- 05 9月, 2015 1 次提交
-
-
由 Andrea Arcangeli 提交于
This allows to select the userfaultfd during configuration to build it. Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com> Acked-by: NPavel Emelyanov <xemul@parallels.com> Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com> Cc: zhang.zhanghailiang@huawei.com Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Feiner <pfeiner@google.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 24 7月, 2015 1 次提交
-
-
由 Jan Kara 提交于
The functionality of ext3 is fully supported by ext4 driver. Major distributions (SUSE, RedHat) already use ext4 driver to handle ext3 filesystems for quite some time. There is some ugliness in mm resulting from jbd cleaning buffers in a dirty page without cleaning page dirty bit and also support for buffer bouncing in the block layer when stable pages are required is there only because of jbd. So let's remove the ext3 driver. This saves us some 28k lines of duplicated code. Acked-by: NTheodore Ts'o <tytso@mit.edu> Signed-off-by: NJan Kara <jack@suse.cz>
-
- 31 5月, 2015 1 次提交
-
-
由 Richard Weinberger 提交于
hppfs (honeypot procfs) was an attempt to use UML as honeypot. It was never stable nor in heavy use. As Al Viro and Christoph Hellwig pointed some major issues out it is better to let it die. Signed-off-by: NRichard Weinberger <richard@nod.at>
-
- 17 2月, 2015 3 次提交
-
-
由 Helge Deller 提交于
The parisc arch has been the only user of HP-UX SOM binaries. Support for HP-UX executables was never finished and since we now drop support for the HP-UX compat layer anyway, it does not makes sense to keep the BINFMT_SOM support. Cc: linux-fsdevel@vger.kernel.org Cc: linux-parisc@vger.kernel.org Signed-off-by: NHelge Deller <deller@gmx.de>
-
由 Matthew Wilcox 提交于
The fewer Kconfig options we have the better. Use the generic CONFIG_FS_DAX to enable XIP support in ext2 as well as in the core. Signed-off-by: NMatthew Wilcox <matthew.r.wilcox@intel.com> Cc: Andreas Dilger <andreas.dilger@intel.com> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Dave Chinner <david@fromorbit.com> Cc: Jan Kara <jack@suse.cz> Cc: Jens Axboe <axboe@kernel.dk> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Matthew Wilcox 提交于
Use the generic AIO infrastructure instead of custom read and write methods. In addition to giving us support for AIO, this adds the missing locking between read() and truncate(). Signed-off-by: NMatthew Wilcox <matthew.r.wilcox@intel.com> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Cc: Andreas Dilger <andreas.dilger@intel.com> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Dave Chinner <david@fromorbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 04 2月, 2015 1 次提交
-
-
由 Steven Rostedt (Red Hat) 提交于
Add a separate file system to handle the tracing directory. Currently it is part of debugfs, but that is starting to show its limits. One thing is that in order to access the tracing infrastructure, you need to mount debugfs. As that includes debugging from all sorts of sub systems in the kernel, it is not considered advisable to mount such an all encompassing debugging system. Having the tracing system in its own file systems gives access to the tracing sub system without needing to include all other systems. Another problem with tracing using the debugfs system is that the instances use mkdir to create sub buffers. debugfs does not support mkdir from userspace so to implement it, special hacks were used. By controlling the file system that the tracing infrastructure uses, this can be properly done without hacks. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 11 12月, 2014 1 次提交
-
-
由 Al Viro 提交于
New pseudo-filesystem: nsfs. Targets of /proc/*/ns/* live there now. It's not mountable (not even registered, so it's not in /proc/filesystems, etc.). Files on it *are* bindable - we explicitly permit that in do_loopback(). This stuff lives in fs/nsfs.c now; proc_ns_fget() moved there as well. get_proc_ns() is a macro now (it's simply returning ->i_private; would have been an inline, if not for header ordering headache). proc_ns_inode() is an ex-parrot. The interface used in procfs is ns_get_path(path, task, ops) and ns_get_name(buf, size, task, ops). Dentries and inodes are never hashed; a non-counting reference to dentry is stashed in ns_common (removed by ->d_prune()) and reused by ns_get_path() if present. See ns_get_path()/ns_prune_dentry/nsfs_evict() for details of that mechanism. As the result, proc_ns_follow_link() has stopped poking in nd->path.mnt; it does nd_jump_link() on a consistent <vfsmount,dentry> pair it gets from ns_get_path(). Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 20 11月, 2014 1 次提交
-
-
由 Miklos Szeredi 提交于
Some distributions carry an "old" format of overlayfs while mainline has a "new" format. The distros will possibly want to keep the old overlayfs alongside the new for compatibility reasons. To make it possible to differentiate the two versions change the name of the new one from "overlayfs" to "overlay". Signed-off-by: NMiklos Szeredi <mszeredi@suse.cz> Reported-by: NSerge Hallyn <serge.hallyn@ubuntu.com> Cc: Andy Whitcroft <apw@canonical.com>
-
- 24 10月, 2014 1 次提交
-
-
由 Miklos Szeredi 提交于
Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: NMiklos Szeredi <mszeredi@suse.cz>
-
- 08 8月, 2014 1 次提交
-
-
由 Al Viro 提交于
Add a new field to fs_pin - kill(pin). That's what umount and r/o remount will be calling for all pins attached to vfsmount and superblock resp. Called after bumping the refcount, so it won't go away under us. Dropping the refcount is responsibility of the instance. All generic stuff moved to fs/fs_pin.c; the next step will rip all the knowledge of kernel/acct.c from fs/super.c and fs/namespace.c. After that - death to mnt_pin(); it was intended to be usable as generic mechanism for code that wants to attach objects to vfsmount, so that they would not make the sucker busy and would get killed on umount. Never got it right; it remained acct.c-specific all along. Now it's very close to being killable. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 20 5月, 2014 1 次提交
-
-
由 Jens Axboe 提交于
Like commit f9c78b2b, move this block related file outside of fs/ and into the core block directory, block/. Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 19 5月, 2014 1 次提交
-
-
由 Jens Axboe 提交于
They really belong in block/, especially now since it's not in drivers/block/ anymore. Additionally, the get_maintainer script gets it wrong when in fs/. Suggested-by: NChristoph Hellwig <hch@infradead.org> Acked-by: NAl Viro <viro@ZenIV.linux.org.uk> Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 08 2月, 2014 1 次提交
-
-
由 Tejun Heo 提交于
As sysfs was kernfs's only user, kernfs has been piggybacking on CONFIG_SYSFS; however, kernfs is scheduled to grow a new user very soon. Introduce a separate config option CONFIG_KERNFS which is to be selected by kernfs users. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: linux-fsdevel@vger.kernel.org Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 26 1月, 2014 2 次提交
-
-
由 Christoph Hellwig 提交于
And instead convert tmpfs to use the new generic ACL code, with two stub methods provided for in-memory filesystems. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 28 11月, 2013 1 次提交
-
-
由 Tejun Heo 提交于
Core sysfs implementation will be separated into kernfs so that it can be used by other non-kobject users. This patch creates fs/kernfs/ directory and makes boilerplate changes. kernfs interface will be directly based on sysfs_dirent and its forward declaration is moved to include/linux/kernfs.h which is included from include/linux/sysfs.h. sysfs core implementation will be gradually separated out and moved to kernfs. This patch doesn't introduce any functional changes. v2: mount.c added. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: linux-fsdevel@vger.kernel.org Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 01 5月, 2013 1 次提交
-
-
由 Josh Triplett 提交于
Add a new configuration option CONFIG_BINFMT_SCRIPT to configure support for interpreted scripts starting with "#!"; allow compiling out that support, or building it as a module. Embedded systems running exclusively compiled binaries could leave this support out, and systems that don't need scripts before mounting the root filesystem can build this as a module. Signed-off-by: NJosh Triplett <josh@joshtriplett.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 4月, 2013 1 次提交
-
-
由 Josh Triplett 提交于
drop_caches.c provides code only invokable via sysctl, so don't compile it in when CONFIG_SYSCTL=n. Signed-off-by: NJosh Triplett <josh@joshtriplett.org> Acked-by: NKees Cook <keescook@chromium.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 17 4月, 2013 1 次提交
-
-
由 Matt Fleming 提交于
Now that efivarfs uses the efivar API, move it out of efivars.c and into fs/efivarfs where it belongs. This move will eventually allow us to enable the efivarfs code without having to also enable CONFIG_EFI_VARS built, and vice versa. Furthermore, things like, mount -t efivarfs none /sys/firmware/efi/efivars will now work if efivarfs is built as a module without requiring the use of MODULE_ALIAS(), which would have been necessary when the efivarfs code was part of efivars.c. Cc: Matthew Garrett <matthew.garrett@nebula.com> Cc: Jeremy Kerr <jk@ozlabs.org> Reviewed-by: NTom Gundersen <teg@jklm.no> Tested-by: NTom Gundersen <teg@jklm.no> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 10 4月, 2013 1 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 11 12月, 2012 1 次提交
-
-
由 Jaegeuk Kim 提交于
This adds Makefile and Kconfig for f2fs, and updates Makefile and Kconfig files in the fs directory. Signed-off-by: NJaegeuk Kim <jaegeuk.kim@samsung.com>
-
- 06 10月, 2012 1 次提交
-
-
由 Alex Kelly 提交于
Adds an expert Kconfig option, CONFIG_COREDUMP, which allows disabling of core dump. This saves approximately 2.6k in the compiled kernel, and complements CONFIG_ELF_CORE, which now depends on it. CONFIG_COREDUMP also disables coredump-related sysctls, except for suid_dumpable and related functions, which are necessary for ptrace. [akpm@linux-foundation.org: fix binfmt_aout.c build] Signed-off-by: NAlex Kelly <alex.page.kelly@gmail.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org> Acked-by: NSerge Hallyn <serge.hallyn@canonical.com> Acked-by: NKees Cook <keescook@chromium.org> Cc: Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 10月, 2012 1 次提交
-
-
由 Alex Kelly 提交于
This prepares for making core dump functionality optional. The variable "suid_dumpable" and associated functions are left in fs/exec.c because they're used elsewhere, such as in ptrace. Signed-off-by: NAlex Kelly <alex.page.kelly@gmail.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org> Acked-by: NSerge Hallyn <serge.hallyn@canonical.com> Acked-by: NKees Cook <keescook@chromium.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 21 3月, 2012 1 次提交
-
-
由 Kai Bankett 提交于
Adds support for qnx6fs readonly support to the linux kernel. * Mount option The option mmi_fs can be used to mount Harman Becker/Audi MMI 3G HDD qnx6fs filesystems. * Documentation A high level filesystem stucture description can be found in the Documentation/filesystems directory. (qnx6.txt) * Additional features - Active (stable) superblock selection - Superblock checksum check (enforced) - Supports mount of qnx6 filesystems with to host different endianess - Automatic endianess detection - Longfilename support (with non-enfocing crc check) - All blocksizes (512, 1024, 2048 and 4096 supported) Signed-off-by: NKai Bankett <chaosman@ontika.net> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 04 1月, 2012 2 次提交
-
-
由 Al Viro 提交于
rationale: that stuff is far tighter bound to fs/namespace.c than to the guts of procfs proper. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 27 10月, 2011 1 次提交
-
-
由 Boaz Harrosh 提交于
In my last patch I did a stupid mistake and broke the exofs compilation completely. Fix it ASAP. Instead of obj-y I did obj-$(y) Really Really sorry. Me totally blushing :-{| Signed-off-by: NBoaz Harrosh <bharrosh@panasas.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 10月, 2011 1 次提交
-
-
由 Boaz Harrosh 提交于
fs/exofs directory has multiple targets now, of which the ore.ko will be needed by the pnfs-objects-layout-driver (fs/nfs/objlayout). As suggested by: Michal Marek <mmarek@suse.cz> convert inclusion of exofs/ from obj-$(CONFIG_EXOFS_FS) => obj-$(y). So ORE can be selected also from fs/nfs/Kconfig CC: Michal Marek <mmarek@suse.cz> CC: Al Viro <viro@ZenIV.linux.org.uk> Signed-off-by: NBoaz Harrosh <bharrosh@panasas.com>
-
- 16 7月, 2011 1 次提交
-
-
由 NeilBrown 提交于
As promised in feature-removal-schedule.txt it is time to remove the nfsctl system call. Userspace has perferred to not use this call throughout 2.6 and it has been excluded in the default configuration since 2.6.36 (9 months ago). So this patch removes all the code that was being compiled out. There are still references to sys_nfsctl in various arch systemcall tables and related code. These should be cleaned out too, probably in the next merge window. Signed-off-by: NNeilBrown <neilb@suse.de> Signed-off-by: NJ. Bruce Fields <bfields@redhat.com>
-
- 15 3月, 2011 1 次提交
-
-
由 Aneesh Kumar K.V 提交于
The syscall also return mount id which can be used to lookup file system specific information such as uuid in /proc/<pid>/mountinfo Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 29 12月, 2010 1 次提交
-
-
由 Tony Luck 提交于
Some platforms have a small amount of non-volatile storage that can be used to store information useful to diagnose the cause of a system crash. This is the generic part of a file system interface that presents information from the crash as a series of files in /dev/pstore. Once the information has been seen, the underlying storage is freed by deleting the files. Signed-off-by: NTony Luck <tony.luck@intel.com>
-
- 06 10月, 2010 2 次提交
-
-
由 Arnd Bergmann 提交于
smbfs has been scheduled for removal in 2.6.27, so maybe we can now move it to drivers/staging on the way out. smbfs still uses the big kernel lock and nobody is going to fix that, so we should be getting rid of it soon. This removes the 32 bit compat mount and ioctl handling code, which is implemented in common fs code, and moves all smbfs related files into drivers/staging/smbfs. Signed-off-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NJeff Layton <jlayton@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
由 Arnd Bergmann 提交于
Nobody appears to be interested in fixing autofs3 bugs any more and it uses the BKL, which is going away. Move this to staging for retirement. Unless someone complains until 2.6.38, we can remove it for good. The include/linux/auto_fs.h header file is still used by autofs4, so it remains in place. Signed-off-by: NArnd Bergmann <arnd@arndb.de> Cc: Ian Kent <raven@themaw.net> Cc: autofs@linux.kernel.org Cc: "H. Peter Anvin" <hpa@zytor.com> Acked-by: NH. Peter Anvin <hpa@zytor.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
- 23 9月, 2010 1 次提交
-
-
由 NeilBrown 提交于
Add CONFIG_NFSD_DEPRECATED, default to y. Only include deprecated interface if this is defined. This allows distros to remove this interface before the official removal, and allows developers to test without it. Signed-off-by: NNeilBrown <neilb@suse.de> Signed-off-by: NJ. Bruce Fields <bfields@redhat.com>
-
- 22 5月, 2010 1 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 21 11月, 2009 1 次提交
-
-
由 Joern Engel 提交于
This is a new flash file system. See Documentation/filesystems/logfs.txt Signed-off-by: NJoern Engel <joern@logfs.org>
-
- 07 10月, 2009 1 次提交
-
-
由 Sage Weil 提交于
Kconfig options and Makefile. Signed-off-by: NSage Weil <sage@newdream.net>
-
- 07 4月, 2009 1 次提交
-
-
由 Ryusuke Konishi 提交于
This adds a Makefile for the nilfs2 file system, and updates the makefile and Kconfig file in the file system directory. Signed-off-by: NRyusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 4月, 2009 1 次提交
-
-
由 David Howells 提交于
Add an FS-Cache cache-backend that permits a mounted filesystem to be used as a backing store for the cache. CacheFiles uses a userspace daemon to do some of the cache management - such as reaping stale nodes and culling. This is called cachefilesd and lives in /sbin. The source for the daemon can be downloaded from: http://people.redhat.com/~dhowells/cachefs/cachefilesd.c And an example configuration from: http://people.redhat.com/~dhowells/cachefs/cachefilesd.conf The filesystem and data integrity of the cache are only as good as those of the filesystem providing the backing services. Note that CacheFiles does not attempt to journal anything since the journalling interfaces of the various filesystems are very specific in nature. CacheFiles creates a misc character device - "/dev/cachefiles" - that is used to communication with the daemon. Only one thing may have this open at once, and whilst it is open, a cache is at least partially in existence. The daemon opens this and sends commands down it to control the cache. CacheFiles is currently limited to a single cache. CacheFiles attempts to maintain at least a certain percentage of free space on the filesystem, shrinking the cache by culling the objects it contains to make space if necessary - see the "Cache Culling" section. This means it can be placed on the same medium as a live set of data, and will expand to make use of spare space and automatically contract when the set of data requires more space. ============ REQUIREMENTS ============ The use of CacheFiles and its daemon requires the following features to be available in the system and in the cache filesystem: - dnotify. - extended attributes (xattrs). - openat() and friends. - bmap() support on files in the filesystem (FIBMAP ioctl). - The use of bmap() to detect a partial page at the end of the file. It is strongly recommended that the "dir_index" option is enabled on Ext3 filesystems being used as a cache. ============= CONFIGURATION ============= The cache is configured by a script in /etc/cachefilesd.conf. These commands set up cache ready for use. The following script commands are available: (*) brun <N>% (*) bcull <N>% (*) bstop <N>% (*) frun <N>% (*) fcull <N>% (*) fstop <N>% Configure the culling limits. Optional. See the section on culling The defaults are 7% (run), 5% (cull) and 1% (stop) respectively. The commands beginning with a 'b' are file space (block) limits, those beginning with an 'f' are file count limits. (*) dir <path> Specify the directory containing the root of the cache. Mandatory. (*) tag <name> Specify a tag to FS-Cache to use in distinguishing multiple caches. Optional. The default is "CacheFiles". (*) debug <mask> Specify a numeric bitmask to control debugging in the kernel module. Optional. The default is zero (all off). The following values can be OR'd into the mask to collect various information: 1 Turn on trace of function entry (_enter() macros) 2 Turn on trace of function exit (_leave() macros) 4 Turn on trace of internal debug points (_debug()) This mask can also be set through sysfs, eg: echo 5 >/sys/modules/cachefiles/parameters/debug ================== STARTING THE CACHE ================== The cache is started by running the daemon. The daemon opens the cache device, configures the cache and tells it to begin caching. At that point the cache binds to fscache and the cache becomes live. The daemon is run as follows: /sbin/cachefilesd [-d]* [-s] [-n] [-f <configfile>] The flags are: (*) -d Increase the debugging level. This can be specified multiple times and is cumulative with itself. (*) -s Send messages to stderr instead of syslog. (*) -n Don't daemonise and go into background. (*) -f <configfile> Use an alternative configuration file rather than the default one. =============== THINGS TO AVOID =============== Do not mount other things within the cache as this will cause problems. The kernel module contains its own very cut-down path walking facility that ignores mountpoints, but the daemon can't avoid them. Do not create, rename or unlink files and directories in the cache whilst the cache is active, as this may cause the state to become uncertain. Renaming files in the cache might make objects appear to be other objects (the filename is part of the lookup key). Do not change or remove the extended attributes attached to cache files by the cache as this will cause the cache state management to get confused. Do not create files or directories in the cache, lest the cache get confused or serve incorrect data. Do not chmod files in the cache. The module creates things with minimal permissions to prevent random users being able to access them directly. ============= CACHE CULLING ============= The cache may need culling occasionally to make space. This involves discarding objects from the cache that have been used less recently than anything else. Culling is based on the access time of data objects. Empty directories are culled if not in use. Cache culling is done on the basis of the percentage of blocks and the percentage of files available in the underlying filesystem. There are six "limits": (*) brun (*) frun If the amount of free space and the number of available files in the cache rises above both these limits, then culling is turned off. (*) bcull (*) fcull If the amount of available space or the number of available files in the cache falls below either of these limits, then culling is started. (*) bstop (*) fstop If the amount of available space or the number of available files in the cache falls below either of these limits, then no further allocation of disk space or files is permitted until culling has raised things above these limits again. These must be configured thusly: 0 <= bstop < bcull < brun < 100 0 <= fstop < fcull < frun < 100 Note that these are percentages of available space and available files, and do _not_ appear as 100 minus the percentage displayed by the "df" program. The userspace daemon scans the cache to build up a table of cullable objects. These are then culled in least recently used order. A new scan of the cache is started as soon as space is made in the table. Objects will be skipped if their atimes have changed or if the kernel module says it is still using them. =============== CACHE STRUCTURE =============== The CacheFiles module will create two directories in the directory it was given: (*) cache/ (*) graveyard/ The active cache objects all reside in the first directory. The CacheFiles kernel module moves any retired or culled objects that it can't simply unlink to the graveyard from which the daemon will actually delete them. The daemon uses dnotify to monitor the graveyard directory, and will delete anything that appears therein. The module represents index objects as directories with the filename "I..." or "J...". Note that the "cache/" directory is itself a special index. Data objects are represented as files if they have no children, or directories if they do. Their filenames all begin "D..." or "E...". If represented as a directory, data objects will have a file in the directory called "data" that actually holds the data. Special objects are similar to data objects, except their filenames begin "S..." or "T...". If an object has children, then it will be represented as a directory. Immediately in the representative directory are a collection of directories named for hash values of the child object keys with an '@' prepended. Into this directory, if possible, will be placed the representations of the child objects: INDEX INDEX INDEX DATA FILES ========= ========== ================================= ================ cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400 cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...DB1ry cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...N22ry cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...FP1ry If the key is so long that it exceeds NAME_MAX with the decorations added on to it, then it will be cut into pieces, the first few of which will be used to make a nest of directories, and the last one of which will be the objects inside the last directory. The names of the intermediate directories will have '+' prepended: J1223/@23/+xy...z/+kl...m/Epqr Note that keys are raw data, and not only may they exceed NAME_MAX in size, they may also contain things like '/' and NUL characters, and so they may not be suitable for turning directly into a filename. To handle this, CacheFiles will use a suitably printable filename directly and "base-64" encode ones that aren't directly suitable. The two versions of object filenames indicate the encoding: OBJECT TYPE PRINTABLE ENCODED =============== =============== =============== Index "I..." "J..." Data "D..." "E..." Special "S..." "T..." Intermediate directories are always "@" or "+" as appropriate. Each object in the cache has an extended attribute label that holds the object type ID (required to distinguish special objects) and the auxiliary data from the netfs. The latter is used to detect stale objects in the cache and update or retire them. Note that CacheFiles will erase from the cache any file it doesn't recognise or any file of an incorrect type (such as a FIFO file or a device file). ========================== SECURITY MODEL AND SELINUX ========================== CacheFiles is implemented to deal properly with the LSM security features of the Linux kernel and the SELinux facility. One of the problems that CacheFiles faces is that it is generally acting on behalf of a process, and running in that process's context, and that includes a security context that is not appropriate for accessing the cache - either because the files in the cache are inaccessible to that process, or because if the process creates a file in the cache, that file may be inaccessible to other processes. The way CacheFiles works is to temporarily change the security context (fsuid, fsgid and actor security label) that the process acts as - without changing the security context of the process when it the target of an operation performed by some other process (so signalling and suchlike still work correctly). When the CacheFiles module is asked to bind to its cache, it: (1) Finds the security label attached to the root cache directory and uses that as the security label with which it will create files. By default, this is: cachefiles_var_t (2) Finds the security label of the process which issued the bind request (presumed to be the cachefilesd daemon), which by default will be: cachefilesd_t and asks LSM to supply a security ID as which it should act given the daemon's label. By default, this will be: cachefiles_kernel_t SELinux transitions the daemon's security ID to the module's security ID based on a rule of this form in the policy. type_transition <daemon's-ID> kernel_t : process <module's-ID>; For instance: type_transition cachefilesd_t kernel_t : process cachefiles_kernel_t; The module's security ID gives it permission to create, move and remove files and directories in the cache, to find and access directories and files in the cache, to set and access extended attributes on cache objects, and to read and write files in the cache. The daemon's security ID gives it only a very restricted set of permissions: it may scan directories, stat files and erase files and directories. It may not read or write files in the cache, and so it is precluded from accessing the data cached therein; nor is it permitted to create new files in the cache. There are policy source files available in: http://people.redhat.com/~dhowells/fscache/cachefilesd-0.8.tar.bz2 and later versions. In that tarball, see the files: cachefilesd.te cachefilesd.fc cachefilesd.if They are built and installed directly by the RPM. If a non-RPM based system is being used, then copy the above files to their own directory and run: make -f /usr/share/selinux/devel/Makefile semodule -i cachefilesd.pp You will need checkpolicy and selinux-policy-devel installed prior to the build. By default, the cache is located in /var/fscache, but if it is desirable that it should be elsewhere, than either the above policy files must be altered, or an auxiliary policy must be installed to label the alternate location of the cache. For instructions on how to add an auxiliary policy to enable the cache to be located elsewhere when SELinux is in enforcing mode, please see: /usr/share/doc/cachefilesd-*/move-cache.txt When the cachefilesd rpm is installed; alternatively, the document can be found in the sources. ================== A NOTE ON SECURITY ================== CacheFiles makes use of the split security in the task_struct. It allocates its own task_security structure, and redirects current->act_as to point to it when it acts on behalf of another process, in that process's context. The reason it does this is that it calls vfs_mkdir() and suchlike rather than bypassing security and calling inode ops directly. Therefore the VFS and LSM may deny the CacheFiles access to the cache data because under some circumstances the caching code is running in the security context of whatever process issued the original syscall on the netfs. Furthermore, should CacheFiles create a file or directory, the security parameters with that object is created (UID, GID, security label) would be derived from that process that issued the system call, thus potentially preventing other processes from accessing the cache - including CacheFiles's cache management daemon (cachefilesd). What is required is to temporarily override the security of the process that issued the system call. We can't, however, just do an in-place change of the security data as that affects the process as an object, not just as a subject. This means it may lose signals or ptrace events for example, and affects what the process looks like in /proc. So CacheFiles makes use of a logical split in the security between the objective security (task->sec) and the subjective security (task->act_as). The objective security holds the intrinsic security properties of a process and is never overridden. This is what appears in /proc, and is what is used when a process is the target of an operation by some other process (SIGKILL for example). The subjective security holds the active security properties of a process, and may be overridden. This is not seen externally, and is used whan a process acts upon another object, for example SIGKILLing another process or opening a file. LSM hooks exist that allow SELinux (or Smack or whatever) to reject a request for CacheFiles to run in a context of a specific security label, or to create files and directories with another security label. This documentation is added by the patch to: Documentation/filesystems/caching/cachefiles.txt Signed-Off-By: NDavid Howells <dhowells@redhat.com> Acked-by: NSteve Dickson <steved@redhat.com> Acked-by: NTrond Myklebust <Trond.Myklebust@netapp.com> Acked-by: NAl Viro <viro@zeniv.linux.org.uk> Tested-by: NDaire Byrne <Daire.Byrne@framestore.com>
-