- 17 7月, 2019 2 次提交
-
-
由 Robin Murphy 提交于
Refactor is_device_{public,private}_page() with is_pci_p2pdma_page() to make them all consistent in depending on their respective config options even when CONFIG_DEV_PAGEMAP_OPS is enabled for other reasons. This allows a little more compile-time optimisation as well as the conceptual and cosmetic cleanup. Link: http://lkml.kernel.org/r/187c2ab27dea70635d375a61b2f2076d26c032b0.1558547956.git.robin.murphy@arm.comSigned-off-by: NRobin Murphy <robin.murphy@arm.com> Suggested-by: NJerome Glisse <jglisse@redhat.com> Reviewed-by: NAnshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@suse.com> Cc: Oliver O'Halloran <oohall@gmail.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Christoph Hellwig 提交于
Link: http://lkml.kernel.org/r/20190703122359.18200-3-hch@lst.deSigned-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NVladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 7月, 2019 2 次提交
-
-
git://people.freedesktop.org/~thomash/linux由 Dave Airlie 提交于
This reverts commit 031e610a, reversing changes made to 52d2d44e. The mm changes in there we premature and not fully ack or reviewed by core mm folks, I dropped the ball by merging them via this tree, so lets take em all back out. Signed-off-by: NDave Airlie <airlied@redhat.com>
-
由 Dave Airlie 提交于
This reverts commit 6dfc43d3. Going to revert the whole vmwwgfx pull. Signed-off-by: NDave Airlie <airlied@redhat.com>
-
- 15 7月, 2019 1 次提交
-
-
由 Dave Airlie 提交于
mm/pgtable: drop pgtable_t variable from pte_fn_t functions drops the token came in via the hmm tree, this caused lots of conflicts, but applying this cleanup patch should reduce it to something easier to handle. Just accept the token is unused at this point. Signed-off-by: NDave Airlie <airlied@redhat.com>
-
- 13 7月, 2019 5 次提交
-
-
由 Alexander Potapenko 提交于
Patch series "add init_on_alloc/init_on_free boot options", v10. Provide init_on_alloc and init_on_free boot options. These are aimed at preventing possible information leaks and making the control-flow bugs that depend on uninitialized values more deterministic. Enabling either of the options guarantees that the memory returned by the page allocator and SL[AU]B is initialized with zeroes. SLOB allocator isn't supported at the moment, as its emulation of kmem caches complicates handling of SLAB_TYPESAFE_BY_RCU caches correctly. Enabling init_on_free also guarantees that pages and heap objects are initialized right after they're freed, so it won't be possible to access stale data by using a dangling pointer. As suggested by Michal Hocko, right now we don't let the heap users to disable initialization for certain allocations. There's not enough evidence that doing so can speed up real-life cases, and introducing ways to opt-out may result in things going out of control. This patch (of 2): The new options are needed to prevent possible information leaks and make control-flow bugs that depend on uninitialized values more deterministic. This is expected to be on-by-default on Android and Chrome OS. And it gives the opportunity for anyone else to use it under distros too via the boot args. (The init_on_free feature is regularly requested by folks where memory forensics is included in their threat models.) init_on_alloc=1 makes the kernel initialize newly allocated pages and heap objects with zeroes. Initialization is done at allocation time at the places where checks for __GFP_ZERO are performed. init_on_free=1 makes the kernel initialize freed pages and heap objects with zeroes upon their deletion. This helps to ensure sensitive data doesn't leak via use-after-free accesses. Both init_on_alloc=1 and init_on_free=1 guarantee that the allocator returns zeroed memory. The two exceptions are slab caches with constructors and SLAB_TYPESAFE_BY_RCU flag. Those are never zero-initialized to preserve their semantics. Both init_on_alloc and init_on_free default to zero, but those defaults can be overridden with CONFIG_INIT_ON_ALLOC_DEFAULT_ON and CONFIG_INIT_ON_FREE_DEFAULT_ON. If either SLUB poisoning or page poisoning is enabled, those options take precedence over init_on_alloc and init_on_free: initialization is only applied to unpoisoned allocations. Slowdown for the new features compared to init_on_free=0, init_on_alloc=0: hackbench, init_on_free=1: +7.62% sys time (st.err 0.74%) hackbench, init_on_alloc=1: +7.75% sys time (st.err 2.14%) Linux build with -j12, init_on_free=1: +8.38% wall time (st.err 0.39%) Linux build with -j12, init_on_free=1: +24.42% sys time (st.err 0.52%) Linux build with -j12, init_on_alloc=1: -0.13% wall time (st.err 0.42%) Linux build with -j12, init_on_alloc=1: +0.57% sys time (st.err 0.40%) The slowdown for init_on_free=0, init_on_alloc=0 compared to the baseline is within the standard error. The new features are also going to pave the way for hardware memory tagging (e.g. arm64's MTE), which will require both on_alloc and on_free hooks to set the tags for heap objects. With MTE, tagging will have the same cost as memory initialization. Although init_on_free is rather costly, there are paranoid use-cases where in-memory data lifetime is desired to be minimized. There are various arguments for/against the realism of the associated threat models, but given that we'll need the infrastructure for MTE anyway, and there are people who want wipe-on-free behavior no matter what the performance cost, it seems reasonable to include it in this series. [glider@google.com: v8] Link: http://lkml.kernel.org/r/20190626121943.131390-2-glider@google.com [glider@google.com: v9] Link: http://lkml.kernel.org/r/20190627130316.254309-2-glider@google.com [glider@google.com: v10] Link: http://lkml.kernel.org/r/20190628093131.199499-2-glider@google.com Link: http://lkml.kernel.org/r/20190617151050.92663-2-glider@google.comSigned-off-by: NAlexander Potapenko <glider@google.com> Acked-by: NKees Cook <keescook@chromium.org> Acked-by: Michal Hocko <mhocko@suse.cz> [page and dmapool parts Acked-by: James Morris <jamorris@linux.microsoft.com>] Cc: Christoph Lameter <cl@linux.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Sandeep Patil <sspatil@android.com> Cc: Laura Abbott <labbott@redhat.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Jann Horn <jannh@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Marco Elver <elver@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Anshuman Khandual 提交于
Drop the pgtable_t variable from all implementation for pte_fn_t as none of them use it. apply_to_pte_range() should stop computing it as well. Should help us save some cycles. Link: http://lkml.kernel.org/r/1556803126-26596-1-git-send-email-anshuman.khandual@arm.comSigned-off-by: NAnshuman Khandual <anshuman.khandual@arm.com> Acked-by: NMatthew Wilcox <willy@infradead.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: <jglisse@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vlastimil Babka 提交于
When debug_pagealloc is enabled, we currently allocate the page_ext array to mark guard pages with the PAGE_EXT_DEBUG_GUARD flag. Now that we have the page_type field in struct page, we can use that instead, as guard pages are neither PageSlab nor mapped to userspace. This reduces memory overhead when debug_pagealloc is enabled and there are no other features requiring the page_ext array. Link: http://lkml.kernel.org/r/20190603143451.27353-4-vbabka@suse.czSigned-off-by: NVlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vlastimil Babka 提交于
Patch series "debug_pagealloc improvements". I have been recently debugging some pcplist corruptions, where it would be useful to perform struct page checks immediately as pages are allocated from and freed to pcplists, which is now only possible by rebuilding the kernel with CONFIG_DEBUG_VM (details in Patch 2 changelog). To make this kind of debugging simpler in future on a distro kernel, I have improved CONFIG_DEBUG_PAGEALLOC so that it has even smaller overhead when not enabled at boot time (Patch 1) and also when enabled (Patch 3), and extended it to perform the struct page checks more often when enabled (Patch 2). Now it can be configured in when building a distro kernel without extra overhead, and debugging page use after free or double free can be enabled simply by rebooting with debug_pagealloc=on. This patch (of 3): CONFIG_DEBUG_PAGEALLOC has been redesigned by 031bc574 ("mm/debug-pagealloc: make debug-pagealloc boottime configurable") to allow being always enabled in a distro kernel, but only perform its expensive functionality when booted with debug_pagelloc=on. We can further reduce the overhead when not boot-enabled (including page allocator fast paths) using static keys. This patch introduces one for debug_pagealloc core functionality, and another for the optional guard page functionality (enabled by booting with debug_guardpage_minorder=X). Link: http://lkml.kernel.org/r/20190603143451.27353-2-vbabka@suse.czSigned-off-by: NVlastimil Babka <vbabka@suse.cz> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aneesh Kumar K.V 提交于
Architectures like powerpc use different address range to map ioremap and vmalloc range. The memunmap() check used by the nvdimm layer was wrongly using is_vmalloc_addr() to check for ioremap range which fails for ppc64. This result in ppc64 not freeing the ioremap mapping. The side effect of this is an unbind failure during module unload with papr_scm nvdimm driver Link: http://lkml.kernel.org/r/20190701134038.14165-1-aneesh.kumar@linux.ibm.comSigned-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Fixes: b5beae5e ("powerpc/pseries: Add driver for PAPR SCM regions") Cc: Dan Williams <dan.j.williams@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 7月, 2019 2 次提交
-
-
由 Christoph Hellwig 提交于
Just check if there is a ->page_free operation set and take care of the static key enable, as well as the put using device managed resources. Also check that a ->page_free is provided for the pgmaps types that require it, and check for a valid type as well while we are at it. Note that this also fixes the fact that hmm never called dev_pagemap_put_ops and thus would leave the slow path enabled forever, even after a device driver unload or disable. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NIra Weiny <ira.weiny@intel.com> Reviewed-by: NDan Williams <dan.j.williams@intel.com> Tested-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NJason Gunthorpe <jgg@mellanox.com>
-
由 Christoph Hellwig 提交于
The code hasn't been used since it was added to the tree, and doesn't appear to actually be usable. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJason Gunthorpe <jgg@mellanox.com> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NDan Williams <dan.j.williams@intel.com> Tested-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NJason Gunthorpe <jgg@mellanox.com>
-
- 18 6月, 2019 2 次提交
-
-
由 Thomas Hellstrom 提交于
Add two utilities to a) write-protect and b) clean all ptes pointing into a range of an address space. The utilities are intended to aid in tracking dirty pages (either driver-allocated system memory or pci device memory). The write-protect utility should be used in conjunction with page_mkwrite() and pfn_mkwrite() to trigger write page-faults on page accesses. Typically one would want to use this on sparse accesses into large memory regions. The clean utility should be used to utilize hardware dirtying functionality and avoid the overhead of page-faults, typically on large accesses into small memory regions. The added file "as_dirty_helpers.c" is initially listed as maintained by VMware under our DRM driver. If somebody would like it elsewhere, that's of course no problem. Notable changes since RFC: - Added comments to help avoid the usage of these function for VMAs it's not intended for. We also do advisory checks on the vm_flags and warn on illegal usage. - Perform the pte modifications the same way softdirty does. - Add mmu_notifier range invalidation calls. - Add a config option so that this code is not unconditionally included. - Tell the mmu_gather code about pending tlb flushes. Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: linux-mm@kvack.org Cc: linux-kernel@vger.kernel.org Signed-off-by: NThomas Hellstrom <thellstrom@vmware.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> #v1
-
由 Thomas Hellstrom 提交于
This is basically apply_to_page_range with added functionality: Allocating missing parts of the page table becomes optional, which means that the function can be guaranteed not to error if allocation is disabled. Also passing of the closure struct and callback function becomes different and more in line with how things are done elsewhere. Finally we keep apply_to_page_range as a wrapper around apply_to_pfn_range The reason for not using the page-walk code is that we want to perform the page-walk on vmas pointing to an address space without requiring the mmap_sem to be held rather than on vmas belonging to a process with the mmap_sem held. Notable changes since RFC: Don't export apply_to_pfn range. Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: linux-mm@kvack.org Cc: linux-kernel@vger.kernel.org Signed-off-by: NThomas Hellstrom <thellstrom@vmware.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> #v1
-
- 08 6月, 2019 1 次提交
-
-
由 Andrey Konovalov 提交于
Architectures that support memory tagging have a need to perform untagging (stripping the tag) in various parts of the kernel. This patch adds an untagged_addr() macro, which is defined as noop for architectures that do not support memory tagging. The oncoming patch series will define it at least for sparc64 and arm64. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NKhalid Aziz <khalid.aziz@oracle.com> Signed-off-by: NAndrey Konovalov <andreyknvl@google.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 5月, 2019 6 次提交
-
-
由 Dan Williams 提交于
In preparation for runtime randomization of the zone lists, take all (well, most of) the list_*() functions in the buddy allocator and put them in helper functions. Provide a common control point for injecting additional behavior when freeing pages. [dan.j.williams@intel.com: fix buddy list helpers] Link: http://lkml.kernel.org/r/155033679702.1773410.13041474192173212653.stgit@dwillia2-desk3.amr.corp.intel.com [vbabka@suse.cz: remove del_page_from_free_area() migratetype parameter] Link: http://lkml.kernel.org/r/4672701b-6775-6efd-0797-b6242591419e@suse.cz Link: http://lkml.kernel.org/r/154899812264.3165233.5219320056406926223.stgit@dwillia2-desk3.amr.corp.intel.comSigned-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Tested-by: NTetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: Keith Busch <keith.busch@intel.com> Cc: Robert Elliott <elliott@hpe.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Souptick Joarder 提交于
Patch series "mm: Use vm_map_pages() and vm_map_pages_zero() API", v5. This patch (of 5): Previouly drivers have their own way of mapping range of kernel pages/memory into user vma and this was done by invoking vm_insert_page() within a loop. As this pattern is common across different drivers, it can be generalized by creating new functions and using them across the drivers. vm_map_pages() is the API which can be used to map kernel memory/pages in drivers which have considered vm_pgoff vm_map_pages_zero() is the API which can be used to map a range of kernel memory/pages in drivers which have not considered vm_pgoff. vm_pgoff is passed as default 0 for those drivers. We _could_ then at a later "fix" these drivers which are using vm_map_pages_zero() to behave according to the normal vm_pgoff offsetting simply by removing the _zero suffix on the function name and if that causes regressions, it gives us an easy way to revert. Tested on Rockchip hardware and display is working, including talking to Lima via prime. Link: http://lkml.kernel.org/r/751cb8a0f4c3e67e95c58a3b072937617f338eea.1552921225.git.jrdr.linux@gmail.comSigned-off-by: NSouptick Joarder <jrdr.linux@gmail.com> Suggested-by: NRussell King <linux@armlinux.org.uk> Suggested-by: NMatthew Wilcox <willy@infradead.org> Reviewed-by: NMike Rapoport <rppt@linux.ibm.com> Tested-by: NHeiko Stuebner <heiko@sntech.de> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@surriel.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Thierry Reding <treding@nvidia.com> Cc: Kees Cook <keescook@chromium.org> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Stefan Richter <stefanr@s5r6.in-berlin.de> Cc: Sandy Huang <hjc@rock-chips.com> Cc: David Airlie <airlied@linux.ie> Cc: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Pawel Osciak <pawel@osciak.com> Cc: Kyungmin Park <kyungmin.park@samsung.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alexander Duyck 提交于
Patch series "Deferred page init improvements", v7. This patchset is essentially a refactor of the page initialization logic that is meant to provide for better code reuse while providing a significant improvement in deferred page initialization performance. In my testing on an x86_64 system with 384GB of RAM I have seen the following. In the case of regular memory initialization the deferred init time was decreased from 3.75s to 1.38s on average. This amounts to a 172% improvement for the deferred memory initialization performance. I have called out the improvement observed with each patch. This patch (of 4): Use the same approach that was already in use on Sparc on all the architectures that support a 64b long. This is mostly motivated by the fact that 7 to 10 store/move instructions are likely always going to be faster than having to call into a function that is not specialized for handling page init. An added advantage to doing it this way is that the compiler can get away with combining writes in the __init_single_page call. As a result the memset call will be reduced to only about 4 write operations, or at least that is what I am seeing with GCC 6.2 as the flags, LRU pointers, and count/mapcount seem to be cancelling out at least 4 of the 8 assignments on my system. One change I had to make to the function was to reduce the minimum page size to 56 to support some powerpc64 configurations. This change should introduce no change on SPARC since it already had this code. In the case of x86_64 I saw a reduction from 3.75s to 2.80s when initializing 384GB of RAM per node. Pavel Tatashin tested on a system with Broadcom's Stingray CPU and 48GB of RAM and found that __init_single_page() takes 19.30ns / 64-byte struct page before this patch and with this patch it takes 17.33ns / 64-byte struct page. Mike Rapoport ran a similar test on a OpenPower (S812LC 8348-21C) with Power8 processor and 128GB or RAM. His results per 64-byte struct page were 4.68ns before, and 4.59ns after this patch. Link: http://lkml.kernel.org/r/20190405221213.12227.9392.stgit@localhost.localdomainSigned-off-by: NAlexander Duyck <alexander.h.duyck@linux.intel.com> Reviewed-by: NPavel Tatashin <pavel.tatashin@microsoft.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <yi.z.zhang@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 John Hubbard 提交于
A discussion of the overall problem is below. As mentioned in patch 0001, the steps are to fix the problem are: 1) Provide put_user_page*() routines, intended to be used for releasing pages that were pinned via get_user_pages*(). 2) Convert all of the call sites for get_user_pages*(), to invoke put_user_page*(), instead of put_page(). This involves dozens of call sites, and will take some time. 3) After (2) is complete, use get_user_pages*() and put_user_page*() to implement tracking of these pages. This tracking will be separate from the existing struct page refcounting. 4) Use the tracking and identification of these pages, to implement special handling (especially in writeback paths) when the pages are backed by a filesystem. Overview ======== Some kernel components (file systems, device drivers) need to access memory that is specified via process virtual address. For a long time, the API to achieve that was get_user_pages ("GUP") and its variations. However, GUP has critical limitations that have been overlooked; in particular, GUP does not interact correctly with filesystems in all situations. That means that file-backed memory + GUP is a recipe for potential problems, some of which have already occurred in the field. GUP was first introduced for Direct IO (O_DIRECT), allowing filesystem code to get the struct page behind a virtual address and to let storage hardware perform a direct copy to or from that page. This is a short-lived access pattern, and as such, the window for a concurrent writeback of GUP'd page was small enough that there were not (we think) any reported problems. Also, userspace was expected to understand and accept that Direct IO was not synchronized with memory-mapped access to that data, nor with any process address space changes such as munmap(), mremap(), etc. Over the years, more GUP uses have appeared (virtualization, device drivers, RDMA) that can keep the pages they get via GUP for a long period of time (seconds, minutes, hours, days, ...). This long-term pinning makes an underlying design problem more obvious. In fact, there are a number of key problems inherent to GUP: Interactions with file systems ============================== File systems expect to be able to write back data, both to reclaim pages, and for data integrity. Allowing other hardware (NICs, GPUs, etc) to gain write access to the file memory pages means that such hardware can dirty the pages, without the filesystem being aware. This can, in some cases (depending on filesystem, filesystem options, block device, block device options, and other variables), lead to data corruption, and also to kernel bugs of the form: kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899! backtrace: ext4_writepage __writepage write_cache_pages ext4_writepages do_writepages __writeback_single_inode writeback_sb_inodes __writeback_inodes_wb wb_writeback wb_workfn process_one_work worker_thread kthread ret_from_fork ...which is due to the file system asserting that there are still buffer heads attached: ({ \ BUG_ON(!PagePrivate(page)); \ ((struct buffer_head *)page_private(page)); \ }) Dave Chinner's description of this is very clear: "The fundamental issue is that ->page_mkwrite must be called on every write access to a clean file backed page, not just the first one. How long the GUP reference lasts is irrelevant, if the page is clean and you need to dirty it, you must call ->page_mkwrite before it is marked writeable and dirtied. Every. Time." This is just one symptom of the larger design problem: real filesystems that actually write to a backing device, do not actually support get_user_pages() being called on their pages, and letting hardware write directly to those pages--even though that pattern has been going on since about 2005 or so. Long term GUP ============= Long term GUP is an issue when FOLL_WRITE is specified to GUP (so, a writeable mapping is created), and the pages are file-backed. That can lead to filesystem corruption. What happens is that when a file-backed page is being written back, it is first mapped read-only in all of the CPU page tables; the file system then assumes that nobody can write to the page, and that the page content is therefore stable. Unfortunately, the GUP callers generally do not monitor changes to the CPU pages tables; they instead assume that the following pattern is safe (it's not): get_user_pages() Hardware can keep a reference to those pages for a very long time, and write to it at any time. Because "hardware" here means "devices that are not a CPU", this activity occurs without any interaction with the kernel's file system code. for each page set_page_dirty put_page() In fact, the GUP documentation even recommends that pattern. Anyway, the file system assumes that the page is stable (nothing is writing to the page), and that is a problem: stable page content is necessary for many filesystem actions during writeback, such as checksum, encryption, RAID striping, etc. Furthermore, filesystem features like COW (copy on write) or snapshot also rely on being able to use a new page for as memory for that memory range inside the file. Corruption during write back is clearly possible here. To solve that, one idea is to identify pages that have active GUP, so that we can use a bounce page to write stable data to the filesystem. The filesystem would work on the bounce page, while any of the active GUP might write to the original page. This would avoid the stable page violation problem, but note that it is only part of the overall solution, because other problems remain. Other filesystem features that need to replace the page with a new one can be inhibited for pages that are GUP-pinned. This will, however, alter and limit some of those filesystem features. The only fix for that would be to require GUP users to monitor and respond to CPU page table updates. Subsystems such as ODP and HMM do this, for example. This aspect of the problem is still under discussion. Direct IO ========= Direct IO can cause corruption, if userspace does Direct-IO that writes to a range of virtual addresses that are mmap'd to a file. The pages written to are file-backed pages that can be under write back, while the Direct IO is taking place. Here, Direct IO races with a write back: it calls GUP before page_mkclean() has replaced the CPU pte with a read-only entry. The race window is pretty small, which is probably why years have gone by before we noticed this problem: Direct IO is generally very quick, and tends to finish up before the filesystem gets around to do anything with the page contents. However, it's still a real problem. The solution is to never let GUP return pages that are under write back, but instead, force GUP to take a write fault on those pages. That way, GUP will properly synchronize with the active write back. This does not change the required GUP behavior, it just avoids that race. Details ======= Introduces put_user_page(), which simply calls put_page(). This provides a way to update all get_user_pages*() callers, so that they call put_user_page(), instead of put_page(). Also introduces put_user_pages(), and a few dirty/locked variations, as a replacement for release_pages(), and also as a replacement for open-coded loops that release multiple pages. These may be used for subsequent performance improvements, via batching of pages to be released. This is the first step of fixing a problem (also described in [1] and [2]) with interactions between get_user_pages ("gup") and filesystems. Problem description: let's start with a bug report. Below, is what happens sometimes, under memory pressure, when a driver pins some pages via gup, and then marks those pages dirty, and releases them. Note that the gup documentation actually recommends that pattern. The problem is that the filesystem may do a writeback while the pages were gup-pinned, and then the filesystem believes that the pages are clean. So, when the driver later marks the pages as dirty, that conflicts with the filesystem's page tracking and results in a BUG(), like this one that I experienced: kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899! backtrace: ext4_writepage __writepage write_cache_pages ext4_writepages do_writepages __writeback_single_inode writeback_sb_inodes __writeback_inodes_wb wb_writeback wb_workfn process_one_work worker_thread kthread ret_from_fork ...which is due to the file system asserting that there are still buffer heads attached: ({ \ BUG_ON(!PagePrivate(page)); \ ((struct buffer_head *)page_private(page)); \ }) Dave Chinner's description of this is very clear: "The fundamental issue is that ->page_mkwrite must be called on every write access to a clean file backed page, not just the first one. How long the GUP reference lasts is irrelevant, if the page is clean and you need to dirty it, you must call ->page_mkwrite before it is marked writeable and dirtied. Every. Time." This is just one symptom of the larger design problem: real filesystems that actually write to a backing device, do not actually support get_user_pages() being called on their pages, and letting hardware write directly to those pages--even though that pattern has been going on since about 2005 or so. The steps are to fix it are: 1) (This patch): provide put_user_page*() routines, intended to be used for releasing pages that were pinned via get_user_pages*(). 2) Convert all of the call sites for get_user_pages*(), to invoke put_user_page*(), instead of put_page(). This involves dozens of call sites, and will take some time. 3) After (2) is complete, use get_user_pages*() and put_user_page*() to implement tracking of these pages. This tracking will be separate from the existing struct page refcounting. 4) Use the tracking and identification of these pages, to implement special handling (especially in writeback paths) when the pages are backed by a filesystem. [1] https://lwn.net/Articles/774411/ : "DMA and get_user_pages()" [2] https://lwn.net/Articles/753027/ : "The Trouble with get_user_pages()" Link: http://lkml.kernel.org/r/20190327023632.13307-2-jhubbard@nvidia.comSigned-off-by: NJohn Hubbard <jhubbard@nvidia.com> Reviewed-by: NJan Kara <jack@suse.cz> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> [docs] Reviewed-by: NIra Weiny <ira.weiny@intel.com> Reviewed-by: NJérôme Glisse <jglisse@redhat.com> Reviewed-by: NChristoph Lameter <cl@linux.com> Tested-by: NIra Weiny <ira.weiny@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ira Weiny 提交于
To facilitate additional options to get_user_pages_fast() change the singular write parameter to be gup_flags. This patch does not change any functionality. New functionality will follow in subsequent patches. Some of the get_user_pages_fast() call sites were unchanged because they already passed FOLL_WRITE or 0 for the write parameter. NOTE: It was suggested to change the ordering of the get_user_pages_fast() arguments to ensure that callers were converted. This breaks the current GUP call site convention of having the returned pages be the final parameter. So the suggestion was rejected. Link: http://lkml.kernel.org/r/20190328084422.29911-4-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190317183438.2057-4-ira.weiny@intel.comSigned-off-by: NIra Weiny <ira.weiny@intel.com> Reviewed-by: NMike Marshall <hubcap@omnibond.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Hogan <jhogan@kernel.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ira Weiny 提交于
Pach series "Add FOLL_LONGTERM to GUP fast and use it". HFI1, qib, and mthca, use get_user_pages_fast() due to its performance advantages. These pages can be held for a significant time. But get_user_pages_fast() does not protect against mapping FS DAX pages. Introduce FOLL_LONGTERM and use this flag in get_user_pages_fast() which retains the performance while also adding the FS DAX checks. XDP has also shown interest in using this functionality.[1] In addition we change get_user_pages() to use the new FOLL_LONGTERM flag and remove the specialized get_user_pages_longterm call. [1] https://lkml.org/lkml/2019/3/19/939 "longterm" is a relative thing and at this point is probably a misnomer. This is really flagging a pin which is going to be given to hardware and can't move. I've thought of a couple of alternative names but I think we have to settle on if we are going to use FL_LAYOUT or something else to solve the "longterm" problem. Then I think we can change the flag to a better name. Secondly, it depends on how often you are registering memory. I have spoken with some RDMA users who consider MR in the performance path... For the overall application performance. I don't have the numbers as the tests for HFI1 were done a long time ago. But there was a significant advantage. Some of which is probably due to the fact that you don't have to hold mmap_sem. Finally, architecturally I think it would be good for everyone to use *_fast. There are patches submitted to the RDMA list which would allow the use of *_fast (they reworking the use of mmap_sem) and as soon as they are accepted I'll submit a patch to convert the RDMA core as well. Also to this point others are looking to use *_fast. As an aside, Jasons pointed out in my previous submission that *_fast and *_unlocked look very much the same. I agree and I think further cleanup will be coming. But I'm focused on getting the final solution for DAX at the moment. This patch (of 7): This patch starts a series which aims to support FOLL_LONGTERM in get_user_pages_fast(). Some callers who would like to do a longterm (user controlled pin) of pages with the fast variant of GUP for performance purposes. Rather than have a separate get_user_pages_longterm() call, introduce FOLL_LONGTERM and change the longterm callers to use it. This patch does not change any functionality. In the short term "longterm" or user controlled pins are unsafe for Filesystems and FS DAX in particular has been blocked. However, callers of get_user_pages_fast() were not "protected". FOLL_LONGTERM can _only_ be supported with get_user_pages[_fast]() as it requires vmas to determine if DAX is in use. NOTE: In merging with the CMA changes we opt to change the get_user_pages() call in check_and_migrate_cma_pages() to a call of __get_user_pages_locked() on the newly migrated pages. This makes the code read better in that we are calling __get_user_pages_locked() on the pages before and after a potential migration. As a side affect some of the interfaces are cleaned up but this is not the primary purpose of the series. In review[1] it was asked: <quote> > This I don't get - if you do lock down long term mappings performance > of the actual get_user_pages call shouldn't matter to start with. > > What do I miss? A couple of points. First "longterm" is a relative thing and at this point is probably a misnomer. This is really flagging a pin which is going to be given to hardware and can't move. I've thought of a couple of alternative names but I think we have to settle on if we are going to use FL_LAYOUT or something else to solve the "longterm" problem. Then I think we can change the flag to a better name. Second, It depends on how often you are registering memory. I have spoken with some RDMA users who consider MR in the performance path... For the overall application performance. I don't have the numbers as the tests for HFI1 were done a long time ago. But there was a significant advantage. Some of which is probably due to the fact that you don't have to hold mmap_sem. Finally, architecturally I think it would be good for everyone to use *_fast. There are patches submitted to the RDMA list which would allow the use of *_fast (they reworking the use of mmap_sem) and as soon as they are accepted I'll submit a patch to convert the RDMA core as well. Also to this point others are looking to use *_fast. As an asside, Jasons pointed out in my previous submission that *_fast and *_unlocked look very much the same. I agree and I think further cleanup will be coming. But I'm focused on getting the final solution for DAX at the moment. </quote> [1] https://lore.kernel.org/lkml/20190220180255.GA12020@iweiny-DESK2.sc.intel.com/T/#md6abad2569f3bf6c1f03686c8097ab6563e94965 [ira.weiny@intel.com: v3] Link: http://lkml.kernel.org/r/20190328084422.29911-2-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190328084422.29911-2-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190317183438.2057-2-ira.weiny@intel.comSigned-off-by: NIra Weiny <ira.weiny@intel.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Rich Felker <dalias@libc.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: James Hogan <jhogan@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Mike Marshall <hubcap@omnibond.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 4月, 2019 1 次提交
-
-
由 Rick Edgecombe 提交于
Make hibernate handle unmapped pages on the direct map when CONFIG_ARCH_HAS_SET_ALIAS=y is set. These functions allow for setting pages to invalid configurations, so now hibernate should check if the pages have valid mappings and handle if they are unmapped when doing a hibernate save operation. Previously this checking was already done when CONFIG_DEBUG_PAGEALLOC=y was configured. It does not appear to have a big hibernating performance impact. The speed of the saving operation before this change was measured as 819.02 MB/s, and after was measured at 813.32 MB/s. Before: [ 4.670938] PM: Wrote 171996 kbytes in 0.21 seconds (819.02 MB/s) After: [ 4.504714] PM: Wrote 178932 kbytes in 0.22 seconds (813.32 MB/s) Signed-off-by: NRick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NPavel Machek <pavel@ucw.cz> Cc: <akpm@linux-foundation.org> Cc: <ard.biesheuvel@linaro.org> Cc: <deneen.t.dock@intel.com> Cc: <kernel-hardening@lists.openwall.com> Cc: <kristen@linux.intel.com> Cc: <linux_dti@icloud.com> Cc: <will.deacon@arm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190426001143.4983-16-namit@vmware.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 15 4月, 2019 2 次提交
-
-
由 Linus Torvalds 提交于
This is the same as the traditional 'get_page()' function, but instead of unconditionally incrementing the reference count of the page, it only does so if the count was "safe". It returns whether the reference count was incremented (and is marked __must_check, since the caller obviously has to be aware of it). Also like 'get_page()', you can't use this function unless you already had a reference to the page. The intent is that you can use this exactly like get_page(), but in situations where you want to limit the maximum reference count. The code currently does an unconditional WARN_ON_ONCE() if we ever hit the reference count issues (either zero or negative), as a notification that the conditional non-increment actually happened. NOTE! The count access for the "safety" check is inherently racy, but that doesn't matter since the buffer we use is basically half the range of the reference count (ie we look at the sign of the count). Acked-by: NMatthew Wilcox <willy@infradead.org> Cc: Jann Horn <jannh@google.com> Cc: stable@kernel.org Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Linus Torvalds 提交于
We have a VM_BUG_ON() to check that the page reference count doesn't underflow (or get close to overflow) by checking the sign of the count. That's all fine, but we actually want to allow people to use a "get page ref unless it's already very high" helper function, and we want that one to use the sign of the page ref (without triggering this VM_BUG_ON). Change the VM_BUG_ON to only check for small underflows (or _very_ close to overflowing), and ignore overflows which have strayed into negative territory. Acked-by: NMatthew Wilcox <willy@infradead.org> Cc: Jann Horn <jannh@google.com> Cc: stable@kernel.org Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 3月, 2019 1 次提交
-
-
由 Nikolay Borisov 提交于
All users of VM_MAX_READAHEAD actually convert it to kbytes and then to pages. Define the macro explicitly as (SZ_128K / PAGE_SIZE). This simplifies the expression in every filesystem. Also rename the macro to VM_READAHEAD_PAGES to properly convey its meaning. Finally remove unused VM_MIN_READAHEAD [akpm@linux-foundation.org: fix fs/io_uring.c, per Stephen] Link: http://lkml.kernel.org/r/20181221144053.24318-1-nborisov@suse.comSigned-off-by: NNikolay Borisov <nborisov@suse.com> Reviewed-by: NMatthew Wilcox <willy@infradead.org> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Latchesar Ionkov <lucho@ionkov.net> Cc: Dominique Martinet <asmadeus@codewreck.org> Cc: David Howells <dhowells@redhat.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: David Sterba <dsterba@suse.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 3月, 2019 1 次提交
-
-
由 Souptick Joarder 提交于
Page fault handlers are supposed to return VM_FAULT codes, but some drivers/file systems mistakenly return error numbers. Now that all drivers/file systems have been converted to use the vm_fault_t return type, change the type definition to no longer be compatible with 'int'. By making it an unsigned int, the function prototype becomes incompatible with a function which returns int. Sparse will detect any attempts to return a value which is not a VM_FAULT code. VM_FAULT_SET_HINDEX and VM_FAULT_GET_HINDEX values are changed to avoid conflict with other VM_FAULT codes. [jrdr.linux@gmail.com: fix warnings] Link: http://lkml.kernel.org/r/20190109183742.GA24326@jordon-HP-15-Notebook-PC Link: http://lkml.kernel.org/r/20190108183041.GA12137@jordon-HP-15-Notebook-PCSigned-off-by: NSouptick Joarder <jrdr.linux@gmail.com> Reviewed-by: NWilliam Kucharski <william.kucharski@oracle.com> Reviewed-by: NMike Rapoport <rppt@linux.ibm.com> Reviewed-by: NMatthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 3月, 2019 1 次提交
-
-
由 Aneesh Kumar K.V 提交于
This patch updates get_user_pages_longterm to migrate pages allocated out of CMA region. This makes sure that we don't keep non-movable pages (due to page reference count) in the CMA area. This will be used by ppc64 in a later patch to avoid pinning pages in the CMA region. ppc64 uses CMA region for allocation of the hardware page table (hash page table) and not able to migrate pages out of CMA region results in page table allocation failures. One case where we hit this easy is when a guest using a VFIO passthrough device. VFIO locks all the guest's memory and if the guest memory is backed by CMA region, it becomes unmovable resulting in fragmenting the CMA and possibly preventing other guests from allocation a large enough hash page table. NOTE: We allocate the new page without using __GFP_THISNODE Link: http://lkml.kernel.org/r/20190114095438.32470-3-aneesh.kumar@linux.ibm.comSigned-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Alexey Kardashevskiy <aik@ozlabs.ru> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 05 1月, 2019 2 次提交
-
-
由 Nikolay Borisov 提交于
Multiple filesystems open code lru_to_page(). Rectify this by moving the macro from mm_inline (which is specific to lru stuff) to the more generic mm.h header and start using the macro where appropriate. No functional changes. Link: http://lkml.kernel.org/r/20181129104810.23361-1-nborisov@suse.com Link: https://lkml.kernel.org/r/20181129075301.29087-1-nborisov@suse.comSigned-off-by: NNikolay Borisov <nborisov@suse.com> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Reviewed-by: NMike Rapoport <rppt@linux.ibm.com> Acked-by: NPankaj gupta <pagupta@redhat.com> Acked-by: "Yan, Zheng" <zyan@redhat.com> [ceph] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joel Fernandes (Google) 提交于
Patch series "Add support for fast mremap". This series speeds up the mremap(2) syscall by copying page tables at the PMD level even for non-THP systems. There is concern that the extra 'address' argument that mremap passes to pte_alloc may do something subtle architecture related in the future that may make the scheme not work. Also we find that there is no point in passing the 'address' to pte_alloc since its unused. This patch therefore removes this argument tree-wide resulting in a nice negative diff as well. Also ensuring along the way that the enabled architectures do not do anything funky with the 'address' argument that goes unnoticed by the optimization. Build and boot tested on x86-64. Build tested on arm64. The config enablement patch for arm64 will be posted in the future after more testing. The changes were obtained by applying the following Coccinelle script. (thanks Julia for answering all Coccinelle questions!). Following fix ups were done manually: * Removal of address argument from pte_fragment_alloc * Removal of pte_alloc_one_fast definitions from m68k and microblaze. // Options: --include-headers --no-includes // Note: I split the 'identifier fn' line, so if you are manually // running it, please unsplit it so it runs for you. virtual patch @pte_alloc_func_def depends on patch exists@ identifier E2; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; type T2; @@ fn(... - , T2 E2 ) { ... } @pte_alloc_func_proto_noarg depends on patch exists@ type T1, T2, T3, T4; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ ( - T3 fn(T1, T2); + T3 fn(T1); | - T3 fn(T1, T2, T4); + T3 fn(T1, T2); ) @pte_alloc_func_proto depends on patch exists@ identifier E1, E2, E4; type T1, T2, T3, T4; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ ( - T3 fn(T1 E1, T2 E2); + T3 fn(T1 E1); | - T3 fn(T1 E1, T2 E2, T4 E4); + T3 fn(T1 E1, T2 E2); ) @pte_alloc_func_call depends on patch exists@ expression E2; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ fn(... -, E2 ) @pte_alloc_macro depends on patch exists@ identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; identifier a, b, c; expression e; position p; @@ ( - #define fn(a, b, c) e + #define fn(a, b) e | - #define fn(a, b) e + #define fn(a) e ) Link: http://lkml.kernel.org/r/20181108181201.88826-2-joelaf@google.comSigned-off-by: NJoel Fernandes (Google) <joel@joelfernandes.org> Suggested-by: NKirill A. Shutemov <kirill@shutemov.name> Acked-by: NKirill A. Shutemov <kirill@shutemov.name> Cc: Michal Hocko <mhocko@kernel.org> Cc: Julia Lawall <Julia.Lawall@lip6.fr> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 29 12月, 2018 6 次提交
-
-
由 Jérôme Glisse 提交于
To avoid having to change many call sites everytime we want to add a parameter use a structure to group all parameters for the mmu_notifier invalidate_range_start/end cakks. No functional changes with this patch. [akpm@linux-foundation.org: coding style fixes] Link: http://lkml.kernel.org/r/20181205053628.3210-3-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Acked-by: NChristian König <christian.koenig@amd.com> Acked-by: NJan Kara <jack@suse.cz> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Felix Kuehling <felix.kuehling@amd.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> From: Jérôme Glisse <jglisse@redhat.com> Subject: mm/mmu_notifier: use structure for invalidate_range_start/end calls v3 fix build warning in migrate.c when CONFIG_MMU_NOTIFIER=n Link: http://lkml.kernel.org/r/20181213171330.8489-3-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yu Zhao 提交于
Pagetable page doesn't touch page->mapping or have any used field that overlaps with it. No need to clear mapping in dtor. In fact, doing so might mask problems that otherwise would be detected by bad_page(). Link: http://lkml.kernel.org/r/20181128235525.58780-1-yuzhao@google.comSigned-off-by: NYu Zhao <yuzhao@google.com> Reviewed-by: NMatthew Wilcox <willy@infradead.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Keith Busch <keith.busch@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alexey Dobriyan 提交于
and propagate through down the call stack. Link: http://lkml.kernel.org/r/20181124091411.GC10969@avx2Signed-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
An external fragmentation event was previously described as When the page allocator fragments memory, it records the event using the mm_page_alloc_extfrag event. If the fallback_order is smaller than a pageblock order (order-9 on 64-bit x86) then it's considered an event that will cause external fragmentation issues in the future. The kernel reduces the probability of such events by increasing the watermark sizes by calling set_recommended_min_free_kbytes early in the lifetime of the system. This works reasonably well in general but if there are enough sparsely populated pageblocks then the problem can still occur as enough memory is free overall and kswapd stays asleep. This patch introduces a watermark_boost_factor sysctl that allows a zone watermark to be temporarily boosted when an external fragmentation causing events occurs. The boosting will stall allocations that would decrease free memory below the boosted low watermark and kswapd is woken if the calling context allows to reclaim an amount of memory relative to the size of the high watermark and the watermark_boost_factor until the boost is cleared. When kswapd finishes, it wakes kcompactd at the pageblock order to clean some of the pageblocks that may have been affected by the fragmentation event. kswapd avoids any writeback, slab shrinkage and swap from reclaim context during this operation to avoid excessive system disruption in the name of fragmentation avoidance. Care is taken so that kswapd will do normal reclaim work if the system is really low on memory. This was evaluated using the same workloads as "mm, page_alloc: Spread allocations across zones before introducing fragmentation". 1-socket Skylake machine config-global-dhp__workload_thpfioscale XFS (no special madvise) 4 fio threads, 1 THP allocating thread -------------------------------------- 4.20-rc3 extfrag events < order 9: 804694 4.20-rc3+patch: 408912 (49% reduction) 4.20-rc3+patch1-4: 18421 (98% reduction) 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Amean fault-base-1 653.58 ( 0.00%) 652.71 ( 0.13%) Amean fault-huge-1 0.00 ( 0.00%) 178.93 * -99.00%* 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Percentage huge-1 0.00 ( 0.00%) 5.12 ( 100.00%) Note that external fragmentation causing events are massively reduced by this path whether in comparison to the previous kernel or the vanilla kernel. The fault latency for huge pages appears to be increased but that is only because THP allocations were successful with the patch applied. 1-socket Skylake machine global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE) ----------------------------------------------------------------- 4.20-rc3 extfrag events < order 9: 291392 4.20-rc3+patch: 191187 (34% reduction) 4.20-rc3+patch1-4: 13464 (95% reduction) thpfioscale Fault Latencies 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Min fault-base-1 912.00 ( 0.00%) 905.00 ( 0.77%) Min fault-huge-1 127.00 ( 0.00%) 135.00 ( -6.30%) Amean fault-base-1 1467.55 ( 0.00%) 1481.67 ( -0.96%) Amean fault-huge-1 1127.11 ( 0.00%) 1063.88 * 5.61%* 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Percentage huge-1 77.64 ( 0.00%) 83.46 ( 7.49%) As before, massive reduction in external fragmentation events, some jitter on latencies and an increase in THP allocation success rates. 2-socket Haswell machine config-global-dhp__workload_thpfioscale XFS (no special madvise) 4 fio threads, 5 THP allocating threads ---------------------------------------------------------------- 4.20-rc3 extfrag events < order 9: 215698 4.20-rc3+patch: 200210 (7% reduction) 4.20-rc3+patch1-4: 14263 (93% reduction) 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Amean fault-base-5 1346.45 ( 0.00%) 1306.87 ( 2.94%) Amean fault-huge-5 3418.60 ( 0.00%) 1348.94 ( 60.54%) 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Percentage huge-5 0.78 ( 0.00%) 7.91 ( 910.64%) There is a 93% reduction in fragmentation causing events, there is a big reduction in the huge page fault latency and allocation success rate is higher. 2-socket Haswell machine global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE) ----------------------------------------------------------------- 4.20-rc3 extfrag events < order 9: 166352 4.20-rc3+patch: 147463 (11% reduction) 4.20-rc3+patch1-4: 11095 (93% reduction) thpfioscale Fault Latencies 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Amean fault-base-5 6217.43 ( 0.00%) 7419.67 * -19.34%* Amean fault-huge-5 3163.33 ( 0.00%) 3263.80 ( -3.18%) 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Percentage huge-5 95.14 ( 0.00%) 87.98 ( -7.53%) There is a large reduction in fragmentation events with some jitter around the latencies and success rates. As before, the high THP allocation success rate does mean the system is under a lot of pressure. However, as the fragmentation events are reduced, it would be expected that the long-term allocation success rate would be higher. Link: http://lkml.kernel.org/r/20181123114528.28802-5-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Arun KS 提交于
totalram_pages and totalhigh_pages are made static inline function. Main motivation was that managed_page_count_lock handling was complicating things. It was discussed in length here, https://lore.kernel.org/patchwork/patch/995739/#1181785 So it seemes better to remove the lock and convert variables to atomic, with preventing poteintial store-to-read tearing as a bonus. [akpm@linux-foundation.org: coding style fixes] Link: http://lkml.kernel.org/r/1542090790-21750-4-git-send-email-arunks@codeaurora.orgSigned-off-by: NArun KS <arunks@codeaurora.org> Suggested-by: NMichal Hocko <mhocko@suse.com> Suggested-by: NVlastimil Babka <vbabka@suse.cz> Reviewed-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: NPavel Tatashin <pasha.tatashin@soleen.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
Tag-based KASAN doesn't check memory accesses through pointers tagged with 0xff. When page_address is used to get pointer to memory that corresponds to some page, the tag of the resulting pointer gets set to 0xff, even though the allocated memory might have been tagged differently. For slab pages it's impossible to recover the correct tag to return from page_address, since the page might contain multiple slab objects tagged with different values, and we can't know in advance which one of them is going to get accessed. For non slab pages however, we can recover the tag in page_address, since the whole page was marked with the same tag. This patch adds tagging to non slab memory allocated with pagealloc. To set the tag of the pointer returned from page_address, the tag gets stored to page->flags when the memory gets allocated. Link: http://lkml.kernel.org/r/d758ddcef46a5abc9970182b9137e2fbee202a2c.1544099024.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Reviewed-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: NDmitry Vyukov <dvyukov@google.com> Acked-by: NWill Deacon <will.deacon@arm.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 02 11月, 2018 1 次提交
-
-
由 Martin Schwidefsky 提交于
The common mm code calls mm_dec_nr_pmds() and mm_dec_nr_puds() in free_pgtables() if the address range spans a full pud or pmd. If mm_dec_nr_puds/mm_dec_nr_pmds are non-empty due to configuration settings they blindly subtract the size of the pmd or pud table from pgtable_bytes even if the pud or pmd page table layer is folded. Add explicit mm_[pmd|pud]_folded checks to the four pgtable_bytes accounting functions mm_inc_nr_puds, mm_inc_nr_pmds, mm_dec_nr_puds and mm_dec_nr_pmds. As the check for folded page tables can be overwritten by the architecture, this allows to keep a correct pgtable_bytes value for platforms that use a dynamic number of page table levels. Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
- 31 10月, 2018 1 次提交
-
-
由 Mike Rapoport 提交于
All architecures use memblock for early memory management. There is no need for the CONFIG_HAVE_MEMBLOCK configuration option. [rppt@linux.vnet.ibm.com: of/fdt: fixup #ifdefs] Link: http://lkml.kernel.org/r/20180919103457.GA20545@rapoport-lnx [rppt@linux.vnet.ibm.com: csky: fixups after bootmem removal] Link: http://lkml.kernel.org/r/20180926112744.GC4628@rapoport-lnx [rppt@linux.vnet.ibm.com: remove stale #else and the code it protects] Link: http://lkml.kernel.org/r/1538067825-24835-1-git-send-email-rppt@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/1536927045-23536-4-git-send-email-rppt@linux.vnet.ibm.comSigned-off-by: NMike Rapoport <rppt@linux.vnet.ibm.com> Acked-by: NMichal Hocko <mhocko@suse.com> Tested-by: NJonathan Cameron <jonathan.cameron@huawei.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 10月, 2018 3 次提交
-
-
由 Keith Busch 提交于
Getting pages from ZONE_DEVICE memory needs to check the backing device's live-ness, which is tracked in the device's dev_pagemap metadata. This metadata is stored in a radix tree and looking it up adds measurable software overhead. This patch avoids repeating this relatively costly operation when dev_pagemap is used by caching the last dev_pagemap while getting user pages. The gup_benchmark kernel self test reports this reduces time to get user pages to as low as 1/3 of the previous time. Link: http://lkml.kernel.org/r/20181012173040.15669-1-keith.busch@intel.comSigned-off-by: NKeith Busch <keith.busch@intel.com> Reviewed-by: NDan Williams <dan.j.williams@intel.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yang Shi 提交于
Other than munmap, mremap might be used to shrink memory mapping too. So, it may hold write mmap_sem for long time when shrinking large mapping, as what commit ("mm: mmap: zap pages with read mmap_sem in munmap") described. The mremap() will not manipulate vmas anymore after __do_munmap() call for the mapping shrink use case, so it is safe to downgrade to read mmap_sem. So, the same optimization, which downgrades mmap_sem to read for zapping pages, is also feasible and reasonable to this case. The period of holding exclusive mmap_sem for shrinking large mapping would be reduced significantly with this optimization. MREMAP_FIXED and MREMAP_MAYMOVE are more complicated to adopt this optimization since they need manipulate vmas after do_munmap(), downgrading mmap_sem may create race window. Simple mapping shrink is the low hanging fruit, and it may cover the most cases of unmap with munmap together. [akpm@linux-foundation.org: tweak comment] [yang.shi@linux.alibaba.com: fix unsigned compare against 0 issue] Link: http://lkml.kernel.org/r/1538687672-17795-2-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1538067582-60038-1-git-send-email-yang.shi@linux.alibaba.comSigned-off-by: NYang Shi <yang.shi@linux.alibaba.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com> Cc: Colin Ian King <colin.king@canonical.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alexander Duyck 提交于
The ZONE_DEVICE pages were being initialized in two locations. One was with the memory_hotplug lock held and another was outside of that lock. The problem with this is that it was nearly doubling the memory initialization time. Instead of doing this twice, once while holding a global lock and once without, I am opting to defer the initialization to the one outside of the lock. This allows us to avoid serializing the overhead for memory init and we can instead focus on per-node init times. One issue I encountered is that devm_memremap_pages and hmm_devmmem_pages_create were initializing only the pgmap field the same way. One wasn't initializing hmm_data, and the other was initializing it to a poison value. Since this is something that is exposed to the driver in the case of hmm I am opting for a third option and just initializing hmm_data to 0 since this is going to be exposed to unknown third party drivers. [alexander.h.duyck@linux.intel.com: fix reference count for pgmap in devm_memremap_pages] Link: http://lkml.kernel.org/r/20181008233404.1909.37302.stgit@localhost.localdomain Link: http://lkml.kernel.org/r/20180925202053.3576.66039.stgit@localhost.localdomainSigned-off-by: NAlexander Duyck <alexander.h.duyck@linux.intel.com> Reviewed-by: NPavel Tatashin <pavel.tatashin@microsoft.com> Tested-by: NDan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-