1. 23 8月, 2018 21 次提交
  2. 18 8月, 2018 19 次提交
    • C
      mm/hmm.c: remove unused variables align_start and align_end · 1e926419
      Colin Ian King 提交于
      Variables align_start and align_end are being assigned but are never
      used hence they are redundant and can be removed.
      
      Cleans up clang warnings:
        warning: variable 'align_start' set but not used [-Wunused-but-set-variable]
        warning: variable 'align_size' set but not used [-Wunused-but-set-variable]
      
      Link: http://lkml.kernel.org/r/20180714161124.3923-1-colin.king@canonical.comSigned-off-by: NColin Ian King <colin.king@canonical.com>
      Reviewed-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1e926419
    • D
      mm, vmacache: hash addresses based on pmd · ddbf369c
      David Rientjes 提交于
      When perf profiling a wide variety of different workloads, it was found
      that vmacache_find() had higher than expected cost: up to 0.08% of cpu
      utilization in some cases.  This was found to rival other core VM
      functions such as alloc_pages_vma() with thp enabled and default
      mempolicy, and the conditionals in __get_vma_policy().
      
      VMACACHE_HASH() determines which of the four per-task_struct slots a vma
      is cached for a particular address.  This currently depends on the pfn,
      so pfn 5212 occupies a different vmacache slot than its neighboring pfn
      5213.
      
      vmacache_find() iterates through all four of current's vmacache slots
      when looking up an address.  Hashing based on pfn, an address has
      ~1/VMACACHE_SIZE chance of being cached in the first vmacache slot, or
      about 25%, *if* the vma is cached.
      
      This patch hashes an address by its pmd instead of pte to optimize for
      workloads with good spatial locality.  This results in a higher
      probability of vmas being cached in the first slot that is checked:
      normally ~70% on the same workloads instead of 25%.
      
      [rientjes@google.com: various updates]
        Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1807231532290.109445@chino.kir.corp.google.com
      Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1807091749150.114630@chino.kir.corp.google.comSigned-off-by: NDavid Rientjes <rientjes@google.com>
      Reviewed-by: NAndrew Morton <akpm@linux-foundation.org>
      Cc: Davidlohr Bueso <dave@stgolabs.net>
      Cc: Alexey Dobriyan <adobriyan@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ddbf369c
    • S
      mm/list_lru: introduce list_lru_shrink_walk_irq() · 6b51e881
      Sebastian Andrzej Siewior 提交于
      Provide list_lru_shrink_walk_irq() and let it behave like
      list_lru_walk_one() except that it locks the spinlock with
      spin_lock_irq().  This is used by scan_shadow_nodes() because its lock
      nests within the i_pages lock which is acquired with IRQ.  This change
      allows to use proper locking promitives instead hand crafted
      lock_irq_disable() plus spin_lock().
      
      There is no EXPORT_SYMBOL provided because the current user is in-kernel
      only.
      
      Add list_lru_shrink_walk_irq() which acquires the spinlock with the
      proper locking primitives.
      
      Link: http://lkml.kernel.org/r/20180716111921.5365-5-bigeasy@linutronix.deSigned-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de>
      Reviewed-by: NVladimir Davydov <vdavydov.dev@gmail.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6b51e881
    • S
      mm/list_lru.c: pass struct list_lru_node* as an argument to __list_lru_walk_one() · 6e018968
      Sebastian Andrzej Siewior 提交于
      __list_lru_walk_one() is invoked with struct list_lru *lru, int nid as
      the first two argument.  Those two are only used to retrieve struct
      list_lru_node.  Since this is already done by the caller of the function
      for the locking, we can pass struct list_lru_node* directly and avoid
      the dance around it.
      
      Link: http://lkml.kernel.org/r/20180716111921.5365-4-bigeasy@linutronix.deSigned-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de>
      Reviewed-by: NVladimir Davydov <vdavydov.dev@gmail.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6e018968
    • S
      mm/list_lru.c: move locking from __list_lru_walk_one() to its caller · 6cfe57a9
      Sebastian Andrzej Siewior 提交于
      Move the locking inside __list_lru_walk_one() to its caller.  This is a
      preparation step in order to introduce list_lru_walk_one_irq() which
      does spin_lock_irq() instead of spin_lock() for the locking.
      
      Link: http://lkml.kernel.org/r/20180716111921.5365-3-bigeasy@linutronix.deSigned-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de>
      Reviewed-by: NVladimir Davydov <vdavydov.dev@gmail.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6cfe57a9
    • S
      mm/list_lru.c: use list_lru_walk_one() in list_lru_walk_node() · 87a5ffc1
      Sebastian Andrzej Siewior 提交于
      Patch series "mm/list_lru: Add list_lru_shrink_walk_irq() and a user".
      
      This series removes the local_irq_disable() around
      list_lru_shrink_walk() (as used by mm/workingset) by adding
      list_lru_shrink_walk_irq().
      
      Vladimir Davydov preferred this over `irq' argument which I added to
      struct list_lru.
      
      The initial post (of this series) received a Reviewed-by tag by Vladimir
      Davydov which I added to each patch of the series.  The series applies
      on top of akpm's tree which has Kirill's shrink_slab series and does not
      clash with it (akpm asked me to wait a week or so and repost it then).
      
      I tested the code paths by triggering the OOM-killer via memory over
      commit and lockdep did not complain (nor did I see any warnings).
      
      This patch (of 4):
      
      list_lru_walk_node() invokes __list_lru_walk_one() with -1 as the
      memcg_idx parameter.  The same can be achieved by list_lru_walk_one() and
      passing NULL as memcg argument which then gets converted into -1.  This is
      a preparation step when the spin_lock() function is lifted to the caller
      of __list_lru_walk_one().  Invoke list_lru_walk_one() instead
      __list_lru_walk_one() when possible.
      
      Link: http://lkml.kernel.org/r/20180716111921.5365-2-bigeasy@linutronix.deSigned-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de>
      Reviewed-by: NVladimir Davydov <vdavydov.dev@gmail.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      87a5ffc1
    • H
      mm, swap: make CONFIG_THP_SWAP depend on CONFIG_SWAP · 14fef284
      Huang Ying 提交于
      CONFIG_THP_SWAP should depend on CONFIG_SWAP, because it's unreasonable
      to optimize swapping for THP (Transparent Huge Page) without basic
      swapping support.
      
      In original code, when CONFIG_SWAP=n and CONFIG_THP_SWAP=y,
      split_swap_cluster() will not be built because it is in swapfile.c, but
      it will be called in huge_memory.c.  This doesn't trigger a build error
      in practice because the call site is enclosed by PageSwapCache(), which
      is defined to be constant 0 when CONFIG_SWAP=n.  But this is fragile and
      should be fixed.
      
      The comments are fixed too to reflect the latest progress.
      
      Link: http://lkml.kernel.org/r/20180713021228.439-1-ying.huang@intel.com
      Fixes: 38d8b4e6 ("mm, THP, swap: delay splitting THP during swap out")
      Signed-off-by: N"Huang, Ying" <ying.huang@intel.com>
      Reviewed-by: NDan Williams <dan.j.williams@intel.com>
      Reviewed-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Shaohua Li <shli@kernel.org>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Dave Hansen <dave.hansen@linux.intel.com>
      Cc: Zi Yan <zi.yan@cs.rutgers.edu>
      Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      14fef284
    • P
      mm/sparse: delete old sparse_init and enable new one · 2a3cb8ba
      Pavel Tatashin 提交于
      Rename new_sparse_init() to sparse_init() which enables it.  Delete old
      sparse_init() and all the code that became obsolete with.
      
      [pasha.tatashin@oracle.com: remove unused sparse_mem_maps_populate_node()]
        Link: http://lkml.kernel.org/r/20180716174447.14529-6-pasha.tatashin@oracle.com
      Link: http://lkml.kernel.org/r/20180712203730.8703-6-pasha.tatashin@oracle.comSigned-off-by: NPavel Tatashin <pasha.tatashin@oracle.com>
      Tested-by: Michael Ellerman <mpe@ellerman.id.au>	[powerpc]
      Tested-by: NOscar Salvador <osalvador@suse.de>
      Reviewed-by: NOscar Salvador <osalvador@suse.de>
      Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
      Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
      Cc: Baoquan He <bhe@redhat.com>
      Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Jérôme Glisse <jglisse@redhat.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Souptick Joarder <jrdr.linux@gmail.com>
      Cc: Steven Sistare <steven.sistare@oracle.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Wei Yang <richard.weiyang@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2a3cb8ba
    • P
      mm/sparse: add new sparse_init_nid() and sparse_init() · 85c77f79
      Pavel Tatashin 提交于
      sparse_init() requires to temporary allocate two large buffers: usemap_map
      and map_map.  Baoquan He has identified that these buffers are so large
      that Linux is not bootable on small memory machines, such as a kdump boot.
      The buffers are especially large when CONFIG_X86_5LEVEL is set, as they
      are scaled to the maximum physical memory size.
      
      Baoquan provided a fix, which reduces these sizes of these buffers, but it
      is much better to get rid of them entirely.
      
      Add a new way to initialize sparse memory: sparse_init_nid(), which only
      operates within one memory node, and thus allocates memory either in large
      contiguous block or allocates section by section.  This eliminates the
      need for use of temporary buffers.
      
      For simplified bisecting and review temporarly call sparse_init()
      new_sparse_init(), the new interface is going to be enabled as well as old
      code removed in the next patch.
      
      Link: http://lkml.kernel.org/r/20180712203730.8703-5-pasha.tatashin@oracle.comSigned-off-by: NPavel Tatashin <pasha.tatashin@oracle.com>
      Reviewed-by: NOscar Salvador <osalvador@suse.de>
      Tested-by: NOscar Salvador <osalvador@suse.de>
      Tested-by: Michael Ellerman <mpe@ellerman.id.au>	[powerpc]
      Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
      Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
      Cc: Baoquan He <bhe@redhat.com>
      Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Jérôme Glisse <jglisse@redhat.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Souptick Joarder <jrdr.linux@gmail.com>
      Cc: Steven Sistare <steven.sistare@oracle.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Wei Yang <richard.weiyang@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      85c77f79
    • P
      mm/sparse: move buffer init/fini to the common place · afda57bc
      Pavel Tatashin 提交于
      Now that both variants of sparse memory use the same buffers to populate
      memory map, we can move sparse_buffer_init()/sparse_buffer_fini() to the
      common place.
      
      Link: http://lkml.kernel.org/r/20180712203730.8703-4-pasha.tatashin@oracle.comSigned-off-by: NPavel Tatashin <pasha.tatashin@oracle.com>
      Tested-by: Michael Ellerman <mpe@ellerman.id.au>	[powerpc]
      Tested-by: NOscar Salvador <osalvador@suse.de>
      Reviewed-by: NAndrew Morton <akpm@linux-foundation.org>
      Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
      Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
      Cc: Baoquan He <bhe@redhat.com>
      Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Jérôme Glisse <jglisse@redhat.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Souptick Joarder <jrdr.linux@gmail.com>
      Cc: Steven Sistare <steven.sistare@oracle.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Wei Yang <richard.weiyang@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      afda57bc
    • P
      mm/sparse: use the new sparse buffer functions in non-vmemmap · e131c06b
      Pavel Tatashin 提交于
      non-vmemmap sparse also allocated large contiguous chunk of memory, and if
      fails falls back to smaller allocations.  Use the same functions to
      allocate buffer as the vmemmap-sparse
      
      Link: http://lkml.kernel.org/r/20180712203730.8703-3-pasha.tatashin@oracle.comSigned-off-by: NPavel Tatashin <pasha.tatashin@oracle.com>
      Tested-by: Michael Ellerman <mpe@ellerman.id.au>	[powerpc]
      Reviewed-by: NOscar Salvador <osalvador@suse.de>
      Tested-by: NOscar Salvador <osalvador@suse.de>
      Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
      Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
      Cc: Baoquan He <bhe@redhat.com>
      Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Jérôme Glisse <jglisse@redhat.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Souptick Joarder <jrdr.linux@gmail.com>
      Cc: Steven Sistare <steven.sistare@oracle.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Wei Yang <richard.weiyang@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e131c06b
    • P
      mm/sparse: abstract sparse buffer allocations · 35fd1eb1
      Pavel Tatashin 提交于
      Patch series "sparse_init rewrite", v6.
      
      In sparse_init() we allocate two large buffers to temporary hold usemap
      and memmap for the whole machine.  However, we can avoid doing that if
      we changed sparse_init() to operated on per-node bases instead of doing
      it on the whole machine beforehand.
      
      As shown by Baoquan
        http://lkml.kernel.org/r/20180628062857.29658-1-bhe@redhat.com
      
      The buffers are large enough to cause machine stop to boot on small
      memory systems.
      
      Another benefit of these changes is that they also obsolete
      CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER.
      
      This patch (of 5):
      
      When struct pages are allocated for sparse-vmemmap VA layout, we first try
      to allocate one large buffer, and than if that fails allocate struct pages
      for each section as we go.
      
      The code that allocates buffer is uses global variables and is spread
      across several call sites.
      
      Cleanup the code by introducing three functions to handle the global
      buffer:
      
      sparse_buffer_init()	initialize the buffer
      sparse_buffer_fini()	free the remaining part of the buffer
      sparse_buffer_alloc()	alloc from the buffer, and if buffer is empty
      return NULL
      
      Define these functions in sparse.c instead of sparse-vmemmap.c because
      later we will use them for non-vmemmap sparse allocations as well.
      
      [akpm@linux-foundation.org: use PTR_ALIGN()]
      [akpm@linux-foundation.org: s/BUG_ON/WARN_ON/]
      Link: http://lkml.kernel.org/r/20180712203730.8703-2-pasha.tatashin@oracle.comSigned-off-by: NPavel Tatashin <pasha.tatashin@oracle.com>
      Tested-by: Michael Ellerman <mpe@ellerman.id.au>	[powerpc]
      Reviewed-by: NOscar Salvador <osalvador@suse.de>
      Tested-by: NOscar Salvador <osalvador@suse.de>
      Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
      Cc: Steven Sistare <steven.sistare@oracle.com>
      Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Jérôme Glisse <jglisse@redhat.com>
      Cc: Souptick Joarder <jrdr.linux@gmail.com>
      Cc: Baoquan He <bhe@redhat.com>
      Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Wei Yang <richard.weiyang@gmail.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      35fd1eb1
    • C
      mm/hugetlb.c: don't zero 1GiB bootmem pages · 330d6e48
      Cannon Matthews 提交于
      When using 1GiB pages during early boot, use the new
      memblock_virt_alloc_try_nid_raw() to allocate memory without zeroing it.
      Zeroing out hundreds or thousands of GiB in a single core memset() call
      is very slow, and can make early boot last upwards of 20-30 minutes on
      multi TiB machines.
      
      The memory does not need to be zero'd as the hugetlb pages are always
      zero'd on page fault.
      
      Tested: Booted with ~3800 1G pages, and it booted successfully in
      roughly the same amount of time as with 0, as opposed to the 25+ minutes
      it would take before.
      
      Link: http://lkml.kernel.org/r/20180711213313.92481-1-cannonmatthews@google.comSigned-off-by: NCannon Matthews <cannonmatthews@google.com>
      Acked-by: NMike Kravetz <mike.kravetz@oracle.com>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Cc: Andres Lagar-Cavilla <andreslc@google.com>
      Cc: Peter Feiner <pfeiner@google.com>
      Cc: David Matlack <dmatlack@google.com>
      Cc: Greg Thelen <gthelen@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      330d6e48
    • A
      mm, page_alloc: double zone's batchsize · d8a759b5
      Aaron Lu 提交于
      To improve page allocator's performance for order-0 pages, each CPU has
      a Per-CPU-Pageset(PCP) per zone.  Whenever an order-0 page is needed,
      PCP will be checked first before asking pages from Buddy.  When PCP is
      used up, a batch of pages will be fetched from Buddy to improve
      performance and the size of batch can affect performance.
      
      zone's batch size gets doubled last time by commit ba56e91c("mm:
      page_alloc: increase size of per-cpu-pages") over ten years ago.  Since
      then, CPU has envolved a lot and CPU's cache sizes also increased.
      
      Dave Hansen is concerned the current batch size doesn't fit well with
      modern hardware and suggested me to do two things: first, use a page
      allocator intensive benchmark, e.g.  will-it-scale/page_fault1 to find
      out how performance changes with different batch sizes on various
      machines and then choose a new default batch size; second, see how this
      new batch size work with other workloads.
      
      In the first test, we saw performance gains on high-core-count systems
      and little to no effect on older systems with more modest core counts.
      In this phase's test data, two candidates: 63 and 127 are chosen.
      
      In the second step, ebizzy, oltp, kbuild, pigz, netperf, vm-scalability
      and more will-it-scale sub-tests are tested to see how these two
      candidates work with these workloads and decides a new default according
      to their results.
      
      Most test results are flat.  will-it-scale/page_fault2 process mode has
      10%-18% performance increase on 4-sockets Skylake and Broadwell.
      vm-scalability/lru-file-mmap-read has 17%-47% performance increase for
      4-sockets servers while for 2-sockets servers, it caused 3%-8% performance
      drop.  Further analysis showed that, with a larger pcp->batch and thus
      larger pcp->high(the relationship of pcp->high=6 * pcp->batch is
      maintained in this patch), zone lock contention shifted to LRU add side
      lock contention and that caused performance drop.  This performance drop
      might be mitigated by others' work on optimizing LRU lock.
      
      Another downside of increasing pcp->batch is, when PCP is used up and need
      to fetch a batch of pages from Buddy, since batch is increased, that time
      can be longer than before.  My understanding is, this doesn't affect
      slowpath where direct reclaim and compaction dominates.  For fastpath,
      throughput is a win(according to will-it-scale/page_fault1) but worst
      latency can be larger now.
      
      Overall, I think double the batch size from 31 to 63 is relatively safe
      and provide good performance boost for high-core-count systems.
      
      The two phase's test results are listed below(all tests are done with THP
      disabled).
      
      Phase one(will-it-scale/page_fault1) test results:
      
      Skylake-EX: increased batch size has a good effect on zone->lock
      contention, though LRU contention will rise at the same time and
      limited the final performance increase.
      
      batch   score     change   zone_contention   lru_contention   total_contention
       31   15345900    +0.00%       64%                 8%           72%
       53   17903847   +16.67%       32%                38%           70%
       63   17992886   +17.25%       24%                45%           69%
       73   18022825   +17.44%       10%                61%           71%
      119   18023401   +17.45%        4%                66%           70%
      127   18029012   +17.48%        3%                66%           69%
      137   18036075   +17.53%        4%                66%           70%
      165   18035964   +17.53%        2%                67%           69%
      188   18101105   +17.95%        2%                67%           69%
      223   18130951   +18.15%        2%                67%           69%
      255   18118898   +18.07%        2%                67%           69%
      267   18101559   +17.96%        2%                67%           69%
      299   18160468   +18.34%        2%                68%           70%
      320   18139845   +18.21%        2%                67%           69%
      393   18160869   +18.34%        2%                68%           70%
      424   18170999   +18.41%        2%                68%           70%
      458   18144868   +18.24%        2%                68%           70%
      467   18142366   +18.22%        2%                68%           70%
      498   18154549   +18.30%        1%                68%           69%
      511   18134525   +18.17%        1%                69%           70%
      
      Broadwell-EX: similar pattern as Skylake-EX.
      
      batch   score     change   zone_contention   lru_contention   total_contention
       31   16703983    +0.00%       67%                 7%           74%
       53   18195393    +8.93%       43%                28%           71%
       63   18288885    +9.49%       38%                33%           71%
       73   18344329    +9.82%       35%                37%           72%
      119   18535529   +10.96%       24%                46%           70%
      127   18513596   +10.83%       23%                48%           71%
      137   18514327   +10.84%       23%                48%           71%
      165   18511840   +10.82%       22%                49%           71%
      188   18593478   +11.31%       17%                53%           70%
      223   18601667   +11.36%       17%                52%           69%
      255   18774825   +12.40%       12%                58%           70%
      267   18754781   +12.28%        9%                60%           69%
      299   18892265   +13.10%        7%                63%           70%
      320   18873812   +12.99%        8%                62%           70%
      393   18891174   +13.09%        6%                64%           70%
      424   18975108   +13.60%        6%                64%           70%
      458   18932364   +13.34%        8%                62%           70%
      467   18960891   +13.51%        5%                65%           70%
      498   18944526   +13.41%        5%                64%           69%
      511   18960839   +13.51%        5%                64%           69%
      
      Skylake-EP: although increased batch reduced zone->lock contention, but
      the effect is not as good as EX: zone->lock contention is still as high as
      20% with a very high batch value instead of 1% on Skylake-EX or 5% on
      Broadwell-EX.  Also, total_contention actually decreased with a higher
      batch but that doesn't translate to performance increase.
      
      batch   score    change   zone_contention   lru_contention   total_contention
       31   9554867    +0.00%       66%                 3%           69%
       53   9855486    +3.15%       63%                 3%           66%
       63   9980145    +4.45%       62%                 4%           66%
       73   10092774   +5.63%       62%                 5%           67%
      119   10310061   +7.90%       45%                19%           64%
      127   10342019   +8.24%       42%                19%           61%
      137   10358182   +8.41%       42%                21%           63%
      165   10397060   +8.81%       37%                24%           61%
      188   10341808   +8.24%       34%                26%           60%
      223   10349135   +8.31%       31%                27%           58%
      255   10327189   +8.08%       28%                29%           57%
      267   10344204   +8.26%       27%                29%           56%
      299   10325043   +8.06%       25%                30%           55%
      320   10310325   +7.91%       25%                31%           56%
      393   10293274   +7.73%       21%                31%           52%
      424   10311099   +7.91%       21%                32%           53%
      458   10321375   +8.02%       21%                32%           53%
      467   10303881   +7.84%       21%                32%           53%
      498   10332462   +8.14%       20%                33%           53%
      511   10325016   +8.06%       20%                32%           52%
      
      Broadwell-EP: zone->lock and lru lock had an agreement to make sure
      performance doesn't increase and they successfully managed to keep total
      contention at 70%.
      
      batch   score    change   zone_contention   lru_contention   total_contention
       31   10121178   +0.00%       19%                50%           69%
       53   10142366   +0.21%        6%                63%           69%
       63   10117984   -0.03%       11%                58%           69%
       73   10123330   +0.02%        7%                63%           70%
      119   10108791   -0.12%        2%                67%           69%
      127   10166074   +0.44%        3%                66%           69%
      137   10141574   +0.20%        3%                66%           69%
      165   10154499   +0.33%        2%                68%           70%
      188   10124921   +0.04%        2%                67%           69%
      223   10137399   +0.16%        2%                67%           69%
      255   10143289   +0.22%        0%                68%           68%
      267   10123535   +0.02%        1%                68%           69%
      299   10140952   +0.20%        0%                68%           68%
      320   10163170   +0.41%        0%                68%           68%
      393   10000633   -1.19%        0%                69%           69%
      424   10087998   -0.33%        0%                69%           69%
      458   10187116   +0.65%        0%                69%           69%
      467   10146790   +0.25%        0%                69%           69%
      498   10197958   +0.76%        0%                69%           69%
      511   10152326   +0.31%        0%                69%           69%
      
      Haswell-EP: similar to Broadwell-EP.
      
      batch   score   change   zone_contention   lru_contention   total_contention
       31   10442205   +0.00%       14%                48%           62%
       53   10442255   +0.00%        5%                57%           62%
       63   10452059   +0.09%        6%                57%           63%
       73   10482349   +0.38%        5%                59%           64%
      119   10454644   +0.12%        3%                60%           63%
      127   10431514   -0.10%        3%                59%           62%
      137   10423785   -0.18%        3%                60%           63%
      165   10481216   +0.37%        2%                61%           63%
      188   10448755   +0.06%        2%                61%           63%
      223   10467144   +0.24%        2%                61%           63%
      255   10480215   +0.36%        2%                61%           63%
      267   10484279   +0.40%        2%                61%           63%
      299   10466450   +0.23%        2%                61%           63%
      320   10452578   +0.10%        2%                61%           63%
      393   10499678   +0.55%        1%                62%           63%
      424   10481454   +0.38%        1%                62%           63%
      458   10473562   +0.30%        1%                62%           63%
      467   10484269   +0.40%        0%                62%           62%
      498   10505599   +0.61%        0%                62%           62%
      511   10483395   +0.39%        0%                62%           62%
      
      Westmere-EP: contention is pretty small so not interesting.  Note too high
      a batch value could hurt performance.
      
      batch   score   change   zone_contention   lru_contention   total_contention
       31   4831523   +0.00%        2%                 3%            5%
       53   4834086   +0.05%        2%                 4%            6%
       63   4834262   +0.06%        2%                 3%            5%
       73   48328518   +0.03%        2%                 4%            6%
      119   4830534   -0.02%        1%                 3%            4%
      127   4827461   -0.08%        1%                 4%            5%
      137   4827459   -0.08%        1%                 3%            4%
      165   4820534   -0.23%        0%                 4%            4%
      188   4817947   -0.28%        0%                 3%            3%
      223   48096710   -0.45%        0%                 3%            3%
      255   4802463   -0.60%        0%                 4%            4%
      267   4801634   -0.62%        0%                 3%            3%
      299   4798047   -0.69%        0%                 3%            3%
      320   4793084   -0.80%        0%                 3%            3%
      393   4785877   -0.94%        0%                 3%            3%
      424   4782911   -1.01%        0%                 3%            3%
      458   4779346   -1.08%        0%                 3%            3%
      467   4780306   -1.06%        0%                 3%            3%
      498   4780589   -1.05%        0%                 3%            3%
      511   4773724   -1.20%        0%                 3%            3%
      
      Skylake-Desktop: similar to Westmere-EP, nothing interesting.
      
      batch   score   change   zone_contention   lru_contention   total_contention
       31   3906608   +0.00%        2%                 3%            5%
       53   3940164   +0.86%        2%                 3%            5%
       63   3937289   +0.79%        2%                 3%            5%
       73   3940201   +0.86%        2%                 3%            5%
      119   3933240   +0.68%        2%                 3%            5%
      127   3930514   +0.61%        2%                 4%            6%
      137   3938639   +0.82%        0%                 3%            3%
      165   3908755   +0.05%        0%                 3%            3%
      188   3905621   -0.03%        0%                 3%            3%
      223   3903015   -0.09%        0%                 4%            4%
      255   3889480   -0.44%        0%                 3%            3%
      267   3891669   -0.38%        0%                 4%            4%
      299   3898728   -0.20%        0%                 4%            4%
      320   3894547   -0.31%        0%                 4%            4%
      393   3875137   -0.81%        0%                 4%            4%
      424   3874521   -0.82%        0%                 3%            3%
      458   3880432   -0.67%        0%                 4%            4%
      467   3888715   -0.46%        0%                 3%            3%
      498   3888633   -0.46%        0%                 4%            4%
      511   3875305   -0.80%        0%                 5%            5%
      
      Haswell-Desktop: zone->lock is pretty low as other desktops, though lru
      contention is higher than other desktops.
      
      batch   score   change   zone_contention   lru_contention   total_contention
       31   3511158   +0.00%        2%                 5%            7%
       53   3555445   +1.26%        2%                 6%            8%
       63   3561082   +1.42%        2%                 6%            8%
       73   3547218   +1.03%        2%                 6%            8%
      119   3571319   +1.71%        1%                 7%            8%
      127   3549375   +1.09%        0%                 6%            6%
      137   3560233   +1.40%        0%                 6%            6%
      165   3555176   +1.25%        2%                 6%            8%
      188   3551501   +1.15%        0%                 8%            8%
      223   3531462   +0.58%        0%                 7%            7%
      255   3570400   +1.69%        0%                 7%            7%
      267   3532235   +0.60%        1%                 8%            9%
      299   3562326   +1.46%        0%                 6%            6%
      320   3553569   +1.21%        0%                 8%            8%
      393   3539519   +0.81%        0%                 7%            7%
      424   3549271   +1.09%        0%                 8%            8%
      458   3528885   +0.50%        0%                 8%            8%
      467   3526554   +0.44%        0%                 7%            7%
      498   3525302   +0.40%        0%                 9%            9%
      511   3527556   +0.47%        0%                 8%            8%
      
      Sandybridge-Desktop: the 0% contention isn't accurate but caused by
      dropped fractional part. Since multiple contention path's contentions
      are all under 1% here, with some arithmetic operations like add, the
      final deviation could be as large as 3%.
      
      batch   score   change   zone_contention   lru_contention   total_contention
       31   1744495   +0.00%        0%                 0%            0%
       53   1755341   +0.62%        0%                 0%            0%
       63   1758469   +0.80%        0%                 0%            0%
       73   1759626   +0.87%        0%                 0%            0%
      119   1770417   +1.49%        0%                 0%            0%
      127   1768252   +1.36%        0%                 0%            0%
      137   1767848   +1.34%        0%                 0%            0%
      165   1765088   +1.18%        0%                 0%            0%
      188   1766918   +1.29%        0%                 0%            0%
      223   1767866   +1.34%        0%                 0%            0%
      255   1768074   +1.35%        0%                 0%            0%
      267   1763187   +1.07%        0%                 0%            0%
      299   1765620   +1.21%        0%                 0%            0%
      320   1767603   +1.32%        0%                 0%            0%
      393   1764612   +1.15%        0%                 0%            0%
      424   1758476   +0.80%        0%                 0%            0%
      458   1758593   +0.81%        0%                 0%            0%
      467   1757915   +0.77%        0%                 0%            0%
      498   1753363   +0.51%        0%                 0%            0%
      511   1755548   +0.63%        0%                 0%            0%
      
      Phase two test results:
      Note: all percent change is against base(batch=31).
      
      ebizzy.throughput (higer is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1    2410037±7%     2600451±2% +7.9%     2602878 +8.0%
      lkp-bdw-ex1     1493328        1489243    -0.3%     1492145 -0.1%
      lkp-skl-2sp2    1329674        1345891    +1.2%     1351056 +1.6%
      lkp-bdw-ep2      711511         711511     0.0%      710708 -0.1%
      lkp-wsm-ep2       75750          75528    -0.3%       75441 -0.4%
      lkp-skl-d01      264126         262791    -0.5%      264113 +0.0%
      lkp-hsw-d01      176601         176328    -0.2%      176368 -0.1%
      lkp-sb02          98937          98937    +0.0%       99030 +0.1%
      
      kbuild.buildtime (less is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1     107.00        107.67  +0.6%        107.11  +0.1%
      lkp-bdw-ex1       97.33         97.33  +0.0%         97.42  +0.1%
      lkp-skl-2sp2     180.00        179.83  -0.1%        179.83  -0.1%
      lkp-bdw-ep2      178.17        179.17  +0.6%        177.50  -0.4%
      lkp-wsm-ep2      737.00        738.00  +0.1%        738.00  +0.1%
      lkp-skl-d01      642.00        653.00  +1.7%        653.00  +1.7%
      lkp-hsw-d01     1310.00       1316.00  +0.5%       1311.00  +0.1%
      
      netperf/TCP_STREAM.Throughput_total_Mbps (higher is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1     948790        947144  -0.2%        948333 -0.0%
      lkp-bdw-ex1      904224        904366  +0.0%        904926 +0.1%
      lkp-skl-2sp2     239731        239607  -0.1%        239565 -0.1%
      lk-bdw-ep2       365764        365933  +0.0%        365951 +0.1%
      lkp-wsm-ep2       93736         93803  +0.1%         93808 +0.1%
      lkp-skl-d01       77314         77303  -0.0%         77375 +0.1%
      lkp-hsw-d01       58617         60387  +3.0%         60208 +2.7%
      lkp-sb02          29990         30137  +0.5%         30103 +0.4%
      
      oltp.transactions (higer is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-bdw-ex1      9073276       9100377     +0.3%    9036344     -0.4%
      lkp-skl-2sp2     8898717       8852054     -0.5%    8894459     -0.0%
      lkp-bdw-ep2     13426155      13384654     -0.3%   13333637     -0.7%
      lkp-hsw-ep2     13146314      13232784     +0.7%   13193163     +0.4%
      lkp-wsm-ep2      5035355       5019348     -0.3%    5033418     -0.0%
      lkp-skl-d01       418485       4413339     -0.1%    4419039     +0.0%
      lkp-hsw-d01      3517817±5%    3396120±3%  -3.5%    3455138±3%  -1.8%
      
      pigz.throughput (higer is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1    1.513e+08     1.507e+08 -0.4%      1.511e+08 -0.2%
      lkp-bdw-ex1     2.060e+08     2.052e+08 -0.4%      2.044e+08 -0.8%
      lkp-skl-2sp2    8.836e+08     8.845e+08 +0.1%      8.836e+08 -0.0%
      lkp-bdw-ep2     8.275e+08     8.464e+08 +2.3%      8.330e+08 +0.7%
      lkp-wsm-ep2     2.224e+08     2.221e+08 -0.2%      2.218e+08 -0.3%
      lkp-skl-d01     1.177e+08     1.177e+08 -0.0%      1.176e+08 -0.1%
      lkp-hsw-d01     1.154e+08     1.154e+08 +0.1%      1.154e+08 -0.0%
      lkp-sb02        0.633e+08     0.633e+08 +0.1%      0.633e+08 +0.0%
      
      will-it-scale.malloc1.processes (higher is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1      620181       620484 +0.0%         620240 +0.0%
      lkp-bdw-ex1      1403610      1401201 -0.2%        1417900 +1.0%
      lkp-skl-2sp2     1288097      1284145 -0.3%        1283907 -0.3%
      lkp-bdw-ep2      1427879      1427675 -0.0%        1428266 +0.0%
      lkp-hsw-ep2      1362546      1353965 -0.6%        1354759 -0.6%
      lkp-wsm-ep2      2099657      2107576 +0.4%        2100226 +0.0%
      lkp-skl-d01      1476835      1476358 -0.0%        1474487 -0.2%
      lkp-hsw-d01      1308810      1303429 -0.4%        1301299 -0.6%
      lkp-sb02          589286       589284 -0.0%         588101 -0.2%
      
      will-it-scale.malloc1.threads (higher is better)
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1     21289         21125     -0.8%      21241     -0.2%
      lkp-bdw-ex1      28114         28089     -0.1%      28007     -0.4%
      lkp-skl-2sp2     91866         91946     +0.1%      92723     +0.9%
      lkp-bdw-ep2      37637         37501     -0.4%      37317     -0.9%
      lkp-hsw-ep2      43673         43590     -0.2%      43754     +0.2%
      lkp-wsm-ep2      28577         28298     -1.0%      28545     -0.1%
      lkp-skl-d01     175277        173343     -1.1%     173082     -1.3%
      lkp-hsw-d01     130303        129566     -0.6%     129250     -0.8%
      lkp-sb02        113742±3%     116911     +2.8%     116417±3%  +2.4%
      
      will-it-scale.malloc2.processes (higer is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1    1.206e+09     1.206e+09 -0.0%      1.206e+09 +0.0%
      lkp-bdw-ex1     1.319e+09     1.319e+09 -0.0%      1.319e+09 +0.0%
      lkp-skl-2sp2    8.000e+08     8.021e+08 +0.3%      7.995e+08 -0.1%
      lkp-bdw-ep2     6.582e+08     6.634e+08 +0.8%      6.513e+08 -1.1%
      lkp-hsw-ep2     6.671e+08     6.669e+08 -0.0%      6.665e+08 -0.1%
      lkp-wsm-ep2     1.805e+08     1.806e+08 +0.0%      1.804e+08 -0.1%
      lkp-skl-d01     1.611e+08     1.611e+08 -0.0%      1.610e+08 -0.0%
      lkp-hsw-d01     1.333e+08     1.332e+08 -0.0%      1.332e+08 -0.0%
      lkp-sb02         82485104      82478206 -0.0%       82473546 -0.0%
      
      will-it-scale.malloc2.threads (higer is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1    1.574e+09     1.574e+09 -0.0%      1.574e+09 -0.0%
      lkp-bdw-ex1     1.737e+09     1.737e+09 +0.0%      1.737e+09 -0.0%
      lkp-skl-2sp2    9.161e+08     9.162e+08 +0.0%      9.181e+08 +0.2%
      lkp-bdw-ep2     7.856e+08     8.015e+08 +2.0%      8.113e+08 +3.3%
      lkp-hsw-ep2     6.908e+08     6.904e+08 -0.1%      6.907e+08 -0.0%
      lkp-wsm-ep2     2.409e+08     2.409e+08 +0.0%      2.409e+08 -0.0%
      lkp-skl-d01     1.199e+08     1.199e+08 -0.0%      1.199e+08 -0.0%
      lkp-hsw-d01     1.029e+08     1.029e+08 -0.0%      1.029e+08 +0.0%
      lkp-sb02         68081213      68061423 -0.0%       68076037 -0.0%
      
      will-it-scale.page_fault2.processes (higer is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1    14509125±4%   16472364 +13.5%       17123117 +18.0%
      lkp-bdw-ex1     14736381      16196588  +9.9%       16364011 +11.0%
      lkp-skl-2sp2     6354925       6435444  +1.3%        6436644  +1.3%
      lkp-bdw-ep2      8749584       8834422  +1.0%        8827179  +0.9%
      lkp-hsw-ep2      8762591       8845920  +1.0%        8825697  +0.7%
      lkp-wsm-ep2      3036083       3030428  -0.2%        3021741  -0.5%
      lkp-skl-d01      2307834       2304731  -0.1%        2286142  -0.9%
      lkp-hsw-d01      1806237       1800786  -0.3%        1795943  -0.6%
      lkp-sb02          842616        837844  -0.6%         833921  -1.0%
      
      will-it-scale.page_fault2.threads
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1     1623294       1615132±2% -0.5%     1656777    +2.1%
      lkp-bdw-ex1      1995714       2025948    +1.5%     2113753±3% +5.9%
      lkp-skl-2sp2     2346708       2415591    +2.9%     2416919    +3.0%
      lkp-bdw-ep2      2342564       2344882    +0.1%     2300206    -1.8%
      lkp-hsw-ep2      1820658       1831681    +0.6%     1844057    +1.3%
      lkp-wsm-ep2      1725482       1733774    +0.5%     1740517    +0.9%
      lkp-skl-d01      1832833       1823628    -0.5%     1806489    -1.4%
      lkp-hsw-d01      1427913       1427287    -0.0%     1420226    -0.5%
      lkp-sb02          750626        748615    -0.3%      746621    -0.5%
      
      will-it-scale.page_fault3.processes (higher is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1    24382726      24400317 +0.1%       24668774 +1.2%
      lkp-bdw-ex1     35399750      35683124 +0.8%       35829492 +1.2%
      lkp-skl-2sp2    28136820      28068248 -0.2%       28147989 +0.0%
      lkp-bdw-ep2     37269077      37459490 +0.5%       37373073 +0.3%
      lkp-hsw-ep2     36224967      36114085 -0.3%       36104908 -0.3%
      lkp-wsm-ep2     16820457      16911005 +0.5%       16968596 +0.9%
      lkp-skl-d01      7721138       7725904 +0.1%        7756740 +0.5%
      lkp-hsw-d01      7611979       7650928 +0.5%        7651323 +0.5%
      lkp-sb02         3781546       3796502 +0.4%        3796827 +0.4%
      
      will-it-scale.page_fault3.threads (higer is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1     1865820±3%   1900917±2%  +1.9%     1826245±4%  -2.1%
      lkp-bdw-ex1      3094060      3148326     +1.8%     3150036     +1.8%
      lkp-skl-2sp2     3952940      3953898     +0.0%     3989360     +0.9%
      lkp-bdw-ep2      3420373±3%   3643964     +6.5%     3644910±5%  +6.6%
      lkp-hsw-ep2      2609635±2%   2582310±3%  -1.0%     2780459     +6.5%
      lkp-wsm-ep2      4395001      4417196     +0.5%     4432499     +0.9%
      lkp-skl-d01      5363977      5400003     +0.7%     5411370     +0.9%
      lkp-hsw-d01      5274131      5311294     +0.7%     5319359     +0.9%
      lkp-sb02         2917314      2913004     -0.1%     2935286     +0.6%
      
      will-it-scale.read1.processes (higer is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1    73762279±14%  69322519±10% -6.0%    69349855±13%  -6.0% (result unstable)
      lkp-bdw-ex1     1.701e+08     1.704e+08    +0.1%    1.705e+08     +0.2%
      lkp-skl-2sp2    63111570      63113953     +0.0%    63836573      +1.1%
      lkp-bdw-ep2     79247409      79424610     +0.2%    78012656      -1.6%
      lkp-hsw-ep2     67677026      68308800     +0.9%    67539106      -0.2%
      lkp-wsm-ep2     13339630      13939817     +4.5%    13766865      +3.2%
      lkp-skl-d01     10969487      10972650     +0.0%    no data
      lkp-hsw-d01     9857342±2%    10080592±2%  +2.3%    10131560      +2.8%
      lkp-sb02        5189076        5197473     +0.2%    5163253       -0.5%
      
      will-it-scale.read1.threads (higher is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1    62468045±12%  73666726±7% +17.9%    79553123±12% +27.4% (result unstable)
      lkp-bdw-ex1     1.62e+08      1.624e+08    +0.3%    1.614e+08     -0.3%
      lkp-skl-2sp2    58319780      59181032     +1.5%    59821353      +2.6%
      lkp-bdw-ep2     74057992      75698171     +2.2%    74990869      +1.3%
      lkp-hsw-ep2     63672959      63639652     -0.1%    64387051      +1.1%
      lkp-wsm-ep2     13489943      13526058     +0.3%    13259032      -1.7%
      lkp-skl-d01     10297906      10338796     +0.4%    10407328      +1.1%
      lkp-hsw-d01      9636721       9667376     +0.3%     9341147      -3.1%
      lkp-sb02         4801938       4804496     +0.1%     4802290      +0.0%
      
      will-it-scale.write1.processes (higer is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1    1.111e+08     1.104e+08±2%  -0.7%   1.122e+08±2%  +1.0%
      lkp-bdw-ex1     1.392e+08     1.399e+08     +0.5%   1.397e+08     +0.4%
      lkp-skl-2sp2     59369233      58994841     -0.6%    58715168     -1.1%
      lkp-bdw-ep2      61820979      CPU throttle          63593123     +2.9%
      lkp-hsw-ep2      57897587      57435605     -0.8%    56347450     -2.7%
      lkp-wsm-ep2       7814203       7918017±2%  +1.3%     7669068     -1.9%
      lkp-skl-d01       8886557       8971422     +1.0%     8818366     -0.8%
      lkp-hsw-d01       9171001±5%    9189915     +0.2%     9483909     +3.4%
      lkp-sb02          4475406       4475294     -0.0%     4501756     +0.6%
      
      will-it-scale.write1.threads (higer is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1    1.058e+08     1.055e+08±2%  -0.2%   1.065e+08  +0.7%
      lkp-bdw-ex1     1.316e+08     1.300e+08     -1.2%   1.308e+08  -0.6%
      lkp-skl-2sp2     54492421      56086678     +2.9%    55975657  +2.7%
      lkp-bdw-ep2      59360449      59003957     -0.6%    58101262  -2.1%
      lkp-hsw-ep2      53346346±2%   52530876     -1.5%    52902487  -0.8%
      lkp-wsm-ep2       7774006       7800092±2%  +0.3%     7558833  -2.8%
      lkp-skl-d01       8346174       8235695     -1.3%     no data
      lkp-hsw-d01       8636244       8655731     +0.2%     8658868  +0.3%
      lkp-sb02          4181820       4204107     +0.5%     4182992  +0.0%
      
      vm-scalability.anon-r-rand.throughput (higher is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1    11933873±3%   12356544±2%  +3.5%   12188624     +2.1%
      lkp-bdw-ex1      7114424±2%    7330949±2%  +3.0%    7392419     +3.9%
      lkp-skl-2sp2     6773277±5%    6492332±8%  -4.1%    6543962     -3.4%
      lkp-bdw-ep2      7133846±4%    7233508     +1.4%    7013518±3%  -1.7%
      lkp-hsw-ep2      4576626       4527098     -1.1%    4551679     -0.5%
      lkp-wsm-ep2      2583599       2592492     +0.3%    2588039     +0.2%
      lkp-hsw-d01       998199±2%    1028311     +3.0%    1006460±2%  +0.8%
      lkp-sb02          570572        567854     -0.5%     568449     -0.4%
      
      vm-scalability.anon-r-rand-mt.throughput (higher is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1     1789419       1787830     -0.1%    1788208     -0.1%
      lkp-bdw-ex1      3492595±2%    3554966±2%  +1.8%    3558835±3%  +1.9%
      lkp-skl-2sp2     3856238±2%    3975403±4%  +3.1%    3994600     +3.6%
      lkp-bdw-ep2      3726963±11%   3809292±6%  +2.2%    3871924±4%  +3.9%
      lkp-hsw-ep2      2131760±3%    2033578±4%  -4.6%    2130727±6%  -0.0%
      lkp-wsm-ep2      2369731       2368384     -0.1%    2370252     +0.0%
      lkp-skl-d01      1207128       1206220     -0.1%    1205801     -0.1%
      lkp-hsw-d01       964317        992329±2%  +2.9%     992099±2%  +2.9%
      lkp-sb02          567137        567346     +0.0%     566144     -0.2%
      
      vm-scalability.lru-file-mmap-read.throughput (higher is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1    19560469±6%   23018999     +17.7%   23418800     +19.7%
      lkp-bdw-ex1     17769135±14%  26141676±3%  +47.1%   26284723±5%  +47.9%
      lkp-skl-2sp2    14056512      13578884      -3.4%   13146214      -6.5%
      lkp-bdw-ep2     15336542      14737654      -3.9%   14088159      -8.1%
      lkp-hsw-ep2     16275498      15756296      -3.2%   15018090      -7.7%
      lkp-wsm-ep2     11272160      11237231      -0.3%   11310047      +0.3%
      lkp-skl-d01      7322119       7324569      +0.0%    7184148      -1.9%
      lkp-hsw-d01      6449234       6404542      -0.7%    6356141      -1.4%
      lkp-sb02         3517943       3520668      +0.1%    3527309      +0.3%
      
      vm-scalability.lru-file-mmap-read-rand.throughput (higher is better)
      
      machine         batch=31      batch=63             batch=127
      lkp-skl-4sp1     1689052       1697553  +0.5%       1698726  +0.6%
      lkp-bdw-ex1      1675246       1699764  +1.5%       1712226  +2.2%
      lkp-skl-2sp2     1800533       1799749  -0.0%       1800581  +0.0%
      lkp-bdw-ep2      1807422       1807758  +0.0%       1804932  -0.1%
      lkp-hsw-ep2      1809807       1808781  -0.1%       1807811  -0.1%
      lkp-wsm-ep2      1800198       1802434  +0.1%       1801236  +0.1%
      lkp-skl-d01       696689        695537  -0.2%        694106  -0.4%
      lkp-hsw-d01       698364        698666  +0.0%        696686  -0.2%
      lkp-sb02          258939        258787  -0.1%        258199  -0.3%
      
      Link: http://lkml.kernel.org/r/20180711055855.29072-1-aaron.lu@intel.comSigned-off-by: NAaron Lu <aaron.lu@intel.com>
      Suggested-by: NDave Hansen <dave.hansen@intel.com>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NJesper Dangaard Brouer <brouer@redhat.com>
      Cc: Huang Ying <ying.huang@intel.com>
      Cc: Kemi Wang <kemi.wang@intel.com>
      Cc: Tim Chen <tim.c.chen@linux.intel.com>
      Cc: Andi Kleen <ak@linux.intel.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Mel Gorman <mgorman@techsingularity.net>
      Cc: Jesper Dangaard Brouer <brouer@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d8a759b5
    • M
      mm/oom_kill.c: document oom_lock · a195d3f5
      Michal Hocko 提交于
      Add comments describing oom_lock's scope.
      Requested-by: NDavid Rientjes <rientjes@google.com>
      Link: http://lkml.kernel.org/r/20180711120121.25635-1-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com>
      Reviewed-by: NAndrew Morton <akpm@linux-foundation.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a195d3f5
    • M
      mm/hugetlb: remove gigantic page support for HIGHMEM · 40d18ebf
      Mike Kravetz 提交于
      This reverts ee8f248d ("hugetlb: add phys addr to struct
      huge_bootmem_page").
      
      At one time powerpc used this field and supporting code.  However that
      was removed with commit 79cc38de ("powerpc/mm/hugetlb: Add support
      for reserving gigantic huge pages via kernel command line").
      
      There are no users of this field and supporting code, so remove it.
      
      Link: http://lkml.kernel.org/r/20180711195913.1294-1-mike.kravetz@oracle.comSigned-off-by: NMike Kravetz <mike.kravetz@oracle.com>
      Reviewed-by: NAndrew Morton <akpm@linux-foundation.org>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Michael Ellerman <mpe@ellerman.id.au>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Cannon Matthews <cannonmatthews@google.com>
      Cc: Becky Bruce <beckyb@kernel.crashing.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      40d18ebf
    • M
      mm, oom: remove sleep from under oom_lock · 9bfe5ded
      Michal Hocko 提交于
      Tetsuo has pointed out that since 27ae357f ("mm, oom: fix concurrent
      munlock and oom reaper unmap, v3") we have a strong synchronization
      between the oom_killer and victim's exiting because both have to take
      the oom_lock.  Therefore the original heuristic to sleep for a short
      time in out_of_memory doesn't serve the original purpose.
      
      Moreover Tetsuo has noticed that the short sleep can be more harmful
      than actually useful.  Hammering the system with many processes can lead
      to a starvation when the task holding the oom_lock can block for a long
      time (minutes) and block any further progress because the oom_reaper
      depends on the oom_lock as well.
      
      Drop the short sleep from out_of_memory when we hold the lock.  Keep the
      sleep when the trylock fails to throttle the concurrent OOM paths a bit.
      This should be solved in a more reasonable way (e.g.  sleep proportional
      to the time spent in the active reclaiming etc.) but this is much more
      complex thing to achieve.  This is a quick fixup to remove a stale code.
      
      Link: http://lkml.kernel.org/r/20180709074706.30635-1-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com>
      Reported-by: NTetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
      Reviewed-by: NAndrew Morton <akpm@linux-foundation.org>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      9bfe5ded
    • M
      mm/cma: remove unsupported gfp_mask parameter from cma_alloc() · 65182029
      Marek Szyprowski 提交于
      cma_alloc() doesn't really support gfp flags other than __GFP_NOWARN, so
      convert gfp_mask parameter to boolean no_warn parameter.
      
      This will help to avoid giving false feeling that this function supports
      standard gfp flags and callers can pass __GFP_ZERO to get zeroed buffer,
      what has already been an issue: see commit dd65a941 ("arm64:
      dma-mapping: clear buffers allocated with FORCE_CONTIGUOUS flag").
      
      Link: http://lkml.kernel.org/r/20180709122019eucas1p2340da484acfcc932537e6014f4fd2c29~-sqTPJKij2939229392eucas1p2j@eucas1p2.samsung.comSigned-off-by: NMarek Szyprowski <m.szyprowski@samsung.com>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NMichał Nazarewicz <mina86@mina86.com>
      Acked-by: NLaura Abbott <labbott@redhat.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Reviewed-by: NChristoph Hellwig <hch@lst.de>
      Cc: Joonsoo Kim <js1304@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      65182029
    • R
      Revert "mm: always flush VMA ranges affected by zap_page_range" · 50c150f2
      Rik van Riel 提交于
      There was a bug in Linux that could cause madvise (and mprotect?) system
      calls to return to userspace without the TLB having been flushed for all
      the pages involved.
      
      This could happen when multiple threads of a process made simultaneous
      madvise and/or mprotect calls.
      
      This was noticed in the summer of 2017, at which time two solutions
      were created:
      
        56236a59 ("mm: refactor TLB gathering API")
        99baac21 ("mm: fix MADV_[FREE|DONTNEED] TLB flush miss problem")
      and
        4647706e ("mm: always flush VMA ranges affected by zap_page_range")
      
      We need only one of these solutions, and the former appears to be a
      little more efficient than the latter, so revert that one.
      
      This reverts 4647706e ("mm: always flush VMA ranges affected by
      zap_page_range")
      
      Link: http://lkml.kernel.org/r/20180706131019.51e3a5f0@imladris.surriel.comSigned-off-by: NRik van Riel <riel@surriel.com>
      Acked-by: NMel Gorman <mgorman@techsingularity.net>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Mel Gorman <mgorman@techsingularity.net>
      Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Nicholas Piggin <npiggin@gmail.com>
      Cc: Nadav Amit <nadav.amit@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      50c150f2