- 29 10月, 2019 1 次提交
-
-
由 Frederic Weisbecker 提交于
In order to compute the kcpustat delta on a nohz CPU, we'll need to fetch the task running on that target. Checking that its vtime state snapshot actually refers to the relevant target involves recording that CPU under the seqcount locked on task switch. This is a step toward making kcpustat moving forward on full nohz CPUs. Signed-off-by: NFrederic Weisbecker <frederic@kernel.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Jacek Anaszewski <jacek.anaszewski@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pavel Machek <pavel@ucw.cz> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J . Wysocki <rjw@rjwysocki.net> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Wanpeng Li <wanpengli@tencent.com> Cc: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Link: https://lkml.kernel.org/r/20191016025700.31277-2-frederic@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 9月, 2019 1 次提交
-
-
由 Eric W. Biederman 提交于
Add a count of the number of RCU users (currently 1) of the task struct so that we can later add the scheduler case and get rid of the very subtle task_rcu_dereference(), and just use rcu_dereference(). As suggested by Oleg have the count overlap rcu_head so that no additional space in task_struct is required. Inspired-by: NLinus Torvalds <torvalds@linux-foundation.org> Inspired-by: NOleg Nesterov <oleg@redhat.com> Signed-off-by: NEric W. Biederman <ebiederm@xmission.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/87woebdplt.fsf_-_@x220.int.ebiederm.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 18 9月, 2019 1 次提交
-
-
由 Qian Cai 提交于
Clang reports this warning: kernel/locking/osq_lock.c:25:19: warning: unused function 'node_cpu' [-Wunused-function] due to osq_lock() calling vcpu_is_preempted(node_cpu(node->prev))), but vcpu_is_preempted() is compiled away. Fix it by converting the dummy vcpu_is_preempted() from a macro to a proper static inline function. Signed-off-by: NQian Cai <cai@lca.pw> Acked-by: NMel Gorman <mgorman@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: juri.lelli@redhat.com Cc: rostedt@goodmis.org Cc: vincent.guittot@linaro.org Link: https://lkml.kernel.org/r/1568730894-10483-1-git-send-email-cai@lca.pwSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 07 9月, 2019 1 次提交
-
-
由 Daniel Vetter 提交于
In some special cases we must not block, but there's not a spinlock, preempt-off, irqs-off or similar critical section already that arms the might_sleep() debug checks. Add a non_block_start/end() pair to annotate these. This will be used in the oom paths of mmu-notifiers, where blocking is not allowed to make sure there's forward progress. Quoting Michal: "The notifier is called from quite a restricted context - oom_reaper - which shouldn't depend on any locks or sleepable conditionals. The code should be swift as well but we mostly do care about it to make a forward progress. Checking for sleepable context is the best thing we could come up with that would describe these demands at least partially." Peter also asked whether we want to catch spinlocks on top, but Michal said those are less of a problem because spinlocks can't have an indirect dependency upon the page allocator and hence close the loop with the oom reaper. Suggested by Michal Hocko. Link: https://lore.kernel.org/r/20190826201425.17547-4-daniel.vetter@ffwll.ch Acked-by: Christian König <christian.koenig@amd.com> (v1) Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NDaniel Vetter <daniel.vetter@intel.com> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NJason Gunthorpe <jgg@mellanox.com>
-
- 28 8月, 2019 3 次提交
-
-
由 Thomas Gleixner 提交于
The expiry cache belongs into the posix_cputimers container where the other cpu timers information is. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NFrederic Weisbecker <frederic@kernel.org> Link: https://lkml.kernel.org/r/20190821192921.014444012@linutronix.de
-
由 Thomas Gleixner 提交于
For upcoming posix-timer changes to avoid include recursion hell. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190821192920.909530418@linutronix.de
-
由 Thomas Gleixner 提交于
Per task/process data of posix CPU timers is all over the place which makes the code hard to follow and requires ifdeffery. Create a container to hold all this information in one place, so data is consolidated and the ifdeffery can be confined to the posix timer header file and removed from places like fork. As a first step, move the cpu_timers list head array into the new struct and clean up the initializers and simplify fork. The remaining #ifdef in fork will be removed later. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NFrederic Weisbecker <frederic@kernel.org> Link: https://lkml.kernel.org/r/20190821192920.819418976@linutronix.de
-
- 01 8月, 2019 1 次提交
-
-
由 Thomas Gleixner 提交于
CONFIG_PREEMPTION is selected by CONFIG_PREEMPT and by CONFIG_PREEMPT_RT. Both PREEMPT and PREEMPT_RT require the same functionality which today depends on CONFIG_PREEMPT. Switch the preemption code, scheduler and init task over to use CONFIG_PREEMPTION. That's the first step towards RT in that area. The more complex changes are coming separately. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20190726212124.117528401@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 7月, 2019 2 次提交
-
-
由 Mathieu Poirier 提交于
When the topology of root domains is modified by CPUset or CPUhotplug operations information about the current deadline bandwidth held in the root domain is lost. This patch addresses the issue by recalculating the lost deadline bandwidth information by circling through the deadline tasks held in CPUsets and adding their current load to the root domain they are associated with. Tested-by: NDietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: NMathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: NJuri Lelli <juri.lelli@redhat.com> [ Various additional modifications. ] Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bristot@redhat.com Cc: claudio@evidence.eu.com Cc: lizefan@huawei.com Cc: longman@redhat.com Cc: luca.abeni@santannapisa.it Cc: rostedt@goodmis.org Cc: tj@kernel.org Cc: tommaso.cucinotta@santannapisa.it Link: https://lkml.kernel.org/r/20190719140000.31694-4-juri.lelli@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Jann Horn 提交于
The old code used RCU annotations and accessors inconsistently for ->numa_group, which can lead to use-after-frees and NULL dereferences. Let all accesses to ->numa_group use proper RCU helpers to prevent such issues. Signed-off-by: NJann Horn <jannh@google.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Fixes: 8c8a743c ("sched/numa: Use {cpu, pid} to create task groups for shared faults") Link: https://lkml.kernel.org/r/20190716152047.14424-3-jannh@google.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 6月, 2019 4 次提交
-
-
由 Patrick Bellasi 提交于
The SCHED_DEADLINE scheduling class provides an advanced and formal model to define tasks requirements that can translate into proper decisions for both task placements and frequencies selections. Other classes have a more simplified model based on the POSIX concept of priorities. Such a simple priority based model however does not allow to exploit most advanced features of the Linux scheduler like, for example, driving frequencies selection via the schedutil cpufreq governor. However, also for non SCHED_DEADLINE tasks, it's still interesting to define tasks properties to support scheduler decisions. Utilization clamping exposes to user-space a new set of per-task attributes the scheduler can use as hints about the expected/required utilization for a task. This allows to implement a "proactive" per-task frequency control policy, a more advanced policy than the current one based just on "passive" measured task utilization. For example, it's possible to boost interactive tasks (e.g. to get better performance) or cap background tasks (e.g. to be more energy/thermal efficient). Introduce a new API to set utilization clamping values for a specified task by extending sched_setattr(), a syscall which already allows to define task specific properties for different scheduling classes. A new pair of attributes allows to specify a minimum and maximum utilization the scheduler can consider for a task. Do that by validating the required clamp values before and then applying the required changes using _the_ same pattern already in use for __setscheduler(). This ensures that the task is re-enqueued with the new clamp values. Signed-off-by: NPatrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-7-patrick.bellasi@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Patrick Bellasi 提交于
Tasks without a user-defined clamp value are considered not clamped and by default their utilization can have any value in the [0..SCHED_CAPACITY_SCALE] range. Tasks with a user-defined clamp value are allowed to request any value in that range, and the required clamp is unconditionally enforced. However, a "System Management Software" could be interested in limiting the range of clamp values allowed for all tasks. Add a privileged interface to define a system default configuration via: /proc/sys/kernel/sched_uclamp_util_{min,max} which works as an unconditional clamp range restriction for all tasks. With the default configuration, the full SCHED_CAPACITY_SCALE range of values is allowed for each clamp index. Otherwise, the task-specific clamp is capped by the corresponding system default value. Do that by tracking, for each task, the "effective" clamp value and bucket the task has been refcounted in at enqueue time. This allows to lazy aggregate "requested" and "system default" values at enqueue time and simplifies refcounting updates at dequeue time. The cached bucket ids are used to avoid (relatively) more expensive integer divisions every time a task is enqueued. An active flag is used to report when the "effective" value is valid and thus the task is actually refcounted in the corresponding rq's bucket. Signed-off-by: NPatrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-5-patrick.bellasi@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Patrick Bellasi 提交于
Utilization clamping allows to clamp the CPU's utilization within a [util_min, util_max] range, depending on the set of RUNNABLE tasks on that CPU. Each task references two "clamp buckets" defining its minimum and maximum (util_{min,max}) utilization "clamp values". A CPU's clamp bucket is active if there is at least one RUNNABLE tasks enqueued on that CPU and refcounting that bucket. When a task is {en,de}queued {on,from} a rq, the set of active clamp buckets on that CPU can change. If the set of active clamp buckets changes for a CPU a new "aggregated" clamp value is computed for that CPU. This is because each clamp bucket enforces a different utilization clamp value. Clamp values are always MAX aggregated for both util_min and util_max. This ensures that no task can affect the performance of other co-scheduled tasks which are more boosted (i.e. with higher util_min clamp) or less capped (i.e. with higher util_max clamp). A task has: task_struct::uclamp[clamp_id]::bucket_id to track the "bucket index" of the CPU's clamp bucket it refcounts while enqueued, for each clamp index (clamp_id). A runqueue has: rq::uclamp[clamp_id]::bucket[bucket_id].tasks to track how many RUNNABLE tasks on that CPU refcount each clamp bucket (bucket_id) of a clamp index (clamp_id). It also has a: rq::uclamp[clamp_id]::bucket[bucket_id].value to track the clamp value of each clamp bucket (bucket_id) of a clamp index (clamp_id). The rq::uclamp::bucket[clamp_id][] array is scanned every time it's needed to find a new MAX aggregated clamp value for a clamp_id. This operation is required only when it's dequeued the last task of a clamp bucket tracking the current MAX aggregated clamp value. In this case, the CPU is either entering IDLE or going to schedule a less boosted or more clamped task. The expected number of different clamp values configured at build time is small enough to fit the full unordered array into a single cache line, for configurations of up to 7 buckets. Add to struct rq the basic data structures required to refcount the number of RUNNABLE tasks for each clamp bucket. Add also the max aggregation required to update the rq's clamp value at each enqueue/dequeue event. Use a simple linear mapping of clamp values into clamp buckets. Pre-compute and cache bucket_id to avoid integer divisions at enqueue/dequeue time. Signed-off-by: NPatrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-2-patrick.bellasi@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Qais Yousef 提交于
The new functions allow modules to access internal data structures of unexported struct cfs_rq and struct rq to extract important information from the tracepoints to be introduced in later patches. While at it fix alphabetical order of struct declarations in sched.h Signed-off-by: NQais Yousef <qais.yousef@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pavankumar Kondeti <pkondeti@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de> Link: https://lkml.kernel.org/r/20190604111459.2862-3-qais.yousef@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 19 6月, 2019 1 次提交
-
-
由 David Howells 提交于
If a filesystem uses keys to hold authentication tokens, then it needs a token for each VFS operation that might perform an authentication check - either by passing it to the server, or using to perform a check based on authentication data cached locally. For open files this isn't a problem, since the key should be cached in the file struct since it represents the subject performing operations on that file descriptor. During pathwalk, however, there isn't anywhere to cache the key, except perhaps in the nameidata struct - but that isn't exposed to the filesystems. Further, a pathwalk can incur a lot of operations, calling one or more of the following, for instance: ->lookup() ->permission() ->d_revalidate() ->d_automount() ->get_acl() ->getxattr() on each dentry/inode it encounters - and each one may need to call request_key(). And then, at the end of pathwalk, it will call the actual operation: ->mkdir() ->mknod() ->getattr() ->open() ... which may need to go and get the token again. However, it is very likely that all of the operations on a single dentry/inode - and quite possibly a sequence of them - will all want to use the same authentication token, which suggests that caching it would be a good idea. To this end: (1) Make it so that a positive result of request_key() and co. that didn't require upcalling to userspace is cached temporarily in task_struct. (2) The cache is 1 deep, so a new result displaces the old one. (3) The key is released by exit and by notify-resume. (4) The cache is cleared in a newly forked process. Signed-off-by: NDavid Howells <dhowells@redhat.com>
-
- 15 6月, 2019 2 次提交
-
-
由 Heiko Carstens 提交于
stop_machine is the only user left of cpu_relax_yield. Given that it now has special semantics which are tied to stop_machine introduce a weak stop_machine_yield function which architectures can override, and get rid of the generic cpu_relax_yield implementation. Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Martin Schwidefsky 提交于
The stop_machine loop to advance the state machine and to wait for all affected CPUs to check-in calls cpu_relax_yield in a tight loop until the last missing CPUs acknowledged the state transition. On a virtual system where not all logical CPUs are backed by real CPUs all the time it can take a while for all CPUs to check-in. With the current definition of cpu_relax_yield a diagnose 0x44 is done which tells the hypervisor to schedule *some* other CPU. That can be any CPU and not necessarily one of the CPUs that need to run in order to advance the state machine. This can lead to a pretty bad diagnose 0x44 storm until the last missing CPU finally checked-in. Replace the undirected cpu_relax_yield based on diagnose 0x44 with a directed yield. Each CPU in the wait loop will pick up the next CPU in the cpumask of stop_machine. The diagnose 0x9c is used to tell the hypervisor to run this next CPU instead of the current one. If there is only a limited number of real CPUs backing the virtual CPUs we end up with the real CPUs passed around in a round-robin fashion. [heiko.carstens@de.ibm.com]: Use cpumask_next_wrap as suggested by Peter Zijlstra. Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
- 03 6月, 2019 1 次提交
-
-
In commit: 4b53a341 ("sched/core: Remove the tsk_nr_cpus_allowed() wrapper") the tsk_nr_cpus_allowed() wrapper was removed. There was not much difference in !RT but in RT we used this to implement migrate_disable(). Within a migrate_disable() section the CPU mask is restricted to single CPU while the "normal" CPU mask remains untouched. As an alternative implementation Ingo suggested to use: struct task_struct { const cpumask_t *cpus_ptr; cpumask_t cpus_mask; }; with t->cpus_ptr = &t->cpus_mask; In -RT we then can switch the cpus_ptr to: t->cpus_ptr = &cpumask_of(task_cpu(p)); in a migration disabled region. The rules are simple: - Code that 'uses' ->cpus_allowed would use the pointer. - Code that 'modifies' ->cpus_allowed would use the direct mask. Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20190423142636.14347-1-bigeasy@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 26 5月, 2019 1 次提交
-
-
由 Paul E. McKenney 提交于
When RCU core processing is offloaded from RCU_SOFTIRQ to the rcuc kthreads, a full and unconditional wakeup is required to initiate RCU core processing. In contrast, when RCU core processing is carried out by RCU_SOFTIRQ, a raise_softirq() suffices. Of course, there are situations where raise_softirq() does a full wakeup, but these do not occur with normal usage of rcu_read_unlock(). The reason that full wakeups can be problematic is that the scheduler sometimes invokes rcu_read_unlock() with its pi or rq locks held, which can of course result in deadlock in CONFIG_PREEMPT=y kernels when rcu_read_unlock() invokes the scheduler. Scheduler invocations can happen in the following situations: (1) The just-ended reader has been subjected to RCU priority boosting, in which case rcu_read_unlock() must deboost, (2) Interrupts were disabled across the call to rcu_read_unlock(), so the quiescent state must be deferred, requiring a wakeup of the rcuc kthread corresponding to the current CPU. Now, the scheduler may hold one of its locks across rcu_read_unlock() only if preemption has been disabled across the entire RCU read-side critical section, which in the days prior to RCU flavor consolidation meant that rcu_read_unlock() never needed to do wakeups. However, this is no longer the case for any but the first rcu_read_unlock() following a condition (e.g., preempted RCU reader) requiring special rcu_read_unlock() attention. For example, an RCU read-side critical section might be preempted, but preemption might be disabled across the rcu_read_unlock(). The rcu_read_unlock() must defer the quiescent state, and therefore leaves the task queued on its leaf rcu_node structure. If a scheduler interrupt occurs, the scheduler might well invoke rcu_read_unlock() with one of its locks held. However, the preempted task is still queued, so rcu_read_unlock() will attempt to defer the quiescent state once more. When RCU core processing is carried out by RCU_SOFTIRQ, this works just fine: The raise_softirq() function simply sets a bit in a per-CPU mask and the RCU core processing will be undertaken upon return from interrupt. Not so when RCU core processing is carried out by the rcuc kthread: In this case, the required wakeup can result in deadlock. The initial solution to this problem was to use set_tsk_need_resched() and set_preempt_need_resched() to force a future context switch, which allows rcu_preempt_note_context_switch() to report the deferred quiescent state to RCU's core processing. Unfortunately for expedited grace periods, there can be a significant delay between the call for a context switch and the actual context switch. This commit therefore introduces a ->deferred_qs flag to the task_struct structure's rcu_special structure. This flag is initially false, and is set to true by the first call to rcu_read_unlock() requiring special attention, then finally reset back to false when the quiescent state is finally reported. Then rcu_read_unlock() attempts full wakeups only when ->deferred_qs is false, that is, on the first rcu_read_unlock() requiring special attention. Note that a chain of RCU readers linked by some other sort of reader may find that a later rcu_read_unlock() is once again able to do a full wakeup, courtesy of an intervening preemption: rcu_read_lock(); /* preempted */ local_irq_disable(); rcu_read_unlock(); /* Can do full wakeup, sets ->deferred_qs. */ rcu_read_lock(); local_irq_enable(); preempt_disable() rcu_read_unlock(); /* Cannot do full wakeup, ->deferred_qs set. */ rcu_read_lock(); preempt_enable(); /* preempted, >deferred_qs reset. */ local_irq_disable(); rcu_read_unlock(); /* Can again do full wakeup, sets ->deferred_qs. */ Such linked RCU readers do not yet seem to appear in the Linux kernel, and it is probably best if they don't. However, RCU needs to handle them, and some variations on this theme could make even raise_softirq() unsafe due to the possibility of its doing a full wakeup. This commit therefore also avoids invoking raise_softirq() when the ->deferred_qs set flag is set. Signed-off-by: NPaul E. McKenney <paulmck@linux.ibm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
-
- 15 5月, 2019 1 次提交
-
-
由 Suren Baghdasaryan 提交于
kthread.h can't be included in psi_types.h because it creates a circular inclusion with kthread.h eventually including psi_types.h and complaining on kthread structures not being defined because they are defined further in the kthread.h. Resolve this by removing psi_types.h inclusion from the headers included from kthread.h. Link: http://lkml.kernel.org/r/20190319235619.260832-7-surenb@google.comSigned-off-by: NSuren Baghdasaryan <surenb@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Li Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 4月, 2019 1 次提交
-
-
由 Roman Gushchin 提交于
Cgroup v1 implements the freezer controller, which provides an ability to stop the workload in a cgroup and temporarily free up some resources (cpu, io, network bandwidth and, potentially, memory) for some other tasks. Cgroup v2 lacks this functionality. This patch implements freezer for cgroup v2. Cgroup v2 freezer tries to put tasks into a state similar to jobctl stop. This means that tasks can be killed, ptraced (using PTRACE_SEIZE*), and interrupted. It is possible to attach to a frozen task, get some information (e.g. read registers) and detach. It's also possible to migrate a frozen tasks to another cgroup. This differs cgroup v2 freezer from cgroup v1 freezer, which mostly tried to imitate the system-wide freezer. However uninterruptible sleep is fine when all tasks are going to be frozen (hibernation case), it's not the acceptable state for some subset of the system. Cgroup v2 freezer is not supporting freezing kthreads. If a non-root cgroup contains kthread, the cgroup still can be frozen, but the kthread will remain running, the cgroup will be shown as non-frozen, and the notification will not be delivered. * PTRACE_ATTACH is not working because non-fatal signal delivery is blocked in frozen state. There are some interface differences between cgroup v1 and cgroup v2 freezer too, which are required to conform the cgroup v2 interface design principles: 1) There is no separate controller, which has to be turned on: the functionality is always available and is represented by cgroup.freeze and cgroup.events cgroup control files. 2) The desired state is defined by the cgroup.freeze control file. Any hierarchical configuration is allowed. 3) The interface is asynchronous. The actual state is available using cgroup.events control file ("frozen" field). There are no dedicated transitional states. 4) It's allowed to make any changes with the cgroup hierarchy (create new cgroups, remove old cgroups, move tasks between cgroups) no matter if some cgroups are frozen. Signed-off-by: NRoman Gushchin <guro@fb.com> Signed-off-by: NTejun Heo <tj@kernel.org> No-objection-from-me-by: NOleg Nesterov <oleg@redhat.com> Cc: kernel-team@fb.com
-
- 19 4月, 2019 1 次提交
-
-
由 Mathieu Desnoyers 提交于
The rseq system call, when invoked with flags of "0" or "RSEQ_FLAG_UNREGISTER" values, expects the rseq_len parameter to be equal to sizeof(struct rseq), which is fixed-size and fixed-layout, specified in uapi linux/rseq.h. Expecting a fixed size for rseq_len is a design choice that ensures multiple libraries and application defining __rseq_abi in the same process agree on its exact size. Considering that this size is and will always be the same value, there is no point in saving this value within task_struct rseq_len. Remove this field from task_struct. No change in functionality intended. Signed-off-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Ben Maurer <bmaurer@fb.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Lameter <cl@linux.com> Cc: Dave Watson <davejwatson@fb.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20190305194755.2602-3-mathieu.desnoyers@efficios.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 06 3月, 2019 2 次提交
-
-
由 Aneesh Kumar K.V 提交于
Patch series "mm/kvm/vfio/ppc64: Migrate compound pages out of CMA region", v8. ppc64 uses the CMA area for the allocation of guest page table (hash page table). We won't be able to start guest if we fail to allocate hash page table. We have observed hash table allocation failure because we failed to migrate pages out of CMA region because they were pinned. This happen when we are using VFIO. VFIO on ppc64 pins the entire guest RAM. If the guest RAM pages get allocated out of CMA region, we won't be able to migrate those pages. The pages are also pinned for the lifetime of the guest. Currently we support migration of non-compound pages. With THP and with the addition of hugetlb migration we can end up allocating compound pages from CMA region. This patch series add support for migrating compound pages. This patch (of 4): Add PF_MEMALLOC_NOCMA which make sure any allocation in that context is marked non-movable and hence cannot be satisfied by CMA region. This is useful with get_user_pages_longterm where we want to take a page pin by migrating pages from CMA region. Marking the section PF_MEMALLOC_NOCMA ensures that we avoid unnecessary page migration later. Link: http://lkml.kernel.org/r/20190114095438.32470-2-aneesh.kumar@linux.ibm.comSigned-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Suggested-by: NAndrea Arcangeli <aarcange@redhat.com> Reviewed-by: NAndrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Alexey Kardashevskiy <aik@ozlabs.ru> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Compaction is inherently race-prone as a suitable page freed during compaction can be allocated by any parallel task. This patch uses a capture_control structure to isolate a page immediately when it is freed by a direct compactor in the slow path of the page allocator. The intent is to avoid redundant scanning. 5.0.0-rc1 5.0.0-rc1 selective-v3r17 capture-v3r19 Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 2582.11 ( 0.00%) 2563.68 ( 0.71%) Amean fault-both-5 4500.26 ( 0.00%) 4233.52 ( 5.93%) Amean fault-both-7 5819.53 ( 0.00%) 6333.65 ( -8.83%) Amean fault-both-12 9321.18 ( 0.00%) 9759.38 ( -4.70%) Amean fault-both-18 9782.76 ( 0.00%) 10338.76 ( -5.68%) Amean fault-both-24 15272.81 ( 0.00%) 13379.55 * 12.40%* Amean fault-both-30 15121.34 ( 0.00%) 16158.25 ( -6.86%) Amean fault-both-32 18466.67 ( 0.00%) 18971.21 ( -2.73%) Latency is only moderately affected but the devil is in the details. A closer examination indicates that base page fault latency is reduced but latency of huge pages is increased as it takes creater care to succeed. Part of the "problem" is that allocation success rates are close to 100% even when under pressure and compaction gets harder 5.0.0-rc1 5.0.0-rc1 selective-v3r17 capture-v3r19 Percentage huge-3 96.70 ( 0.00%) 98.23 ( 1.58%) Percentage huge-5 96.99 ( 0.00%) 95.30 ( -1.75%) Percentage huge-7 94.19 ( 0.00%) 97.24 ( 3.24%) Percentage huge-12 94.95 ( 0.00%) 97.35 ( 2.53%) Percentage huge-18 96.74 ( 0.00%) 97.30 ( 0.58%) Percentage huge-24 97.07 ( 0.00%) 97.55 ( 0.50%) Percentage huge-30 95.69 ( 0.00%) 98.50 ( 2.95%) Percentage huge-32 96.70 ( 0.00%) 99.27 ( 2.65%) And scan rates are reduced as expected by 6% for the migration scanner and 29% for the free scanner indicating that there is less redundant work. Compaction migrate scanned 20815362 19573286 Compaction free scanned 16352612 11510663 [mgorman@techsingularity.net: remove redundant check] Link: http://lkml.kernel.org/r/20190201143853.GH9565@techsingularity.net Link: http://lkml.kernel.org/r/20190118175136.31341-23-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 26 2月, 2019 1 次提交
-
-
由 Linus Torvalds 提交于
This reverts commit 9da3f2b7. It was well-intentioned, but wrong. Overriding the exception tables for instructions for random reasons is just wrong, and that is what the new code did. It caused problems for tracing, and it caused problems for strncpy_from_user(), because the new checks made perfectly valid use cases break, rather than catch things that did bad things. Unchecked user space accesses are a problem, but that's not a reason to add invalid checks that then people have to work around with silly flags (in this case, that 'kernel_uaccess_faults_ok' flag, which is just an odd way to say "this commit was wrong" and was sprinked into random places to hide the wrongness). The real fix to unchecked user space accesses is to get rid of the special "let's not check __get_user() and __put_user() at all" logic. Make __{get|put}_user() be just aliases to the regular {get|put}_user() functions, and make it impossible to access user space without having the proper checks in places. The raison d'être of the special double-underscore versions used to be that the range check was expensive, and if you did multiple user accesses, you'd do the range check up front (like the signal frame handling code, for example). But SMAP (on x86) and PAN (on ARM) have made that optimization pointless, because the _real_ expense is the "set CPU flag to allow user space access". Do let's not break the valid cases to catch invalid cases that shouldn't even exist. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Kees Cook <keescook@chromium.org> Cc: Tobin C. Harding <tobin@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Jann Horn <jannh@google.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 04 2月, 2019 5 次提交
-
-
由 Andrea Parri 提交于
move_queued_task() synchronizes with task_rq_lock() as follows: move_queued_task() task_rq_lock() [S] ->on_rq = MIGRATING [L] rq = task_rq() WMB (__set_task_cpu()) ACQUIRE (rq->lock); [S] ->cpu = new_cpu [L] ->on_rq where "[L] rq = task_rq()" is ordered before "ACQUIRE (rq->lock)" by an address dependency and, in turn, "ACQUIRE (rq->lock)" is ordered before "[L] ->on_rq" by the ACQUIRE itself. Use READ_ONCE() to load ->cpu in task_rq() (c.f., task_cpu()) to honor this address dependency. Also, mark the accesses to ->cpu and ->on_rq with READ_ONCE()/WRITE_ONCE() to comply with the LKMM. Signed-off-by: NAndrea Parri <andrea.parri@amarulasolutions.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: https://lkml.kernel.org/r/20190121155240.27173-1-andrea.parri@amarulasolutions.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Vincent Guittot 提交于
The current implementation of load tracking invariance scales the contribution with current frequency and uarch performance (only for utilization) of the CPU. One main result of this formula is that the figures are capped by current capacity of CPU. Another one is that the load_avg is not invariant because not scaled with uarch. The util_avg of a periodic task that runs r time slots every p time slots varies in the range : U * (1-y^r)/(1-y^p) * y^i < Utilization < U * (1-y^r)/(1-y^p) with U is the max util_avg value = SCHED_CAPACITY_SCALE At a lower capacity, the range becomes: U * C * (1-y^r')/(1-y^p) * y^i' < Utilization < U * C * (1-y^r')/(1-y^p) with C reflecting the compute capacity ratio between current capacity and max capacity. so C tries to compensate changes in (1-y^r') but it can't be accurate. Instead of scaling the contribution value of PELT algo, we should scale the running time. The PELT signal aims to track the amount of computation of tasks and/or rq so it seems more correct to scale the running time to reflect the effective amount of computation done since the last update. In order to be fully invariant, we need to apply the same amount of running time and idle time whatever the current capacity. Because running at lower capacity implies that the task will run longer, we have to ensure that the same amount of idle time will be applied when system becomes idle and no idle time has been "stolen". But reaching the maximum utilization value (SCHED_CAPACITY_SCALE) means that the task is seen as an always-running task whatever the capacity of the CPU (even at max compute capacity). In this case, we can discard this "stolen" idle times which becomes meaningless. In order to achieve this time scaling, a new clock_pelt is created per rq. The increase of this clock scales with current capacity when something is running on rq and synchronizes with clock_task when rq is idle. With this mechanism, we ensure the same running and idle time whatever the current capacity. This also enables to simplify the pelt algorithm by removing all references of uarch and frequency and applying the same contribution to utilization and loads. Furthermore, the scaling is done only once per update of clock (update_rq_clock_task()) instead of during each update of sched_entities and cfs/rt/dl_rq of the rq like the current implementation. This is interesting when cgroup are involved as shown in the results below: On a hikey (octo Arm64 platform). Performance cpufreq governor and only shallowest c-state to remove variance generated by those power features so we only track the impact of pelt algo. each test runs 16 times: ./perf bench sched pipe (higher is better) kernel tip/sched/core + patch ops/seconds ops/seconds diff cgroup root 59652(+/- 0.18%) 59876(+/- 0.24%) +0.38% level1 55608(+/- 0.27%) 55923(+/- 0.24%) +0.57% level2 52115(+/- 0.29%) 52564(+/- 0.22%) +0.86% hackbench -l 1000 (lower is better) kernel tip/sched/core + patch duration(sec) duration(sec) diff cgroup root 4.453(+/- 2.37%) 4.383(+/- 2.88%) -1.57% level1 4.859(+/- 8.50%) 4.830(+/- 7.07%) -0.60% level2 5.063(+/- 9.83%) 4.928(+/- 9.66%) -2.66% Then, the responsiveness of PELT is improved when CPU is not running at max capacity with this new algorithm. I have put below some examples of duration to reach some typical load values according to the capacity of the CPU with current implementation and with this patch. These values has been computed based on the geometric series and the half period value: Util (%) max capacity half capacity(mainline) half capacity(w/ patch) 972 (95%) 138ms not reachable 276ms 486 (47.5%) 30ms 138ms 60ms 256 (25%) 13ms 32ms 26ms On my hikey (octo Arm64 platform) with schedutil governor, the time to reach max OPP when starting from a null utilization, decreases from 223ms with current scale invariance down to 121ms with the new algorithm. Signed-off-by: NVincent Guittot <vincent.guittot@linaro.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: patrick.bellasi@arm.com Cc: pjt@google.com Cc: pkondeti@codeaurora.org Cc: quentin.perret@arm.com Cc: rjw@rjwysocki.net Cc: srinivas.pandruvada@linux.intel.com Cc: thara.gopinath@linaro.org Link: https://lkml.kernel.org/r/1548257214-13745-3-git-send-email-vincent.guittot@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Elena Reshetova 提交于
atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable task_struct.stack_refcount is used as pure reference counter. Convert it to refcount_t and fix up the operations. ** Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the task_struct.stack_refcount it might make a difference in following places: - try_get_task_stack(): increment in refcount_inc_not_zero() only guarantees control dependency on success vs. fully ordered atomic counterpart - put_task_stack(): decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Suggested-by: NKees Cook <keescook@chromium.org> Signed-off-by: NElena Reshetova <elena.reshetova@intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NDavid Windsor <dwindsor@gmail.com> Reviewed-by: NHans Liljestrand <ishkamiel@gmail.com> Reviewed-by: NAndrea Parri <andrea.parri@amarulasolutions.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: viro@zeniv.linux.org.uk Link: https://lkml.kernel.org/r/1547814450-18902-6-git-send-email-elena.reshetova@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Elena Reshetova 提交于
atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable task_struct.usage is used as pure reference counter. Convert it to refcount_t and fix up the operations. ** Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the task_struct.usage it might make a difference in following places: - put_task_struct(): decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Suggested-by: NKees Cook <keescook@chromium.org> Signed-off-by: NElena Reshetova <elena.reshetova@intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NDavid Windsor <dwindsor@gmail.com> Reviewed-by: NHans Liljestrand <ishkamiel@gmail.com> Reviewed-by: NAndrea Parri <andrea.parri@amarulasolutions.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: viro@zeniv.linux.org.uk Link: https://lkml.kernel.org/r/1547814450-18902-5-git-send-email-elena.reshetova@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Richard Guy Briggs 提交于
Remove audit_context from struct task_struct and struct audit_buffer when CONFIG_AUDIT is enabled but CONFIG_AUDITSYSCALL is not. Also, audit_log_name() (and supporting inode and fcaps functions) should have been put back in auditsc.c when soft and hard link logging was normalized since it is only used by syscall auditing. See github issue https://github.com/linux-audit/audit-kernel/issues/105Signed-off-by: NRichard Guy Briggs <rgb@redhat.com> Signed-off-by: NPaul Moore <paul@paul-moore.com>
-
- 02 2月, 2019 1 次提交
-
-
由 Johannes Weiner 提交于
"Resource Control" is a very broad term for this CPU feature, and a term that is also associated with containers, cgroups etc. This can easily cause confusion. Make the user prompt more specific. Match the config symbol name. [ bp: In the future, the corresponding ARM arch-specific code will be under ARM_CPU_RESCTRL and the arch-agnostic bits will be carved out under the CPU_RESCTRL umbrella symbol. ] Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NBorislav Petkov <bp@suse.de> Cc: Babu Moger <Babu.Moger@amd.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: linux-doc@vger.kernel.org Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pu Wen <puwen@hygon.cn> Cc: Reinette Chatre <reinette.chatre@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190130195621.GA30653@cmpxchg.org
-
- 30 1月, 2019 2 次提交
-
-
由 Waiman Long 提交于
With the default SPEC_STORE_BYPASS_SECCOMP/SPEC_STORE_BYPASS_PRCTL mode, the TIF_SSBD bit will be inherited when a new task is fork'ed or cloned. It will also remain when a new program is execve'ed. Only certain class of applications (like Java) that can run on behalf of multiple users on a single thread will require disabling speculative store bypass for security purposes. Those applications will call prctl(2) at startup time to disable SSB. They won't rely on the fact the SSB might have been disabled. Other applications that don't need SSBD will just move on without checking if SSBD has been turned on or not. The fact that the TIF_SSBD is inherited across execve(2) boundary will cause performance of applications that don't need SSBD but their predecessors have SSBD on to be unwittingly impacted especially if they write to memory a lot. To remedy this problem, a new PR_SPEC_DISABLE_NOEXEC argument for the PR_SET_SPECULATION_CTRL option of prctl(2) is added to allow applications to specify that the SSBD feature bit on the task structure should be cleared whenever a new program is being execve'ed. Suggested-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NWaiman Long <longman@redhat.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: linux-doc@vger.kernel.org Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Jiri Kosina <jikos@kernel.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: KarimAllah Ahmed <karahmed@amazon.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Link: https://lkml.kernel.org/r/1547676096-3281-1-git-send-email-longman@redhat.com
-
由 Thomas Gleixner 提交于
The RTMUTEX tester was removed long ago but the PF bit stayed around. Remove it and free up the space. Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 26 1月, 2019 1 次提交
-
-
由 Richard Guy Briggs 提交于
loginuid and sessionid (and audit_log_session_info) should be part of CONFIG_AUDIT scope and not CONFIG_AUDITSYSCALL since it is used in CONFIG_CHANGE, ANOM_LINK, FEATURE_CHANGE (and INTEGRITY_RULE), none of which are otherwise dependent on AUDITSYSCALL. Please see github issue https://github.com/linux-audit/audit-kernel/issues/104Signed-off-by: NRichard Guy Briggs <rgb@redhat.com> [PM: tweaked subject line for better grep'ing] Signed-off-by: NPaul Moore <paul@paul-moore.com>
-
- 12 1月, 2019 1 次提交
-
-
由 Taehee Yoo 提交于
A UMH process which is created by the fork_usermode_blob() such as bpfilter needs to release members of the umh_info when process is terminated. But the do_exit() does not release members of the umh_info. hence module which uses UMH needs own code to detect whether UMH process is terminated or not. But this implementation needs extra code for checking the status of UMH process. it eventually makes the code more complex. The new PF_UMH flag is added and it is used to identify UMH processes. The exit_umh() does not release members of the umh_info. Hence umh_info->cleanup callback should release both members of the umh_info and the private data. Suggested-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NTaehee Yoo <ap420073@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 09 1月, 2019 1 次提交
-
-
由 Borislav Petkov 提交于
CONFIG_RESCTRL is too generic. The final goal is to have a generic option called like this which is selected by the arch-specific ones CONFIG_X86_RESCTRL and CONFIG_ARM64_RESCTRL. The generic one will cover the resctrl filesystem and other generic and shared bits of functionality. Signed-off-by: NBorislav Petkov <bp@suse.de> Suggested-by: NIngo Molnar <mingo@kernel.org> Requested-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: Babu Moger <babu.moger@amd.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: James Morse <james.morse@arm.com> Cc: Reinette Chatre <reinette.chatre@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: x86@kernel.org Link: http://lkml.kernel.org/r/20190108171401.GC12235@zn.tnic
-
- 03 12月, 2018 1 次提交
-
-
由 Ingo Molnar 提交于
Go over the scheduler source code and fix common typos in comments - and a typo in an actual variable name. No change in functionality intended. Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 28 11月, 2018 2 次提交
-
-
由 Thomas Gleixner 提交于
Add the PR_SPEC_INDIRECT_BRANCH option for the PR_GET_SPECULATION_CTRL and PR_SET_SPECULATION_CTRL prctls to allow fine grained per task control of indirect branch speculation via STIBP and IBPB. Invocations: Check indirect branch speculation status with - prctl(PR_GET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, 0, 0, 0); Enable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_ENABLE, 0, 0); Disable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_DISABLE, 0, 0); Force disable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_FORCE_DISABLE, 0, 0); See Documentation/userspace-api/spec_ctrl.rst. Signed-off-by: NTim Chen <tim.c.chen@linux.intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NIngo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.866780996@linutronix.de
-
由 Steven Rostedt (VMware) 提交于
Currently, the depth of the ret_stack is determined by curr_ret_stack index. The issue is that there's a race between setting of the curr_ret_stack and calling of the callback attached to the return of the function. Commit 03274a3f ("tracing/fgraph: Adjust fgraph depth before calling trace return callback") moved the calling of the callback to after the setting of the curr_ret_stack, even stating that it was safe to do so, when in fact, it was the reason there was a barrier() there (yes, I should have commented that barrier()). Not only does the curr_ret_stack keep track of the current call graph depth, it also keeps the ret_stack content from being overwritten by new data. The function profiler, uses the "subtime" variable of ret_stack structure and by moving the curr_ret_stack, it allows for interrupts to use the same structure it was using, corrupting the data, and breaking the profiler. To fix this, there needs to be two variables to handle the call stack depth and the pointer to where the ret_stack is being used, as they need to change at two different locations. Cc: stable@kernel.org Fixes: 03274a3f ("tracing/fgraph: Adjust fgraph depth before calling trace return callback") Reviewed-by: NMasami Hiramatsu <mhiramat@kernel.org> Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
-
- 23 11月, 2018 1 次提交
-
-
由 Babu Moger 提交于
The resource control feature is supported by both Intel and AMD. So, rename CONFIG_INTEL_RDT to the vendor-neutral CONFIG_RESCTRL. Now CONFIG_RESCTRL will be used for both Intel and AMD to enable Resource Control support. Update the texts in config and condition accordingly. [ bp: Simplify Kconfig text. ] Signed-off-by: NBabu Moger <babu.moger@amd.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: David Miller <davem@davemloft.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Dmitry Safonov <dima@arista.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: <linux-doc@vger.kernel.org> Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Pu Wen <puwen@hygon.cn> Cc: <qianyue.zj@alibaba-inc.com> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Reinette Chatre <reinette.chatre@intel.com> Cc: Rian Hunter <rian@alum.mit.edu> Cc: Sherry Hurwitz <sherry.hurwitz@amd.com> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Lendacky <Thomas.Lendacky@amd.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: <xiaochen.shen@intel.com> Link: https://lkml.kernel.org/r/20181121202811.4492-9-babu.moger@amd.com
-