg fails, however, the fault handler will return VM_FAULT_OOM which results in an oom kill. Instead, it's possible to fallback to splitting the hugepage so that the COW results only in an order-0 page being allocated and charged to the memcg which has a higher liklihood to succeed. This is expensive because the hugepage must be split in the page fault handler, but it is much better than unnecessarily oom killing a process. Signed-off-by: NDavid Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <jweiner@redhat.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Sasikantha babu 提交于
mm/vmstat.c: remove debug fs entries on failure of file creation and made extfrag_debug_root dentry local Remove debug fs files and directory on failure. Since no one is using "extfrag_debug_root" dentry outside of extfrag_debug_init(), make it local to the function. Signed-off-by: NSasikantha babu <sasikanth.v19@gmail.com> Acked-by: NDavid Rientjes <rientjes@google.com> Acked-by: NMel Gorman <mel@csn.ul.ie> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Siddhesh Poyarekar 提交于
The vma length in dup_mmap is calculated and stored in a unsigned int, which is insufficient and hence overflows for very large maps (beyond 16TB). The following program demonstrates this: #include <stdio.h> #include <unistd.h> #include <sys/mman.h> #define GIG 1024 * 1024 * 1024L #define EXTENT 16393 int main(void) { int i, r; void *m; char buf[1024]; for (i = 0; i < EXTENT; i++) { m = mmap(NULL, (size_t) 1 * 1024 * 1024 * 1024L, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); if (m == (void *)-1) printf("MMAP Failed: %d\n", m); else printf("%d : MMAP returned %p\n", i, m); r = fork(); if (r == 0) { printf("%d: successed\n", i); return 0; } else if (r < 0) printf("FORK Failed: %d\n", r); else if (r > 0) wait(NULL); } return 0; } Increase the storage size of the result to unsigned long, which is sufficient for storing the difference between addresses. Signed-off-by: NSiddhesh Poyarekar <siddhesh.poyarekar@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NHugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Rajman Mekaco 提交于
The "if (mm)" check is not required in find_vma, as the kernel code calls find_vma only when it is absolutely sure that the mm_struct arg to it is non-NULL. Remove the if(mm) check and adding the a WARN_ONCE(!mm) for now. This will serve the purpose of mandating that the execution context(user-mode/kernel-mode) be known before find_vma is called. Also fixed 2 checkpatch.pl errors in the declaration of the rb_node and vma_tmp local variables. I was browsing through the internet and read a discussion at https://lkml.org/lkml/2012/3/27/342 which discusses removal of the validation check within find_vma. Since no-one responded, I decided to send this patch with Andrew's suggestions. [akpm@linux-foundation.org: add remove-me comment] Signed-off-by: NRajman Mekaco <rajman.mekaco@gmail.com> Cc: Kautuk Consul <consul.kautuk@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Thomas Meyer 提交于
The advantage of kcalloc is, that will prevent integer overflows which could result from the multiplication of number of elements and size and it is also a bit nicer to read. The semantic patch that makes this change is available in https://lkml.org/lkml/2011/11/25/107Signed-off-by: NThomas Meyer <thomas@m3y3r.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ryota Ozaki 提交于
/sys/devices/system/node/{online,possible} outputs a garbage byte because print_nodes_state() returns content size + 1. To fix the bug, the patch changes the use of cpuset_sprintf_cpulist to follow the use at other places, which is clearer and safer. This bug was introduced in v2.6.24 (commit bde631a5: "mm: add node states sysfs class attributeS"). Signed-off-by: NRyota Ozaki <ozaki.ryota@gmail.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
There is little motiviation for reclaim_mode_t once RECLAIM_MODE_[A]SYNC and lumpy reclaim have been removed. This patch gets rid of reclaim_mode_t as well and improves the documentation about what reclaim/compaction is and when it is triggered. Signed-off-by: NMel Gorman <mgorman@suse.de> Acked-by: NRik van Riel <riel@redhat.com> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Hugh Dickins <hughd@google.com> Cc: Ying Han <yinghan@google.com> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-