- 26 7月, 2019 40 次提交
-
-
由 Ard Biesheuvel 提交于
Add some plumbing to allow the AEGIS128 code to be built with SIMD routines for acceleration. Reviewed-by: NOndrej Mosnacek <omosnace@redhat.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
The generic AES code provides four sets of lookup tables, where each set consists of four tables containing the same 32-bit values, but rotated by 0, 8, 16 and 24 bits, respectively. This makes sense for CISC architectures such as x86 which support memory operands, but for other architectures, the rotates are quite cheap, and using all four tables needlessly thrashes the D-cache, and actually hurts rather than helps performance. Since x86 already has its own implementation of AEGIS based on AES-NI instructions, let's tweak the generic implementation towards other architectures, and avoid the prerotated tables, and perform the rotations inline. On ARM Cortex-A53, this results in a ~8% speedup. Acked-by: NOndrej Mosnacek <omosnace@redhat.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
TFM init/exit routines are optional, so no need to provide empty ones. Reviewed-by: NOndrej Mosnacek <omosnace@redhat.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Three variants of AEGIS were proposed for the CAESAR competition, and only one was selected for the final portfolio: AEGIS128. The other variants, AEGIS128L and AEGIS256, are not likely to ever turn up in networking protocols or other places where interoperability between Linux and other systems is a concern, nor are they likely to be subjected to further cryptanalysis. However, uninformed users may think that AEGIS128L (which is faster) is equally fit for use. So let's remove them now, before anyone starts using them and we are forced to support them forever. Note that there are no known flaws in the algorithms or in any of these implementations, but they have simply outlived their usefulness. Reviewed-by: NOndrej Mosnacek <omosnace@redhat.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
MORUS was not selected as a winner in the CAESAR competition, which is not surprising since it is considered to be cryptographically broken [0]. (Note that this is not an implementation defect, but a flaw in the underlying algorithm). Since it is unlikely to be in use currently, let's remove it before we're stuck with it. [0] https://eprint.iacr.org/2019/172.pdfReviewed-by: NOndrej Mosnacek <omosnace@redhat.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Hannah Pan 提交于
Add self-tests for the lzo-rle algorithm. Signed-off-by: NHannah Pan <hannahpan@google.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
The scalar table based AES routines are not used by other drivers, so let's keep it that way and unexport the symbols. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
There are a few copies of the AES S-boxes floating around, so export the ones from the AES library so that we can reuse them in other modules. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
The versions of the AES lookup tables that are only used during the last round are never used outside of the driver, so there is no need to export their symbols. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Replace a couple of occurrences where the "aes-generic" cipher is instantiated explicitly and only used for encryption of a single block. Use AES library calls instead. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Use the AES library instead of the cipher interface to perform the single block of AES processing involved in updating the key of the cmac(aes) hash. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
The AMCC code for GCM key derivation allocates a AES cipher to perform a single block encryption. So let's switch to the new and more lightweight AES library instead. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
The bluetooth code uses a bare AES cipher for the encryption operations. Given that it carries out a set_key() operation right before every encryption operation, this is clearly not a hot path, and so the use of the cipher interface (which provides the best implementation available on the system) is not really required. In fact, when using a cipher like AES-NI or AES-CE, both the set_key() and the encrypt() operations involve en/disabling preemption as well as stacking and unstacking the SIMD context, and this is most certainly not worth it for encrypting 16 bytes of data. So let's switch to the new lightweight library interface instead. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
GHASH is used by the GCM mode, which is often used in contexts where only synchronous ciphers are permitted. So provide a synchronous version of GHASH based on the existing code. This requires a non-SIMD fallback to deal with invocations occurring from a context where SIMD instructions may not be used. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
AES in CTR mode is used by modes such as GCM and CCM, which are often used in contexts where only synchronous ciphers are permitted. So provide a synchronous version of ctr(aes) based on the existing code. This requires a non-SIMD fallback to deal with invocations occurring from a context where SIMD instructions may not be used. We have a helper for this now in the AES library, so wire that up. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
AES in CTR mode is used by modes such as GCM and CCM, which are often used in contexts where only synchronous ciphers are permitted. So provide a synchronous version of ctr(aes) based on the existing code. This requires a non-SIMD fallback to deal with invocations occurring from a context where SIMD instructions may not be used. We have a helper for this now in the AES library, so wire that up. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Align ARM's hw instruction based AES implementation with other versions that keep the key schedule in native endianness. This will allow us to merge the various implementations going forward. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Instead of calling into the table based scalar AES code in situations where the SIMD unit may not be used, use the generic AES code, which is more appropriate since it is less likely to be susceptible to timing attacks. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
In preparation of duplicating the sync ctr(aes) functionality to modules under arch/arm, move the helper function from a inline .h file to the AES library, which is already depended upon by the drivers that use this fallback. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Add a static inline helper modeled after crypto_cbc_encrypt_walk() that can be reused for SIMD algorithms that need to implement a non-SIMD fallback for performing CTR encryption. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Drop aes-generic's version of crypto_aes_expand_key(), and switch to the key expansion routine provided by the AES library. AES key expansion is not performance critical, and it is better to have a single version shared by all AES implementations. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Switch to the new AES library that also provides an implementation of the AES key expansion routine. This removes the dependency on the generic AES cipher, allowing it to be omitted entirely in the future. While at it, remove some references to the table based arm64 version of AES and replace them with AES library calls as well. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Switch to the new AES library that also provides an implementation of the AES key expansion routine. This removes the dependency on the generic AES cipher, allowing it to be omitted entirely in the future. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
The CCM code calls directly into the scalar table based AES cipher for arm64 from the fallback path, and since this implementation is known to be non-time invariant, doing so from a time invariant SIMD cipher is a bit nasty. So let's switch to the AES library - this makes the code more robust, and drops the dependency on the generic AES cipher, allowing us to omit it entirely in the future. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Switch to the new AES library that also provides an implementation of the AES key expansion routine. This removes the dependency on the generic AES cipher, allowing it to be omitted entirely in the future. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
The GHASH code uses the generic AES key expansion routines, and calls directly into the scalar table based AES cipher for arm64 from the fallback path, and since this implementation is known to be non-time invariant, doing so from a time invariant SIMD cipher is a bit nasty. So let's switch to the AES library - this makes the code more robust, and drops the dependency on the generic AES cipher, allowing us to omit it entirely in the future. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Switch to the new AES library that also provides an implementation of the AES key expansion routine. This removes the dependency on the generic AES cipher, allowing it to be omitted entirely in the future. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Switch to the new AES library that also provides an implementation of the AES key expansion routine. This removes the dependency on the generic AES cipher, allowing it to be omitted entirely in the future. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Switch to the new AES library that also provides an implementation of the AES key expansion routine. This removes the dependency on the generic AES cipher, allowing it to be omitted entirely in the future. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
The AES assembler code for x86 isn't actually faster than code generated by the compiler from aes_generic.c, and considering the disproportionate maintenance burden of assembler code on x86, it is better just to drop it entirely. Modern x86 systems will use AES-NI anyway, and given that the modules being removed have a dependency on aes_generic already, we can remove them without running the risk of regressions. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
The AES-NI code contains fallbacks for invocations that occur from a context where the SIMD unit is unavailable, which really only occurs when running in softirq context that was entered from a hard IRQ that was taken while running kernel code that was already using the FPU. That means performance is not really a consideration, and we can just use the new library code for this use case, which has a smaller footprint and is believed to be time invariant. This will allow us to drop the non-SIMD asm routines in a subsequent patch. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Take the existing small footprint and mostly time invariant C code and turn it into a AES library that can be used for non-performance critical, casual use of AES, and as a fallback for, e.g., SIMD code that needs a secondary path that can be taken in contexts where the SIMD unit is off limits (e.g., in hard interrupts taken from kernel context) Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
The fixed time AES code mangles the key schedule so that xoring the first round key with values at fixed offsets across the Sbox produces the correct value. This primes the D-cache with the entire Sbox before any data dependent lookups are done, making it more difficult to infer key bits from timing variances when the plaintext is known. The downside of this approach is that it renders the key schedule incompatible with other implementations of AES in the kernel, which makes it cumbersome to use this implementation as a fallback for SIMD based AES in contexts where this is not allowed. So let's tweak the fixed Sbox indexes so that they add up to zero under the xor operation. While at it, increase the granularity to 16 bytes so we cover the entire Sbox even on systems with 16 byte cachelines. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Rename some local AES encrypt/decrypt routines so they don't clash with the names we are about to introduce for the routines exposed by the generic AES library. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Rearrange the aes_algs[] array for legibility. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Pascal van Leeuwen 提交于
This patch adds support for the specific corner case of performing HMAC on an empty string (i.e. payload length is zero). This solves the last failing cryptomgr extratests for HMAC. Signed-off-by: NPascal van Leeuwen <pvanleeuwen@verimatrix.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Pascal van Leeuwen 提交于
This patch fixes an issue with hash and HMAC operations that perform "large" intermediate updates (i.e. combined size > 2 hash blocks) by actually making use of the hardware's hash continue capabilities. The original implementation would cache these updates in a buffer that was 2 hash blocks in size and fail if all update calls combined would overflow that buffer. Which caused the cryptomgr extra tests to fail. Signed-off-by: NPascal van Leeuwen <pvanleeuwen@verimatrix.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-