- 09 1月, 2014 11 次提交
-
-
由 Zhouyi Zhou 提交于
NULL return of kvmppc_mmu_hpte_cache_next should be handled Signed-off-by: NZhouyi Zhou <yizhouzhou@ict.ac.cn> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Tiejun Chen 提交于
Rather than calling hard_irq_disable() when we're back in C code we can just call RECONCILE_IRQ_STATE to soft disable IRQs while we're already in hard disabled state. This should be functionally equivalent to the code before, but cleaner and faster. Signed-off-by: NTiejun Chen <tiejun.chen@windriver.com> [agraf: fix comment, commit message] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Bharat Bhushan 提交于
KVM uses same WIM tlb attributes as the corresponding qemu pte. For this we now search the linux pte for the requested page and get these cache caching/coherency attributes from pte. Signed-off-by: NBharat Bhushan <bharat.bhushan@freescale.com> Reviewed-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Bharat Bhushan 提交于
lookup_linux_pte() is doing more than lookup, updating the pte, so for clarity it is renamed to lookup_linux_pte_and_update() Signed-off-by: NBharat Bhushan <bharat.bhushan@freescale.com> Reviewed-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Bharat Bhushan 提交于
On booke, "struct tlbe_ref" contains host tlb mapping information (pfn: for guest-pfn to pfn, flags: attribute associated with this mapping) for a guest tlb entry. So when a guest creates a TLB entry then "struct tlbe_ref" is set to point to valid "pfn" and set attributes in "flags" field of the above said structure. When a guest TLB entry is invalidated then flags field of corresponding "struct tlbe_ref" is updated to point that this is no more valid, also we selectively clear some other attribute bits, example: if E500_TLB_BITMAP was set then we clear E500_TLB_BITMAP, if E500_TLB_TLB0 is set then we clear this. Ideally we should clear complete "flags" as this entry is invalid and does not have anything to re-used. The other part of the problem is that when we use the same entry again then also we do not clear (started doing or-ing etc). So far it was working because the selectively clearing mentioned above actually clears "flags" what was set during TLB mapping. But the problem starts coming when we add more attributes to this then we need to selectively clear them and which is not needed. Signed-off-by: NBharat Bhushan <bharat.bhushan@freescale.com> Reviewed-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This modifies kvmppc_load_fp and kvmppc_save_fp to use the generic FP/VSX and VMX load/store functions instead of open-coding the FP/VSX/VMX load/store instructions. Since kvmppc_load/save_fp don't follow C calling conventions, we make them private symbols within book3s_hv_rmhandlers.S. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Now that we have the vcpu floating-point and vector state stored in the same type of struct as the main kernel uses, we can load that state directly from the vcpu struct instead of having extra copies to/from the thread_struct. Similarly, when the guest state needs to be saved, we can have it saved it directly to the vcpu struct by setting the current->thread.fp_save_area and current->thread.vr_save_area pointers. That also means that we don't need to back up and restore userspace's FP/vector state. This all makes the code simpler and faster. Note that it's not necessary to save or modify current->thread.fpexc_mode, since nothing in KVM uses or is affected by its value. Nor is it necessary to touch used_vr or used_vsr. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This uses struct thread_fp_state and struct thread_vr_state to store the floating-point, VMX/Altivec and VSX state, rather than flat arrays. This makes transferring the state to/from the thread_struct simpler and allows us to unify the get/set_one_reg implementations for the VSX registers. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
The load_up_fpu and load_up_altivec functions were never intended to be called from C, and do things like modifying the MSR value in their callers' stack frames, which are assumed to be interrupt frames. In addition, on 32-bit Book S they require the MMU to be off. This makes KVM use the new load_fp_state() and load_vr_state() functions instead of load_up_fpu/altivec. This means we can remove the assembler glue in book3s_rmhandlers.S, and potentially fixes a bug on Book E, where load_up_fpu was called directly from C. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Gleb Natapov 提交于
XICS failed to free xics structure on error path. MPIC destroy handler forgot to delete kvm_device structure. Signed-off-by: NGleb Natapov <gleb@redhat.com> Acked-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
Systems that support automatic loading of kernel modules through device aliases should try and automatically load kvm when /dev/kvm gets opened. Add code to support that magic for all PPC kvm targets, even the ones that don't support modules yet. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 21 11月, 2013 1 次提交
-
-
由 Liu Ping Fan 提交于
In some scene, e.g openstack CI, PR guest can trigger "sc 1" frequently, this patch optimizes the path by directly delivering BOOK3S_INTERRUPT_SYSCALL to HV guest, so powernv can return to HV guest without heavy exit, i.e, no need to swap TLB, HTAB,.. etc Signed-off-by: NLiu Ping Fan <pingfank@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 18 10月, 2013 2 次提交
-
-
由 Aneesh Kumar K.V 提交于
drop is_hv_enabled, because that should not be a callback property Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Aneesh Kumar K.V 提交于
This moves the kvmppc_ops callbacks to be a per VM entity. This enables us to select HV and PR mode when creating a VM. We also allow both kvm-hv and kvm-pr kernel module to be loaded. To achieve this we move /dev/kvm ownership to kvm.ko module. Depending on which KVM mode we select during VM creation we take a reference count on respective module Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> [agraf: fix coding style] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 17 10月, 2013 26 次提交
-
-
由 Aneesh Kumar K.V 提交于
We will use that in the later patch to find the kvm ops handler Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Aneesh Kumar K.V 提交于
Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> [agraf: squash in compile fix] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Aneesh Kumar K.V 提交于
Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Aneesh Kumar K.V 提交于
This patch moves PR related tracepoints to a separate header. This enables in converting PR to a kernel module which will be done in later patches Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Aneesh Kumar K.V 提交于
This help us to identify whether we are running with hypervisor mode KVM enabled. The change is needed so that we can have both HV and PR kvm enabled in the same kernel. If both HV and PR KVM are included, interrupts come in to the HV version of the kvmppc_interrupt code, which then jumps to the PR handler, renamed to kvmppc_interrupt_pr, if the guest is a PR guest. Allowing both PR and HV in the same kernel required some changes to kvm_dev_ioctl_check_extension(), since the values returned now can't be selected with #ifdefs as much as previously. We look at is_hv_enabled to return the right value when checking for capabilities.For capabilities that are only provided by HV KVM, we return the HV value only if is_hv_enabled is true. For capabilities provided by PR KVM but not HV, we return the PR value only if is_hv_enabled is false. NOTE: in later patch we replace is_hv_enabled with a static inline function comparing kvm_ppc_ops Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Aneesh Kumar K.V 提交于
With this patch if HV is included, interrupts come in to the HV version of the kvmppc_interrupt code, which then jumps to the PR handler, renamed to kvmppc_interrupt_pr, if the guest is a PR guest. This helps in enabling both HV and PR, which we do in later patch Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Aneesh Kumar K.V 提交于
This patch add a new callback kvmppc_ops. This will help us in enabling both HV and PR KVM together in the same kernel. The actual change to enable them together is done in the later patch in the series. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> [agraf: squash in booke changes] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Aneesh Kumar K.V 提交于
This help ups to select the relevant code in the kernel code when we later move HV and PR bits as seperate modules. The patch also makes the config options for PR KVM selectable Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Aneesh Kumar K.V 提交于
With later patches supporting PR kvm as a kernel module, the changes that has to be built into the main kernel binary to enable PR KVM module is now selected via KVM_BOOK3S_PR_POSSIBLE Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Since the code in book3s_64_vio_hv.c is called from real mode with HV KVM, and therefore has to be built into the main kernel binary, this makes it always built-in rather than part of the KVM module. It gets called from the KVM module by PR KVM, so this adds an EXPORT_SYMBOL_GPL(). Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This label is not used now. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Bharat Bhushan 提交于
This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: NBharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Bharat Bhushan 提交于
For KVM also use the "struct debug_reg" defined in asm/processor.h Signed-off-by: NBharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Bharat Bhushan 提交于
"ehpriv 1" instruction is used for setting software breakpoints by user space. This patch adds support to exit to user space with "run->debug" have relevant information. As this is the first point we are using run->debug, also defined the run->debug structure. Signed-off-by: NBharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Bharat Bhushan 提交于
Mark the guest page as accessed so that there is likely less chances of this page getting swap-out. Signed-off-by: NBharat Bhushan <bharat.bhushan@freescale.com> Acked-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Bharat Bhushan 提交于
"G" bit in MAS2 indicates whether the page is Guarded. There is no reason to stop guest setting "G", so allow him. Signed-off-by: NBharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Bharat Bhushan 提交于
"E" bit in MAS2 bit indicates whether the page is accessed in Little-Endian or Big-Endian byte order. There is no reason to stop guest setting "E", so allow him." Signed-off-by: NBharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
When an interrupt or exception happens in the guest that comes to the host, the CPU goes to hypervisor real mode (MMU off) to handle the exception but doesn't change the MMU context. After saving a few registers, we then clear the "in guest" flag. If, for any reason, we get an exception in the real-mode code, that then gets handled by the normal kernel exception handlers, which turn the MMU on. This is disastrous if the MMU is still set to the guest context, since we end up executing instructions from random places in the guest kernel with hypervisor privilege. In order to catch this situation, we define a new value for the "in guest" flag, KVM_GUEST_MODE_HOST_HV, to indicate that we are in hypervisor real mode with guest MMU context. If the "in guest" flag is set to this value, we branch off to an emergency handler. For the moment, this just does a branch to self to stop the CPU from doing anything further. While we're here, we define another new flag value to indicate that we are in a HV guest, as distinct from a PR guest. This will be useful when we have a kernel that can support both PR and HV guests concurrently. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
add kvmppc_free_vcores() to free the kvmppc_vcore structures that we allocate for a guest, which are currently being leaked. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Currently, whenever any of the MMU notifier callbacks get called, we invalidate all the shadow PTEs. This is inefficient because it means that we typically then get a lot of DSIs and ISIs in the guest to fault the shadow PTEs back in. We do this even if the address range being notified doesn't correspond to guest memory. This commit adds code to scan the memslot array to find out what range(s) of guest physical addresses corresponds to the host virtual address range being affected. For each such range we flush only the shadow PTEs for the range, on all cpus. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
The mark_page_dirty() function, despite what its name might suggest, doesn't actually mark the page as dirty as far as the MM subsystem is concerned. It merely sets a bit in KVM's map of dirty pages, if userspace has requested dirty tracking for the relevant memslot. To tell the MM subsystem that the page is dirty, we have to call kvm_set_pfn_dirty() (or an equivalent such as SetPageDirty()). This adds a call to kvm_set_pfn_dirty(), and while we are here, also adds a call to kvm_set_pfn_accessed() to tell the MM subsystem that the page has been accessed. Since we are now using the pfn in several places, this adds a 'pfn' variable to store it and changes the places that used hpaddr >> PAGE_SHIFT to use pfn instead, which is the same thing. This also changes a use of HPTE_R_PP to PP_RXRX. Both are 3, but PP_RXRX is more informative as being the read-only page permission bit setting. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
When the MM code is invalidating a range of pages, it calls the KVM kvm_mmu_notifier_invalidate_range_start() notifier function, which calls kvm_unmap_hva_range(), which arranges to flush all the existing host HPTEs for guest pages. However, the Linux PTEs for the range being flushed are still valid at that point. We are not supposed to establish any new references to pages in the range until the ...range_end() notifier gets called. The PPC-specific KVM code doesn't get any explicit notification of that; instead, we are supposed to use mmu_notifier_retry() to test whether we are or have been inside a range flush notifier pair while we have been getting a page and instantiating a host HPTE for the page. This therefore adds a call to mmu_notifier_retry inside kvmppc_mmu_map_page(). This call is inside a region locked with kvm->mmu_lock, which is the same lock that is called by the KVM MMU notifier functions, thus ensuring that no new notification can proceed while we are in the locked region. Inside this region we also create the host HPTE and link the corresponding hpte_cache structure into the lists used to find it later. We cannot allocate the hpte_cache structure inside this locked region because that can lead to deadlock, so we allocate it outside the region and free it if we end up not using it. This also moves the updates of vcpu3s->hpte_cache_count inside the regions locked with vcpu3s->mmu_lock, and does the increment in kvmppc_mmu_hpte_cache_map() when the pte is added to the cache rather than when it is allocated, in order that the hpte_cache_count is accurate. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Currently we request write access to all pages that get mapped into the guest, even if the guest is only loading from the page. This reduces the effectiveness of KSM because it means that we unshare every page we access. Also, we always set the changed (C) bit in the guest HPTE if it allows writing, even for a guest load. This fixes both these problems. We pass an 'iswrite' flag to the mmu.xlate() functions and to kvmppc_mmu_map_page() to indicate whether the access is a load or a store. The mmu.xlate() functions now only set C for stores. kvmppc_gfn_to_pfn() now calls gfn_to_pfn_prot() instead of gfn_to_pfn() so that it can indicate whether we need write access to the page, and get back a 'writable' flag to indicate whether the page is writable or not. If that 'writable' flag is clear, we then make the host HPTE read-only even if the guest HPTE allowed writing. This means that we can get a protection fault when the guest writes to a page that it has mapped read-write but which is read-only on the host side (perhaps due to KSM having merged the page). Thus we now call kvmppc_handle_pagefault() for protection faults as well as HPTE not found faults. In kvmppc_handle_pagefault(), if the access was allowed by the guest HPTE and we thus need to install a new host HPTE, we then need to remove the old host HPTE if there is one. This is done with a new function, kvmppc_mmu_unmap_page(), which uses kvmppc_mmu_pte_vflush() to find and remove the old host HPTE. Since the memslot-related functions require the KVM SRCU read lock to be held, this adds srcu_read_lock/unlock pairs around the calls to kvmppc_handle_pagefault(). Finally, this changes kvmppc_mmu_book3s_32_xlate_pte() to not ignore guest HPTEs that don't permit access, and to return -EPERM for accesses that are not permitted by the page protections. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Both PR and HV KVM have separate, identical copies of the kvmppc_skip_interrupt and kvmppc_skip_Hinterrupt handlers that are used for the situation where an interrupt happens when loading the instruction that caused an exit from the guest. To eliminate this duplication and make it easier to compile in both PR and HV KVM, this moves this code to arch/powerpc/kernel/exceptions-64s.S along with other kernel interrupt handler code. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This makes PR KVM allocate its kvm_vcpu structs from the kvm_vcpu_cache rather than having them embedded in the kvmppc_vcpu_book3s struct, which is allocated with vzalloc. The reason is to reduce the differences between PR and HV KVM in order to make is easier to have them coexist in one kernel binary. With this, the kvm_vcpu struct has a pointer to the kvmppc_vcpu_book3s struct. The pointer to the kvmppc_book3s_shadow_vcpu struct has moved from the kvmppc_vcpu_book3s struct to the kvm_vcpu struct, and is only present for 32-bit, since it is only used for 32-bit. Signed-off-by: NPaul Mackerras <paulus@samba.org> [agraf: squash in compile fix from Aneesh] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This adds a per-VM mutex to provide mutual exclusion between vcpus for accesses to and updates of the guest hashed page table (HPT). This also makes the code use single-byte writes to the HPT entry when updating of the reference (R) and change (C) bits. The reason for doing this, rather than writing back the whole HPTE, is that on non-PAPR virtual machines, the guest OS might be writing to the HPTE concurrently, and writing back the whole HPTE might conflict with that. Also, real hardware does single-byte writes to update R and C. The new mutex is taken in kvmppc_mmu_book3s_64_xlate() when reading the HPT and updating R and/or C, and in the PAPR HPT update hcalls (H_ENTER, H_REMOVE, etc.). Having the mutex means that we don't need to use a hypervisor lock bit in the HPT update hcalls, and we don't need to be careful about the order in which the bytes of the HPTE are updated by those hcalls. The other change here is to make emulated TLB invalidations (tlbie) effective across all vcpus. To do this we call kvmppc_mmu_pte_vflush for all vcpus in kvmppc_ppc_book3s_64_tlbie(). For 32-bit, this makes the setting of the accessed and dirty bits use single-byte writes, and makes tlbie invalidate shadow HPTEs for all vcpus. With this, PR KVM can successfully run SMP guests. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-