1. 29 10月, 2010 1 次提交
  2. 10 8月, 2010 1 次提交
  3. 04 8月, 2010 1 次提交
  4. 22 4月, 2010 1 次提交
  5. 30 3月, 2010 1 次提交
    • T
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking... · 5a0e3ad6
      Tejun Heo 提交于
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
      
      percpu.h is included by sched.h and module.h and thus ends up being
      included when building most .c files.  percpu.h includes slab.h which
      in turn includes gfp.h making everything defined by the two files
      universally available and complicating inclusion dependencies.
      
      percpu.h -> slab.h dependency is about to be removed.  Prepare for
      this change by updating users of gfp and slab facilities include those
      headers directly instead of assuming availability.  As this conversion
      needs to touch large number of source files, the following script is
      used as the basis of conversion.
      
        http://userweb.kernel.org/~tj/misc/slabh-sweep.py
      
      The script does the followings.
      
      * Scan files for gfp and slab usages and update includes such that
        only the necessary includes are there.  ie. if only gfp is used,
        gfp.h, if slab is used, slab.h.
      
      * When the script inserts a new include, it looks at the include
        blocks and try to put the new include such that its order conforms
        to its surrounding.  It's put in the include block which contains
        core kernel includes, in the same order that the rest are ordered -
        alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
        doesn't seem to be any matching order.
      
      * If the script can't find a place to put a new include (mostly
        because the file doesn't have fitting include block), it prints out
        an error message indicating which .h file needs to be added to the
        file.
      
      The conversion was done in the following steps.
      
      1. The initial automatic conversion of all .c files updated slightly
         over 4000 files, deleting around 700 includes and adding ~480 gfp.h
         and ~3000 slab.h inclusions.  The script emitted errors for ~400
         files.
      
      2. Each error was manually checked.  Some didn't need the inclusion,
         some needed manual addition while adding it to implementation .h or
         embedding .c file was more appropriate for others.  This step added
         inclusions to around 150 files.
      
      3. The script was run again and the output was compared to the edits
         from #2 to make sure no file was left behind.
      
      4. Several build tests were done and a couple of problems were fixed.
         e.g. lib/decompress_*.c used malloc/free() wrappers around slab
         APIs requiring slab.h to be added manually.
      
      5. The script was run on all .h files but without automatically
         editing them as sprinkling gfp.h and slab.h inclusions around .h
         files could easily lead to inclusion dependency hell.  Most gfp.h
         inclusion directives were ignored as stuff from gfp.h was usually
         wildly available and often used in preprocessor macros.  Each
         slab.h inclusion directive was examined and added manually as
         necessary.
      
      6. percpu.h was updated not to include slab.h.
      
      7. Build test were done on the following configurations and failures
         were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
         distributed build env didn't work with gcov compiles) and a few
         more options had to be turned off depending on archs to make things
         build (like ipr on powerpc/64 which failed due to missing writeq).
      
         * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
         * powerpc and powerpc64 SMP allmodconfig
         * sparc and sparc64 SMP allmodconfig
         * ia64 SMP allmodconfig
         * s390 SMP allmodconfig
         * alpha SMP allmodconfig
         * um on x86_64 SMP allmodconfig
      
      8. percpu.h modifications were reverted so that it could be applied as
         a separate patch and serve as bisection point.
      
      Given the fact that I had only a couple of failures from tests on step
      6, I'm fairly confident about the coverage of this conversion patch.
      If there is a breakage, it's likely to be something in one of the arch
      headers which should be easily discoverable easily on most builds of
      the specific arch.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
      5a0e3ad6
  6. 28 2月, 2010 3 次提交
    • B
      exofs: groups support · 50a76fd3
      Boaz Harrosh 提交于
      * _calc_stripe_info() changes to accommodate for grouping
        calculations. Returns additional information
      
      * old _prepare_pages() becomes _prepare_one_group()
        which stores pages belonging to one device group.
      
      * New _prepare_for_striping iterates on all groups calling
        _prepare_one_group().
      
      * Enable mounting of groups data_maps (group_width != 0)
      
      [QUESTION]
      what is faster A or B;
      A.	x += stride;
      	x = x % width + first_x;
      
      B	x += stride
      	if (x < last_x)
      		x = first_x;
      Signed-off-by: NBoaz Harrosh <bharrosh@panasas.com>
      50a76fd3
    • B
      exofs: RAID0 support · 5d952b83
      Boaz Harrosh 提交于
      We now support striping over mirror devices. Including variable sized
      stripe_unit.
      
      Some limits:
      * stripe_unit must be a multiple of PAGE_SIZE
      * stripe_unit * stripe_count is maximum upto 32-bit (4Gb)
      
      Tested RAID0 over mirrors, RAID0 only, mirrors only. All check.
      
      Design notes:
      * I'm not using a vectored raid-engine mechanism yet. Following the
        pnfs-objects-layout data-map structure, "Mirror" is just a private
        case of "group_width" == 1, and RAID0 is a private case of
        "Mirrors" == 1. The performance lose of the general case over the
        particular special case optimization is totally negligible, also
        considering the extra code size.
      
      * In general I added a prepare_stripes() stage that divides the
        to-be-io pages to the participating devices, the previous
        exofs_ios_write/read, now becomes _write/read_mirrors and a new
        write/read upper layer loops on all devices calling
        _write/read_mirrors. Effectively the prepare_stripes stage is the all
        secret.
        Also truncate need fixing to accommodate for striping.
      
      * In a RAID0 arrangement, in a regular usage scenario, if all inode
        layouts will start at the same device, the small files fill up the
        first device and the later devices stay empty, the farther the device
        the emptier it is.
      
        To fix that, each inode will start at a different stripe_unit,
        according to it's obj_id modulus number-of-stripe-units. And
        will then span all stripe-units in the same incrementing order
        wrapping back to the beginning of the device table. We call it
        a stripe-units moving window.
      
        Special consideration was taken to keep all devices in a mirror
        arrangement identical. So a broken osd-device could just be cloned
        from one of the mirrors and no FS scrubbing is needed. (We do that
        by rotating stripe-unit at a time and not a single device at a time.)
      
      TODO:
       We no longer verify object_length == inode->i_size in exofs_iget.
       (since i_size is stripped on multiple objects now).
       I should introduce a multiple-device attribute reading, and use
       it in exofs_iget.
      Signed-off-by: NBoaz Harrosh <bharrosh@panasas.com>
      5d952b83
    • B
      exofs: Move layout related members to a layout structure · 45d3abcb
      Boaz Harrosh 提交于
      * Abstract away those members in exofs_sb_info that are related/needed
        by a layout into a new exofs_layout structure. Embed it in exofs_sb_info.
      
      * At exofs_io_state receive/keep a pointer to an exofs_layout. No need for
        an exofs_sb_info pointer, all we need is at exofs_layout.
      
      * Change any usage of above exofs_sb_info members to their new name.
      Signed-off-by: NBoaz Harrosh <bharrosh@panasas.com>
      45d3abcb
  7. 10 12月, 2009 4 次提交
    • B
      exofs: Multi-device mirror support · 04dc1e88
      Boaz Harrosh 提交于
      This patch changes on-disk format, it is accompanied with a parallel
      patch to mkfs.exofs that enables multi-device capabilities.
      
      After this patch, old exofs will refuse to mount a new formatted FS and
      new exofs will refuse an old format. This is done by moving the magic
      field offset inside the FSCB. A new FSCB *version* field was added. In
      the future, exofs will refuse to mount unmatched FSCB version. To
      up-grade or down-grade an exofs one must use mkfs.exofs --upgrade option
      before mounting.
      
      Introduced, a new object that contains a *device-table*. This object
      contains the default *data-map* and a linear array of devices
      information, which identifies the devices used in the filesystem. This
      object is only written to offline by mkfs.exofs. This is why it is kept
      separate from the FSCB, since the later is written to while mounted.
      
      Same partition number, same object number is used on all devices only
      the device varies.
      
      * define the new format, then load the device table on mount time make
        sure every thing is supported.
      
      * Change I/O engine to now support Mirror IO, .i.e write same data
        to multiple devices, read from a random device to spread the
        read-load from multiple clients (TODO: stripe read)
      
      Implementation notes:
       A few points introduced in previous patch should be mentioned here:
      
      * Special care was made so absolutlly all operation that have any chance
        of failing are done before any osd-request is executed. This is to
        minimize the need for a data consistency recovery, to only real IO
        errors.
      
      * Each IO state has a kref. It starts at 1, any osd-request executed
        will increment the kref, finally when all are executed the first ref
        is dropped. At IO-done, each request completion decrements the kref,
        the last one to return executes the internal _last_io() routine.
        _last_io() will call the registered io_state_done. On sync mode a
        caller does not supply a done method, indicating a synchronous
        request, the caller is put to sleep and a special io_state_done is
        registered that will awaken the caller. Though also in sync mode all
        operations are executed in parallel.
      Signed-off-by: NBoaz Harrosh <bharrosh@panasas.com>
      04dc1e88
    • B
      exofs: Move all operations to an io_engine · 06886a5a
      Boaz Harrosh 提交于
      In anticipation for multi-device operations, we separate osd operations
      into an abstract I/O API. Currently only one device is used but later
      when adding more devices, we will drive all devices in parallel according
      to a "data_map" that describes how data is arranged on multiple devices.
      The file system level operates, like before, as if there is one object
      (inode-number) and an i_size. The io engine will split this to the same
      object-number but on multiple device.
      
      At first we introduce Mirror (raid 1) layout. But at the final outcome
      we intend to fully implement the pNFS-Objects data-map, including
      raid 0,4,5,6 over mirrored devices, over multiple device-groups. And
      more. See: http://tools.ietf.org/html/draft-ietf-nfsv4-pnfs-obj-12
      
      * Define an io_state based API for accessing osd storage devices
        in an abstract way.
        Usage:
      	First a caller allocates an io state with:
      		exofs_get_io_state(struct exofs_sb_info *sbi,
      				   struct exofs_io_state** ios);
      
      	Then calles one of:
      		exofs_sbi_create(struct exofs_io_state *ios);
      		exofs_sbi_remove(struct exofs_io_state *ios);
      		exofs_sbi_write(struct exofs_io_state *ios);
      		exofs_sbi_read(struct exofs_io_state *ios);
      		exofs_oi_truncate(struct exofs_i_info *oi, u64 new_len);
      
      	And when done
      		exofs_put_io_state(struct exofs_io_state *ios);
      
      * Convert all source files to use this new API
      * Convert from bio_alloc to bio_kmalloc
      * In io engine we make use of the now fixed osd_req_decode_sense
      
      There are no functional changes or on disk additions after this patch.
      Signed-off-by: NBoaz Harrosh <bharrosh@panasas.com>
      06886a5a
    • B
      exofs: statfs blocks is sectors not FS blocks · cae012d8
      Boaz Harrosh 提交于
      Even though exofs has a 4k block size, statfs blocks
      is in sectors (512 bytes).
      
      Also if target returns 0 for capacity then make it
      ULLONG_MAX. df does not like zero-size filesystems
      Signed-off-by: NBoaz Harrosh <bharrosh@panasas.com>
      cae012d8
    • B
      exofs: Prints on mount and unmout · 19fe294f
      Boaz Harrosh 提交于
      It is important to print in the logs when a filesystem was
      mounted and eventually unmounted.
      
      Print the osd-device's osd_name and pid the FS was
      mounted/unmounted on.
      
      TODO: How to also print the namespace path the filesystem was
            mounted on?
      Signed-off-by: NBoaz Harrosh <bharrosh@panasas.com>
      19fe294f
  8. 24 9月, 2009 1 次提交
    • B
      exofs: remove BKL from super operations · 1ba50bbe
      Boaz Harrosh 提交于
      the two places inside exofs that where taking the BKL were:
      exofs_put_super() - .put_super
      and
      exofs_sync_fs() - which is .sync_fs and is also called from
                        .write_super.
      
      Now exofs_sync_fs() is protected from itself by also taking
      the sb_lock.
      
      exofs_put_super() directly calls exofs_sync_fs() so there is no
      danger between these two either.
      
      In anyway there is absolutely nothing dangerous been done
      inside exofs_sync_fs().
      
      Unless there is some subtle race with the actual lifetime of
      the super_block in regard to .put_super and some other parts
      of the VFS. Which is highly unlikely.
      Signed-off-by: NBoaz Harrosh <bharrosh@panasas.com>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      1ba50bbe
  9. 13 7月, 2009 1 次提交
  10. 21 6月, 2009 2 次提交
    • B
      exofs: Avoid using file_fsync() · baaf94cd
      Boaz Harrosh 提交于
      The use of file_fsync() in exofs_file_sync() is not necessary since it
      does some extra stuff not used by exofs. Open code just the parts that
      are currently needed.
      
      TODO: Farther optimization can be done to sync the sb only on inode
      update of new files, Usually the sb update is not needed in exofs.
      Signed-off-by: NBoaz Harrosh <bharrosh@panasas.com>
      baaf94cd
    • B
      exofs: Remove IBM copyrights · 27d2e149
      Boaz Harrosh 提交于
      Boaz,
      Congrats on getting all the OSD stuff into 2.6.30!
      I just pulled the git, and saw that the IBM copyrights are still there.
      Please remove them from all files:
       * Copyright (C) 2005, 2006
       * International Business Machines
      
      IBM has revoked all rights on the code - they gave it to me.
      
      Thanks!
      Avishay
      Signed-off-by: NAvishay Traeger <avishay@gmail.com>
      Signed-off-by: NBoaz Harrosh <bharrosh@panasas.com>
      27d2e149
  11. 12 6月, 2009 4 次提交
    • C
      exofs: add ->sync_fs · 80e09fb9
      Christoph Hellwig 提交于
      Add a ->sync_fs method for data integrity syncs, and reimplement
      ->write_super ontop of it.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      80e09fb9
    • C
      ->write_super lock_super pushdown · ebc1ac16
      Christoph Hellwig 提交于
      Push down lock_super into ->write_super instances and remove it from the
      caller.
      
      Following filesystem don't need ->s_lock in ->write_super and are skipped:
      
       * bfs, nilfs2 - no other uses of s_lock and have internal locks in
      	->write_super
       * ext2 - uses BKL in ext2_write_super and has internal calls without s_lock
       * reiserfs - no other uses of s_lock as has reiserfs_write_lock (BKL) in
       	->write_super
       * xfs - no other uses of s_lock and uses internal lock (buffer lock on
      	superblock buffer) to serialize ->write_super.  Also xfs_fs_write_super
      	is superflous and will go away in the next merge window
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      ebc1ac16
    • C
      push BKL down into ->put_super · 6cfd0148
      Christoph Hellwig 提交于
      Move BKL into ->put_super from the only caller.  A couple of
      filesystems had trivial enough ->put_super (only kfree and NULLing of
      s_fs_info + stuff in there) to not get any locking: coda, cramfs, efs,
      hugetlbfs, omfs, qnx4, shmem, all others got the full treatment.  Most
      of them probably don't need it, but I'd rather sort that out individually.
      Preferably after all the other BKL pushdowns in that area.
      
      [AV: original used to move lock_super() down as well; these changes are
      removed since we don't do lock_super() at all in generic_shutdown_super()
      now]
      [AV: fuse, btrfs and xfs are known to need no damn BKL, exempt]
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      6cfd0148
    • C
      remove ->write_super call in generic_shutdown_super · 8c85e125
      Christoph Hellwig 提交于
      We just did a full fs writeout using sync_filesystem before, and if
      that's not enough for the filesystem it can perform it's own writeout
      in ->put_super, which many filesystems already do.
      
      Move a call to foofs_write_super into every foofs_put_super for now to
      guarantee identical behaviour until it's cleaned up by the individual
      filesystem maintainers.
      
      Exceptions:
      
       - affs already has identical copy & pasted code at the beginning of
         affs_put_super so no need to do it twice.
       - xfs does the right thing without it and I have changes pending for
         the xfs tree touching this are so I don't really need conflicts
         here..
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      8c85e125
  12. 01 4月, 2009 2 次提交
    • B
      exofs: export_operations · 8cf74b39
      Boaz Harrosh 提交于
      implement export_operations and set in superblock.
      It is now posible to export exofs via nfs
      Signed-off-by: NBoaz Harrosh <bharrosh@panasas.com>
      8cf74b39
    • B
      exofs: super_operations and file_system_type · ba9e5e98
      Boaz Harrosh 提交于
      This patch ties all operation vectors into a file system superblock
      and registers the exofs file_system_type at module's load time.
      
      * The file system control block (AKA on-disk superblock) resides in
        an object with a special ID (defined in common.h).
        Information included in the file system control block is used to
        fill the in-memory superblock structure at mount time. This object
        is created before the file system is used by mkexofs.c It contains
        information such as:
      	- The file system's magic number
      	- The next inode number to be allocated
      Signed-off-by: NBoaz Harrosh <bharrosh@panasas.com>
      ba9e5e98