- 04 2月, 2021 11 次提交
-
-
由 Joao Martins 提交于
The vcpu info supersedes the per vcpu area of the shared info page and the guest vcpus will use this instead. Signed-off-by: NJoao Martins <joao.m.martins@oracle.com> Signed-off-by: NAnkur Arora <ankur.a.arora@oracle.com> Signed-off-by: NDavid Woodhouse <dwmw@amazon.co.uk>
-
由 Joao Martins 提交于
Add KVM_XEN_ATTR_TYPE_SHARED_INFO to allow hypervisor to know where the guest's shared info page is. Signed-off-by: NJoao Martins <joao.m.martins@oracle.com> Signed-off-by: NDavid Woodhouse <dwmw@amazon.co.uk>
-
由 David Woodhouse 提交于
Signed-off-by: NDavid Woodhouse <dwmw@amazon.co.uk>
-
由 Joao Martins 提交于
Add a new exit reason for emulator to handle Xen hypercalls. Since this means KVM owns the ABI, dispense with the facility for the VMM to provide its own copy of the hypercall pages; just fill them in directly using VMCALL/VMMCALL as we do for the Hyper-V hypercall page. This behaviour is enabled by a new INTERCEPT_HCALL flag in the KVM_XEN_HVM_CONFIG ioctl structure, and advertised by the same flag being returned from the KVM_CAP_XEN_HVM check. Rename xen_hvm_config() to kvm_xen_write_hypercall_page() and move it to the nascent xen.c while we're at it, and add a test case. Signed-off-by: NJoao Martins <joao.m.martins@oracle.com> Signed-off-by: NDavid Woodhouse <dwmw@amazon.co.uk>
-
由 Ben Gardon 提交于
To prepare for handling page faults in parallel, change the TDP MMU page fault handler to use atomic operations to set SPTEs so that changes are not lost if multiple threads attempt to modify the same SPTE. Reviewed-by: NPeter Feiner <pfeiner@google.com> Signed-off-by: NBen Gardon <bgardon@google.com> Message-Id: <20210202185734.1680553-21-bgardon@google.com> [Document new locking rules. - Paolo] Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Ben Gardon 提交于
Add a read / write lock to be used in place of the MMU spinlock on x86. The rwlock will enable the TDP MMU to handle page faults, and other operations in parallel in future commits. Reviewed-by: NPeter Feiner <pfeiner@google.com> Signed-off-by: NBen Gardon <bgardon@google.com> Message-Id: <20210202185734.1680553-19-bgardon@google.com> [Introduce virt/kvm/mmu_lock.h - Paolo] Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Jason Baron 提交于
Convert kvm_x86_ops to use static calls. Note that all kvm_x86_ops are covered here except for 'pmu_ops and 'nested ops'. Here are some numbers running cpuid in a loop of 1 million calls averaged over 5 runs, measured in the vm (lower is better). Intel Xeon 3000MHz: |default |mitigations=off ------------------------------------- vanilla |.671s |.486s static call|.573s(-15%)|.458s(-6%) AMD EPYC 2500MHz: |default |mitigations=off ------------------------------------- vanilla |.710s |.609s static call|.664s(-6%) |.609s(0%) Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Sean Christopherson <seanjc@google.com> Signed-off-by: NJason Baron <jbaron@akamai.com> Message-Id: <e057bf1b8a7ad15652df6eeba3f907ae758d3399.1610680941.git.jbaron@akamai.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Jason Baron 提交于
Use static calls to improve kvm_x86_ops performance. Introduce the definitions that will be used by a subsequent patch to actualize the savings. Add a new kvm-x86-ops.h header that can be used for the definition of static calls. This header is also intended to be used to simplify the defition of svm_kvm_ops and vmx_x86_ops. Note that all functions in kvm_x86_ops are covered here except for 'pmu_ops' and 'nested ops'. I think they can be covered by static calls in a simlilar manner, but were omitted from this series to reduce scope and because I don't think they have as large of a performance impact. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: NJason Baron <jbaron@akamai.com> Message-Id: <e5cc82ead7ab37b2dceb0837a514f3f8bea4f8d1.1610680941.git.jbaron@akamai.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Chenyi Qiang 提交于
DR6_INIT contains the 1-reserved bits as well as the bit that is cleared to 0 when the condition (e.g. RTM) happens. The value can be used to initialize dr6 and also be the XOR mask between the #DB exit qualification (or payload) and DR6. Concerning that DR6_INIT is used as initial value only once, rename it to DR6_ACTIVE_LOW and apply it in other places, which would make the incoming changes for bus lock debug exception more simple. Signed-off-by: NChenyi Qiang <chenyi.qiang@intel.com> Message-Id: <20210202090433.13441-2-chenyi.qiang@intel.com> [Define DR6_FIXED_1 from DR6_ACTIVE_LOW and DR6_VOLATILE. - Paolo] Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Chenyi Qiang 提交于
Virtual Machine can exploit bus locks to degrade the performance of system. Bus lock can be caused by split locked access to writeback(WB) memory or by using locks on uncacheable(UC) memory. The bus lock is typically >1000 cycles slower than an atomic operation within a cache line. It also disrupts performance on other cores (which must wait for the bus lock to be released before their memory operations can complete). To address the threat, bus lock VM exit is introduced to notify the VMM when a bus lock was acquired, allowing it to enforce throttling or other policy based mitigations. A VMM can enable VM exit due to bus locks by setting a new "Bus Lock Detection" VM-execution control(bit 30 of Secondary Processor-based VM execution controls). If delivery of this VM exit was preempted by a higher priority VM exit (e.g. EPT misconfiguration, EPT violation, APIC access VM exit, APIC write VM exit, exception bitmap exiting), bit 26 of exit reason in vmcs field is set to 1. In current implementation, the KVM exposes this capability through KVM_CAP_X86_BUS_LOCK_EXIT. The user can get the supported mode bitmap (i.e. off and exit) and enable it explicitly (disabled by default). If bus locks in guest are detected by KVM, exit to user space even when current exit reason is handled by KVM internally. Set a new field KVM_RUN_BUS_LOCK in vcpu->run->flags to inform the user space that there is a bus lock detected in guest. Document for Bus Lock VM exit is now available at the latest "Intel Architecture Instruction Set Extensions Programming Reference". Document Link: https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.htmlCo-developed-by: NXiaoyao Li <xiaoyao.li@intel.com> Signed-off-by: NXiaoyao Li <xiaoyao.li@intel.com> Signed-off-by: NChenyi Qiang <chenyi.qiang@intel.com> Message-Id: <20201106090315.18606-4-chenyi.qiang@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Remove the update_pte() shadow paging logic, which was obsoleted by commit 4731d4c7 ("KVM: MMU: out of sync shadow core"), but never removed. As pointed out by Yu, KVM never write protects leaf page tables for the purposes of shadow paging, and instead marks their associated shadow page as unsync so that the guest can write PTEs at will. The update_pte() path, which predates the unsync logic, optimizes COW scenarios by refreshing leaf SPTEs when they are written, as opposed to zapping the SPTE, restarting the guest, and installing the new SPTE on the subsequent fault. Since KVM no longer write-protects leaf page tables, update_pte() is unreachable and can be dropped. Reported-by: NYu Zhang <yu.c.zhang@intel.com> Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210115004051.4099250-1-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 08 1月, 2021 2 次提交
-
-
由 Tom Lendacky 提交于
Typically under KVM, an AP is booted using the INIT-SIPI-SIPI sequence, where the guest vCPU register state is updated and then the vCPU is VMRUN to begin execution of the AP. For an SEV-ES guest, this won't work because the guest register state is encrypted. Following the GHCB specification, the hypervisor must not alter the guest register state, so KVM must track an AP/vCPU boot. Should the guest want to park the AP, it must use the AP Reset Hold exit event in place of, for example, a HLT loop. First AP boot (first INIT-SIPI-SIPI sequence): Execute the AP (vCPU) as it was initialized and measured by the SEV-ES support. It is up to the guest to transfer control of the AP to the proper location. Subsequent AP boot: KVM will expect to receive an AP Reset Hold exit event indicating that the vCPU is being parked and will require an INIT-SIPI-SIPI sequence to awaken it. When the AP Reset Hold exit event is received, KVM will place the vCPU into a simulated HLT mode. Upon receiving the INIT-SIPI-SIPI sequence, KVM will make the vCPU runnable. It is again up to the guest to then transfer control of the AP to the proper location. To differentiate between an actual HLT and an AP Reset Hold, a new MP state is introduced, KVM_MP_STATE_AP_RESET_HOLD, which the vCPU is placed in upon receiving the AP Reset Hold exit event. Additionally, to communicate the AP Reset Hold exit event up to userspace (if needed), a new exit reason is introduced, KVM_EXIT_AP_RESET_HOLD. A new x86 ops function is introduced, vcpu_deliver_sipi_vector, in order to accomplish AP booting. For VMX, vcpu_deliver_sipi_vector is set to the original SIPI delivery function, kvm_vcpu_deliver_sipi_vector(). SVM adds a new function that, for non SEV-ES guests, invokes the original SIPI delivery function, kvm_vcpu_deliver_sipi_vector(), but for SEV-ES guests, implements the logic above. Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Message-Id: <e8fbebe8eb161ceaabdad7c01a5859a78b424d5e.1609791600.git.thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Ben Gardon 提交于
The tdp_mmu_roots and tdp_mmu_pages in struct kvm_arch should only contain pages with tdp_mmu_page set to true. tdp_mmu_pages should not contain any pages with a non-zero root_count and tdp_mmu_roots should only contain pages with a positive root_count, unless a thread holds the MMU lock and is in the process of modifying the list. Various functions expect these invariants to be maintained, but they are not explictily documented. Add to the comments on both fields to document the above invariants. Signed-off-by: NBen Gardon <bgardon@google.com> Message-Id: <20210107001935.3732070-2-bgardon@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 15 12月, 2020 7 次提交
-
-
由 Tom Lendacky 提交于
The guest FPU state is automatically restored on VMRUN and saved on VMEXIT by the hardware, so there is no reason to do this in KVM. Eliminate the allocation of the guest_fpu save area and key off that to skip operations related to the guest FPU state. Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Message-Id: <173e429b4d0d962c6a443c4553ffdaf31b7665a4.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Tom Lendacky 提交于
SEV-ES guests do not currently support SMM. Update the has_emulated_msr() kvm_x86_ops function to take a struct kvm parameter so that the capability can be reported at a VM level. Since this op is also called during KVM initialization and before a struct kvm instance is available, comments will be added to each implementation of has_emulated_msr() to indicate the kvm parameter can be null. Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Message-Id: <75de5138e33b945d2fb17f81ae507bda381808e3.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Tom Lendacky 提交于
For SEV-ES guests, the interception of control register write access is not recommended. Control register interception occurs prior to the control register being modified and the hypervisor is unable to modify the control register itself because the register is located in the encrypted register state. SEV-ES guests introduce new control register write traps. These traps provide intercept support of a control register write after the control register has been modified. The new control register value is provided in the VMCB EXITINFO1 field, allowing the hypervisor to track the setting of the guest control registers. Add support to track the value of the guest CR4 register using the control register write trap so that the hypervisor understands the guest operating mode. Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Message-Id: <c3880bf2db8693aa26f648528fbc6e967ab46e25.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Tom Lendacky 提交于
For SEV-ES guests, the interception of control register write access is not recommended. Control register interception occurs prior to the control register being modified and the hypervisor is unable to modify the control register itself because the register is located in the encrypted register state. SEV-ES support introduces new control register write traps. These traps provide intercept support of a control register write after the control register has been modified. The new control register value is provided in the VMCB EXITINFO1 field, allowing the hypervisor to track the setting of the guest control registers. Add support to track the value of the guest CR0 register using the control register write trap so that the hypervisor understands the guest operating mode. Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Message-Id: <182c9baf99df7e40ad9617ff90b84542705ef0d7.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Tom Lendacky 提交于
For an SEV-ES guest, string-based port IO is performed to a shared (un-encrypted) page so that both the hypervisor and guest can read or write to it and each see the contents. For string-based port IO operations, invoke SEV-ES specific routines that can complete the operation using common KVM port IO support. Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Message-Id: <9d61daf0ffda496703717218f415cdc8fd487100.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
This will be used by SEV-ES to inject MSR failure via the GHCB. Reviewed-by: NTom Lendacky <thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Tom Lendacky 提交于
Allocate a page during vCPU creation to be used as the encrypted VM save area (VMSA) for the SEV-ES guest. Provide a flag in the kvm_vcpu_arch structure that indicates whether the guest state is protected. When freeing a VMSA page that has been encrypted, the cache contents must be flushed using the MSR_AMD64_VM_PAGE_FLUSH before freeing the page. [ i386 build warnings ] Reported-by: Nkernel test robot <lkp@intel.com> Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Message-Id: <fde272b17eec804f3b9db18c131262fe074015c5.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 27 11月, 2020 1 次提交
-
-
由 Paolo Bonzini 提交于
kvm_cpu_accept_dm_intr and kvm_vcpu_ready_for_interrupt_injection are a hodge-podge of conditions, hacked together to get something that more or less works. But what is actually needed is much simpler; in both cases the fundamental question is, do we have a place to stash an interrupt if userspace does KVM_INTERRUPT? In userspace irqchip mode, that is !vcpu->arch.interrupt.injected. Currently kvm_event_needs_reinjection(vcpu) covers it, but it is unnecessarily restrictive. In split irqchip mode it's a bit more complicated, we need to check kvm_apic_accept_pic_intr(vcpu) (the IRQ window exit is basically an INTACK cycle and thus requires ExtINTs not to be masked) as well as !pending_userspace_extint(vcpu). However, there is no need to check kvm_event_needs_reinjection(vcpu), since split irqchip keeps pending ExtINT state separate from event injection state, and checking kvm_cpu_has_interrupt(vcpu) is wrong too since ExtINT has higher priority than APIC interrupts. In fact the latter fixes a bug: when userspace requests an IRQ window vmexit, an interrupt in the local APIC can cause kvm_cpu_has_interrupt() to be true and thus kvm_vcpu_ready_for_interrupt_injection() to return false. When this happens, vcpu_run does not exit to userspace but the interrupt window vmexits keep occurring. The VM loops without any hope of making progress. Once we try to fix these with something like return kvm_arch_interrupt_allowed(vcpu) && - !kvm_cpu_has_interrupt(vcpu) && - !kvm_event_needs_reinjection(vcpu) && - kvm_cpu_accept_dm_intr(vcpu); + (!lapic_in_kernel(vcpu) + ? !vcpu->arch.interrupt.injected + : (kvm_apic_accept_pic_intr(vcpu) + && !pending_userspace_extint(v))); we realize two things. First, thanks to the previous patch the complex conditional can reuse !kvm_cpu_has_extint(vcpu). Second, the interrupt window request in vcpu_enter_guest() bool req_int_win = dm_request_for_irq_injection(vcpu) && kvm_cpu_accept_dm_intr(vcpu); should be kept in sync with kvm_vcpu_ready_for_interrupt_injection(): it is unnecessary to ask the processor for an interrupt window if we would not be able to return to userspace. Therefore, kvm_cpu_accept_dm_intr(vcpu) is basically !kvm_cpu_has_extint(vcpu) ANDed with the existing check for masked ExtINT. It all makes sense: - we can accept an interrupt from userspace if there is a place to stash it (and, for irqchip split, ExtINTs are not masked). Interrupts from userspace _can_ be accepted even if right now EFLAGS.IF=0. - in order to tell userspace we will inject its interrupt ("IRQ window open" i.e. kvm_vcpu_ready_for_interrupt_injection), both KVM and the vCPU need to be ready to accept the interrupt. ... and this is what the patch implements. Reported-by: NDavid Woodhouse <dwmw@amazon.co.uk> Analyzed-by: NDavid Woodhouse <dwmw@amazon.co.uk> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Reviewed-by: NNikos Tsironis <ntsironis@arrikto.com> Reviewed-by: NDavid Woodhouse <dwmw@amazon.co.uk> Tested-by: NDavid Woodhouse <dwmw@amazon.co.uk>
-
- 15 11月, 2020 3 次提交
-
-
由 Peter Xu 提交于
This patch is heavily based on previous work from Lei Cao <lei.cao@stratus.com> and Paolo Bonzini <pbonzini@redhat.com>. [1] KVM currently uses large bitmaps to track dirty memory. These bitmaps are copied to userspace when userspace queries KVM for its dirty page information. The use of bitmaps is mostly sufficient for live migration, as large parts of memory are be dirtied from one log-dirty pass to another. However, in a checkpointing system, the number of dirty pages is small and in fact it is often bounded---the VM is paused when it has dirtied a pre-defined number of pages. Traversing a large, sparsely populated bitmap to find set bits is time-consuming, as is copying the bitmap to user-space. A similar issue will be there for live migration when the guest memory is huge while the page dirty procedure is trivial. In that case for each dirty sync we need to pull the whole dirty bitmap to userspace and analyse every bit even if it's mostly zeros. The preferred data structure for above scenarios is a dense list of guest frame numbers (GFN). This patch series stores the dirty list in kernel memory that can be memory mapped into userspace to allow speedy harvesting. This patch enables dirty ring for X86 only. However it should be easily extended to other archs as well. [1] https://patchwork.kernel.org/patch/10471409/Signed-off-by: NLei Cao <lei.cao@stratus.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NPeter Xu <peterx@redhat.com> Message-Id: <20201001012222.5767-1-peterx@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Peter Xu 提交于
Originally, we have three code paths that can dirty a page without vcpu context for X86: - init_rmode_identity_map - init_rmode_tss - kvmgt_rw_gpa init_rmode_identity_map and init_rmode_tss will be setup on destination VM no matter what (and the guest cannot even see them), so it does not make sense to track them at all. To do this, allow __x86_set_memory_region() to return the userspace address that just allocated to the caller. Then in both of the functions we directly write to the userspace address instead of calling kvm_write_*() APIs. Another trivial change is that we don't need to explicitly clear the identity page table root in init_rmode_identity_map() because no matter what we'll write to the whole page with 4M huge page entries. Suggested-by: NPaolo Bonzini <pbonzini@redhat.com> Reviewed-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPeter Xu <peterx@redhat.com> Message-Id: <20201001012044.5151-4-peterx@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Split out VMX's checks on CR4.VMXE to a dedicated hook, .is_valid_cr4(), and invoke the new hook from kvm_valid_cr4(). This fixes an issue where KVM_SET_SREGS would return success while failing to actually set CR4. Fixing the issue by explicitly checking kvm_x86_ops.set_cr4()'s return in __set_sregs() is not a viable option as KVM has already stuffed a variety of vCPU state. Note, kvm_valid_cr4() and is_valid_cr4() have different return types and inverted semantics. This will be remedied in a future patch. Fixes: 5e1746d6 ("KVM: nVMX: Allow setting the VMXE bit in CR4") Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20201007014417.29276-5-sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 13 11月, 2020 1 次提交
-
-
由 Babu Moger 提交于
SEV guests fail to boot on a system that supports the PCID feature. While emulating the RSM instruction, KVM reads the guest CR3 and calls kvm_set_cr3(). If the vCPU is in the long mode, kvm_set_cr3() does a sanity check for the CR3 value. In this case, it validates whether the value has any reserved bits set. The reserved bit range is 63:cpuid_maxphysaddr(). When AMD memory encryption is enabled, the memory encryption bit is set in the CR3 value. The memory encryption bit may fall within the KVM reserved bit range, causing the KVM emulation failure. Introduce a new field cr3_lm_rsvd_bits in kvm_vcpu_arch which will cache the reserved bits in the CR3 value. This will be initialized to rsvd_bits(cpuid_maxphyaddr(vcpu), 63). If the architecture has any special bits(like AMD SEV encryption bit) that needs to be masked from the reserved bits, should be cleared in vendor specific kvm_x86_ops.vcpu_after_set_cpuid handler. Fixes: a780a3ea ("KVM: X86: Fix reserved bits check for MOV to CR3") Signed-off-by: NBabu Moger <babu.moger@amd.com> Message-Id: <160521947657.32054.3264016688005356563.stgit@bmoger-ubuntu> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 23 10月, 2020 1 次提交
-
-
由 Ben Gardon 提交于
Attach struct kvm_mmu_pages to every page in the TDP MMU to track metadata, facilitate NX reclaim, and enable inproved parallelism of MMU operations in future patches. Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell machine. This series introduced no new failures. This series can be viewed in Gerrit at: https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538Signed-off-by: NBen Gardon <bgardon@google.com> Message-Id: <20201014182700.2888246-12-bgardon@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 22 10月, 2020 6 次提交
-
-
由 Ben Gardon 提交于
The TDP MMU must be able to allocate paging structure root pages and track the usage of those pages. Implement a similar, but separate system for root page allocation to that of the x86 shadow paging implementation. When future patches add synchronization model changes to allow for parallel page faults, these pages will need to be handled differently from the x86 shadow paging based MMU's root pages. Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell machine. This series introduced no new failures. This series can be viewed in Gerrit at: https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538Signed-off-by: NBen Gardon <bgardon@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Ben Gardon 提交于
The TDP MMU offers an alternative mode of operation to the x86 shadow paging based MMU, optimized for running an L1 guest with TDP. The TDP MMU will require new fields that need to be initialized and torn down. Add hooks into the existing KVM MMU initialization process to do that initialization / cleanup. Currently the initialization and cleanup fucntions do not do very much, however more operations will be added in future patches. Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell machine. This series introduced no new failures. This series can be viewed in Gerrit at: https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538Signed-off-by: NBen Gardon <bgardon@google.com> Message-Id: <20201014182700.2888246-4-bgardon@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Maxim Levitsky 提交于
This will be used to signal an error to the userspace, in case the vendor code failed during handling of this msr. (e.g -ENOMEM) Signed-off-by: NMaxim Levitsky <mlevitsk@redhat.com> Message-Id: <20201001112954.6258-4-mlevitsk@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Vitaly Kuznetsov 提交于
As vcpu->arch.cpuid_entries is now allocated dynamically, the only remaining use for KVM_MAX_CPUID_ENTRIES is to check KVM_SET_CPUID/ KVM_SET_CPUID2 input for sanity. Since it was reported that the current limit (80) is insufficient for some CPUs, bump KVM_MAX_CPUID_ENTRIES and use an arbitrary value '256' as the new limit. Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20201001130541.1398392-4-vkuznets@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Vitaly Kuznetsov 提交于
The current limit for guest CPUID leaves (KVM_MAX_CPUID_ENTRIES, 80) is reported to be insufficient but before we bump it let's switch to allocating vcpu->arch.cpuid_entries[] array dynamically. Currently, 'struct kvm_cpuid_entry2' is 40 bytes so vcpu->arch.cpuid_entries is 3200 bytes which accounts for 1/4 of the whole 'struct kvm_vcpu_arch' but having it pre-allocated (for all vCPUs which we also pre-allocate) gives us no real benefits. Another plus of the dynamic allocation is that we now do kvm_check_cpuid() check before we assign anything to vcpu->arch.cpuid_nent/cpuid_entries so no changes are made in case the check fails. Opportunistically remove unneeded 'out' labels from kvm_vcpu_ioctl_set_cpuid()/kvm_vcpu_ioctl_set_cpuid2() and return directly whenever possible. Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20201001130541.1398392-3-vkuznets@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Reviewed-by: NMaxim Levitsky <mlevitsk@redhat.com>
-
由 Oliver Upton 提交于
KVM unconditionally provides PV features to the guest, regardless of the configured CPUID. An unwitting guest that doesn't check KVM_CPUID_FEATURES before use could access paravirt features that userspace did not intend to provide. Fix this by checking the guest's CPUID before performing any paravirtual operations. Introduce a capability, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, to gate the aforementioned enforcement. Migrating a VM from a host w/o this patch to a host with this patch could silently change the ABI exposed to the guest, warranting that we default to the old behavior and opt-in for the new one. Reviewed-by: NJim Mattson <jmattson@google.com> Reviewed-by: NPeter Shier <pshier@google.com> Signed-off-by: NOliver Upton <oupton@google.com> Change-Id: I202a0926f65035b872bfe8ad15307c026de59a98 Message-Id: <20200818152429.1923996-4-oupton@google.com> Reviewed-by: NWanpeng Li <wanpengli@tencent.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 28 9月, 2020 7 次提交
-
-
由 Paolo Bonzini 提交于
We are going to use it for SVM too, so use a more generic name. Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Alexander Graf 提交于
It's not desireable to have all MSRs always handled by KVM kernel space. Some MSRs would be useful to handle in user space to either emulate behavior (like uCode updates) or differentiate whether they are valid based on the CPU model. To allow user space to specify which MSRs it wants to see handled by KVM, this patch introduces a new ioctl to push filter rules with bitmaps into KVM. Based on these bitmaps, KVM can then decide whether to reject MSR access. With the addition of KVM_CAP_X86_USER_SPACE_MSR it can also deflect the denied MSR events to user space to operate on. If no filter is populated, MSR handling stays identical to before. Signed-off-by: NAlexander Graf <graf@amazon.com> Message-Id: <20200925143422.21718-8-graf@amazon.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Alexander Graf 提交于
In the following commits we will add pieces of MSR filtering. To ensure that code compiles even with the feature half-merged, let's add a few stubs and struct definitions before the real patches start. Signed-off-by: NAlexander Graf <graf@amazon.com> Message-Id: <20200925143422.21718-4-graf@amazon.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Alexander Graf 提交于
MSRs are weird. Some of them are normal control registers, such as EFER. Some however are registers that really are model specific, not very interesting to virtualization workloads, and not performance critical. Others again are really just windows into package configuration. Out of these MSRs, only the first category is necessary to implement in kernel space. Rarely accessed MSRs, MSRs that should be fine tunes against certain CPU models and MSRs that contain information on the package level are much better suited for user space to process. However, over time we have accumulated a lot of MSRs that are not the first category, but still handled by in-kernel KVM code. This patch adds a generic interface to handle WRMSR and RDMSR from user space. With this, any future MSR that is part of the latter categories can be handled in user space. Furthermore, it allows us to replace the existing "ignore_msrs" logic with something that applies per-VM rather than on the full system. That way you can run productive VMs in parallel to experimental ones where you don't care about proper MSR handling. Signed-off-by: NAlexander Graf <graf@amazon.com> Reviewed-by: NJim Mattson <jmattson@google.com> Message-Id: <20200925143422.21718-3-graf@amazon.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Rename the "shared_msrs" mechanism, which is used to defer restoring MSRs that are only consumed when running in userspace, to a more banal but less likely to be confusing "user_return_msrs". The "shared" nomenclature is confusing as it's not obvious who is sharing what, e.g. reasonable interpretations are that the guest value is shared by vCPUs in a VM, or that the MSR value is shared/common to guest and host, both of which are wrong. "shared" is also misleading as the MSR value (in hardware) is not guaranteed to be shared/reused between VMs (if that's indeed the correct interpretation of the name), as the ability to share values between VMs is simply a side effect (albiet a very nice side effect) of deferring restoration of the host value until returning from userspace. "user_return" avoids the above confusion by describing the mechanism itself instead of its effects. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20200923180409.32255-2-sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Extend the kvm_exit tracepoint to align it with kvm_nested_vmexit in terms of what information is captured. On SVM, add interrupt info and error code, while on VMX it add IDT vectoring and error code. This sets the stage for macrofying the kvm_exit tracepoint definition so that it can be reused for kvm_nested_vmexit without loss of information. Opportunistically stuff a zero for VM_EXIT_INTR_INFO if the VM-Enter failed, as the field is guaranteed to be invalid. Note, it'd be possible to further filter the interrupt/exception fields based on the VM-Exit reason, but the helper is intended only for tracepoints, i.e. an extra VMREAD or two is a non-issue, the failed VM-Enter case is just low hanging fruit. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20200923201349.16097-5-sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Replace the existing kvm_x86_ops.need_emulation_on_page_fault() with a more generic is_emulatable(), and unconditionally call the new function in x86_emulate_instruction(). KVM will use the generic hook to support multiple security related technologies that prevent emulation in one way or another. Similar to the existing AMD #NPF case where emulation of the current instruction is not possible due to lack of information, AMD's SEV-ES and Intel's SGX and TDX will introduce scenarios where emulation is impossible due to the guest's register state being inaccessible. And again similar to the existing #NPF case, emulation can be initiated by kvm_mmu_page_fault(), i.e. outside of the control of vendor-specific code. While the cause and architecturally visible behavior of the various cases are different, e.g. SGX will inject a #UD, AMD #NPF is a clean resume or complete shutdown, and SEV-ES and TDX "return" an error, the impact on the common emulation code is identical: KVM must stop emulation immediately and resume the guest. Query is_emulatable() in handle_ud() as well so that the force_emulation_prefix code doesn't incorrectly modify RIP before calling emulate_instruction() in the absurdly unlikely scenario that KVM encounters forced emulation in conjunction with "do not emulate". Cc: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20200915232702.15945-1-sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 22 8月, 2020 1 次提交
-
-
由 Will Deacon 提交于
The 'flags' field of 'struct mmu_notifier_range' is used to indicate whether invalidate_range_{start,end}() are permitted to block. In the case of kvm_mmu_notifier_invalidate_range_start(), this field is not forwarded on to the architecture-specific implementation of kvm_unmap_hva_range() and therefore the backend cannot sensibly decide whether or not to block. Add an extra 'flags' parameter to kvm_unmap_hva_range() so that architectures are aware as to whether or not they are permitted to block. Cc: <stable@vger.kernel.org> Cc: Marc Zyngier <maz@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: James Morse <james.morse@arm.com> Signed-off-by: NWill Deacon <will@kernel.org> Message-Id: <20200811102725.7121-2-will@kernel.org> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-