- 07 1月, 2022 4 次提交
-
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.11-rc4 commit 35b11010 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=35b1101099e85af74a46b8e36f4d1fdac0367ffd ------------------------------------------------- xfs_trans_cancel will release all the quota resources that were reserved on behalf of the transaction, so get rid of the explicit unreserve step. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.13-rc4 commit 85546500 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/fs/xfs?h=v5.16-rc4&id=8554650003b8a66f3dd357692ab73101d088d938 ---------------------------------------------------------------------- Create a couple of convenience wrappers for creating and deleting quota block reservations against future changes. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.13-rc4 commit 4abe21ad category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/fs/xfs?h=v5.16-rc4&id=4abe21ad67a7b9dc6844f55e91a6e3ef81879d42 ---------------------------------------------------------------------- Convert a few xfs_trans_*reserve* callsites that are open-coding other convenience functions. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.13-rc4 commit b8055ed6 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/fs/xfs?h=v5.16-rc4&id=b8055ed6779d675e30f019ba3b7141848a4d6558 ---------------------------------------------------------------------- In commit 3b0fe478, we reduced the free space requirement to perform a pre-write unwritten extent conversion on an S_DAX file. Since we're not actually allocating any space, the logic goes, we only need enough reservation to handle shape changes in the bmbt. The same logic should have been applied to quota -- we're not allocating any space, so we only need to reserve enough quota to handle the bmbt shape changes. Fixes: 3b0fe478 ("xfs: Don't use reserved blocks for data blocks with DAX") Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
- 27 12月, 2021 36 次提交
-
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.11-rc4 commit 1aecf373 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1aecf3734a95f3c167d1495550ca57556d33f7ec ------------------------------------------------- While refactoring the quota code to create a function to allocate inode change transactions, I noticed that xfs_qm_vop_chown_reserve does more than just make reservations: it also *modifies* the incore counts directly to handle the owner id change for the delalloc blocks. I then observed that the fssetxattr code continues validating input arguments after making the quota reservation but before dirtying the transaction. If the routine decides to error out, it fails to undo the accounting switch! This leads to incorrect quota reservation and failure down the line. We can fix this by making the reservation function do only that -- for the new dquot, it reserves ondisk and delalloc blocks to the transaction, and the old dquot hangs on to its incore reservation for now. Once we actually switch the dquots, we can then update the incore reservations because we've dirtied the transaction and it's too late to turn back now. No fixes tag because this has been broken since the start of git. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Brian Foster 提交于
mainline-inclusion from mainline-v5.15-rc4 commit 5ca5916b category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5ca5916b6bc93577c360c06cb7cdf71adb9b5faf ------------------------------------------------- If writeback I/O to a COW extent fails, the COW fork blocks are punched out and the data fork blocks left alone. It is possible for COW fork blocks to overlap non-shared data fork blocks (due to cowextsz hint prealloc), however, and writeback unconditionally maps to the COW fork whenever blocks exist at the corresponding offset of the page undergoing writeback. This means it's quite possible for a COW fork extent to overlap delalloc data fork blocks, writeback to convert and map to the COW fork blocks, writeback to fail, and finally for ioend completion to cancel the COW fork blocks and leave stale data fork delalloc blocks around in the inode. The blocks are effectively stale because writeback failure also discards dirty page state. If this occurs, it is likely to trigger assert failures, free space accounting corruption and failures in unrelated file operations. For example, a subsequent reflink attempt of the affected file to a new target file will trip over the stale delalloc in the source file and fail. Several of these issues are occasionally reproduced by generic/648, but are reproducible on demand with the right sequence of operations and timely I/O error injection. To fix this problem, update the ioend failure path to also punch out underlying data fork delalloc blocks on I/O error. This is analogous to the writeback submission failure path in xfs_discard_page() where we might fail to map data fork delalloc blocks and consistent with the successful COW writeback completion path, which is responsible for unmapping from the data fork and remapping in COW fork blocks. Fixes: 787eb485 ("xfs: fix and streamline error handling in xfs_end_io") Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Rustam Kovhaev 提交于
mainline-inclusion from mainline-v5.15-rc4 commit c30a0cbd category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c30a0cbd07ecc0eec7b3cd568f7b1c7bb7913f93 ------------------------------------------------- For kmalloc() allocations SLOB prepends the blocks with a 4-byte header, and it puts the size of the allocated blocks in that header. Blocks allocated with kmem_cache_alloc() allocations do not have that header. SLOB explodes when you allocate memory with kmem_cache_alloc() and then try to free it with kfree() instead of kmem_cache_free(). SLOB will assume that there is a header when there is none, read some garbage to size variable and corrupt the adjacent objects, which eventually leads to hang or panic. Let's make XFS work with SLOB by using proper free function. Fixes: 9749fee8 ("xfs: enable the xfs_defer mechanism to process extents to free") Signed-off-by: NRustam Kovhaev <rkovhaev@gmail.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.14-rc4 commit f38a032b category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f38a032b165d812b0ba8378a5cd237c0888ff65f ------------------------------------------------- Yup, the VFS hoist broke it, and nobody noticed. Bulkstat workloads make it clear that it doesn't work as it should. Fixes: dae2f8ed ("fs: Lift XFS_IDONTCACHE to the VFS layer") Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.14-rc4 commit 72a048c1 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=72a048c1056a72e37ea2ee34cc73d8c6d6cb4290 ------------------------------------------------- While prototyping a free space defragmentation tool, I observed an unexpected IO error while running a sequence of commands that can be recreated by the following sequence of commands: fallocate: Input/output error I then scraped this (abbreviated) stack trace from dmesg: WARNING: CPU: 0 PID: 30788 at fs/iomap/buffered-io.c:577 iomap_write_begin+0x376/0x450 CPU: 0 PID: 30788 Comm: xfs_io Not tainted 5.14.0-rc6-xfsx #rc6 5ef57b62a900814b3e4d885c755e9014541c8732 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014 RIP: 0010:iomap_write_begin+0x376/0x450 RSP: 0018:ffffc90000c0fc20 EFLAGS: 00010297 RAX: 0000000000000001 RBX: ffffc90000c0fd10 RCX: 0000000000001000 RDX: ffffc90000c0fc54 RSI: 000000000000000c RDI: 000000000000000c RBP: ffff888005d5dbd8 R08: 0000000000102000 R09: ffffc90000c0fc50 R10: 0000000000b00000 R11: 0000000000101000 R12: ffffea0000336c40 R13: 0000000000001000 R14: ffffc90000c0fd10 R15: 0000000000101000 FS: 00007f4b8f62fe40(0000) GS:ffff88803ec00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000056361c554108 CR3: 000000000524e004 CR4: 00000000001706f0 Call Trace: iomap_unshare_actor+0x95/0x140 iomap_apply+0xfa/0x300 iomap_file_unshare+0x44/0x60 xfs_reflink_unshare+0x50/0x140 [xfs 61947ea9b3a73e79d747dbc1b90205e7987e4195] xfs_file_fallocate+0x27c/0x610 [xfs 61947ea9b3a73e79d747dbc1b90205e7987e4195] vfs_fallocate+0x133/0x330 __x64_sys_fallocate+0x3e/0x70 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f4b8f79140a Looking at the iomap tracepoints, I saw this: iomap_iter: dev 8:64 ino 0x100 pos 0 length 0 flags WRITE|0x80 (0x81) ops xfs_buffered_write_iomap_ops caller iomap_file_unshare iomap_iter_dstmap: dev 8:64 ino 0x100 bdev 8:64 addr -1 offset 0 length 131072 type DELALLOC flags SHARED iomap_iter_srcmap: dev 8:64 ino 0x100 bdev 8:64 addr 147456 offset 0 length 4096 type MAPPED flags iomap_iter: dev 8:64 ino 0x100 pos 0 length 4096 flags WRITE|0x80 (0x81) ops xfs_buffered_write_iomap_ops caller iomap_file_unshare iomap_iter_dstmap: dev 8:64 ino 0x100 bdev 8:64 addr -1 offset 4096 length 4096 type DELALLOC flags SHARED console: WARNING: CPU: 0 PID: 30788 at fs/iomap/buffered-io.c:577 iomap_write_begin+0x376/0x450 The first time funshare calls ->iomap_begin, xfs sees that the first block is shared and creates a 128k delalloc reservation in the COW fork. The delalloc reservation is returned as dstmap, and the shared block is returned as srcmap. So far so good. funshare calls ->iomap_begin to try the second block. This time there's no srcmap (punch-alternating punched it out!) but we still have the delalloc reservation in the COW fork. Therefore, we again return the reservation as dstmap and the hole as srcmap. iomap_unshare_iter incorrectly tries to unshare the hole, which __iomap_write_begin rejects because shared regions must be fully written and therefore cannot require zeroing. Therefore, change the buffered write iomap_begin function not to set IOMAP_F_SHARED when there isn't a source mapping to read from for the unsharing. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NChandan Babu R <chandanrlinux@gmail.com> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.14-rc4 commit 61e0d0cc category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=61e0d0cc51cd6b9d7447923f3ac7e60049de3e2e ------------------------------------------------- The kernel test robot found the following bug when running xfs/355 to scrub a bmap btree: XFS: Assertion failed: !sa->pag, file: fs/xfs/scrub/common.c, line: 412 ------------[ cut here ]------------ kernel BUG at fs/xfs/xfs_message.c:110! invalid opcode: 0000 [#1] SMP PTI CPU: 2 PID: 1415 Comm: xfs_scrub Not tainted 5.14.0-rc4-00021-g48c6615c #1 Hardware name: Hewlett-Packard p6-1451cx/2ADA, BIOS 8.15 02/05/2013 RIP: 0010:assfail+0x23/0x28 [xfs] RSP: 0018:ffffc9000aacb890 EFLAGS: 00010202 RAX: 0000000000000000 RBX: ffffc9000aacbcc8 RCX: 0000000000000000 RDX: 00000000ffffffc0 RSI: 000000000000000a RDI: ffffffffc09e7dcd RBP: ffffc9000aacbc80 R08: ffff8881fdf17d50 R09: 0000000000000000 R10: 000000000000000a R11: f000000000000000 R12: 0000000000000000 R13: ffff88820c7ed000 R14: 0000000000000001 R15: ffffc9000aacb980 FS: 00007f185b955700(0000) GS:ffff8881fdf00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f7f6ef43000 CR3: 000000020de38002 CR4: 00000000001706e0 Call Trace: xchk_ag_read_headers+0xda/0x100 [xfs] xchk_ag_init+0x15/0x40 [xfs] xchk_btree_check_block_owner+0x76/0x180 [xfs] xchk_btree_get_block+0xd0/0x140 [xfs] xchk_btree+0x32e/0x440 [xfs] xchk_bmap_btree+0xd4/0x140 [xfs] xchk_bmap+0x1eb/0x3c0 [xfs] xfs_scrub_metadata+0x227/0x4c0 [xfs] xfs_ioc_scrub_metadata+0x50/0xc0 [xfs] xfs_file_ioctl+0x90c/0xc40 [xfs] __x64_sys_ioctl+0x83/0xc0 do_syscall_64+0x3b/0xc0 The unusual handling of errors while initializing struct xchk_ag is the root cause here. Since the beginning of xfs_scrub, the goal of xchk_ag_read_headers has been to read all three AG header buffers and attach them both to the xchk_ag structure and the scrub transaction. Corruption errors on any of the three headers doesn't necessarily trigger an immediate return to userspace, because xfs_scrub can also tell us to /fix/ the problem. In other words, it's possible for the xchk_ag init functions to return an error code and a partially filled out structure so that scrub can use however much information it managed to pull. Before 5.15, it was sufficient to cancel (or commit) the scrub transaction on the way out of the scrub code to release the buffers. Ccommit 48c6615c added a reference to the perag structure to struct xchk_ag. Since perag structures are not attached to transactions like buffers are, this adds the requirement that the perag ref be released explicitly. The scrub teardown function xchk_teardown was amended to do this for the xchk_ag embedded in struct xfs_scrub. Unfortunately, I forgot that certain parts of the scrub code probe multiple AGs and therefore handle the initialization and cleanup on their own. Specifically, the bmbt scrubber will initialize it long enough to cross-reference AG metadata for btree blocks and for the extent mappings in the bmbt. If one of the AG headers is corrupt, the init function returns with a live perag structure reference and some of the AG header buffers. If an error occurs, the cross referencing will be noted as XCORRUPTion and skipped, but the main scrub process will move on to the next record. It is now necessary to release the perag reference before we try to analyze something from a different AG, or else we'll trip over the assertion noted above. Fixes: 48c6615c ("xfs: grab active perag ref when reading AG headers") Reported-by: Nkernel test robot <oliver.sang@intel.com> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChandan Babu R <chandanrlinux@gmail.com> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.14-rc4 commit 7e1826e0 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7e1826e05ba62e85fe110939a181c8f0d58c14cf ------------------------------------------------- There are several GETFSMAP backend functions for XFS to cover the three devices and various feature support. Each of these functions are passed pointers to the low and high keys for the dataset that userspace requested, and a pointer to scratchpad variables that are used to control the iteration and fill out records. The scratchpad data can be changed arbitrarily, but the keys are supposed to remain unchanged (and under the control of the outermost loop in xfs_getfsmap). Unfortunately, the data and rt backends modify the keys that are passed in from the main control loop, which causes subsequent calls to return incorrect query results. Specifically, each of those two functions set the block number in the high key to the size of their respective device. Since fsmap results are sorted in device number order, if the lower numbered device is smaller than the higher numbered device, the first function will set the high key to the small size, and the key remains unchanged as it is passed into the function for the higher numbered device. The second function will then fail to return all of the results for the dataset that userspace is asking for because the keyspace is incorrectly constrained. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NChandan Babu R <chandanrlinux@gmail.com> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.14-rc4 commit 9ab72f22 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9ab72f22277487d2a3ffc8dd20fc918e186bb2b3 ------------------------------------------------- The fsmap implementation for realtime devices uses the gap between info->next_daddr and a free rtextent reported by xfs_rtalloc_query_range to feed userspace fsmap records with an "unknown" owner. We use this trick to report to userspace when the last rtextent in the filesystem is in use by synthesizing a null rmap record starting at the next block after the query range. Unfortunately, there's a minor accounting bug in the way that we construct the null rmap record. Originally, ahigh.ar_startext contains the last rtextent for which the user wants records. It's entirely possible that number is beyond the end of the rt volume, so the location synthesized rmap record /must/ be constrained to the minimum of the high key and the number of extents in the rt volume. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NChandan Babu R <chandanrlinux@gmail.com> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.14-rc4 commit c02f6529 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c02f6529864a4f5f91d216d324bac4ba75415d19 ------------------------------------------------- In commit 8ad560d2, we changed xfs_rtalloc_query_range to constrain the range of bits in the realtime bitmap file that would actually be searched. In commit a3a374bf, we changed the range again (incorrectly), leading to the fix in commit d88850bd, which finally corrected the range check code. Unfortunately, the author never noticed that the function modifies its input parameters, which is a totaly no-no since none of the other range query functions change their input parameters. So, fix this function yet again to stash the upper end of the query range (i.e. the high key) in a local variable and hope this is the last time I have to fix my own function. While we're at it, mark the key inputs const so nobody makes this mistake again. :( Fixes: 8ad560d2 ("xfs: strengthen rtalloc query range checks") Not-fixed-by: a3a374bf ("xfs: fix off-by-one error in xfs_rtalloc_query_range") Not-fixed-by: d88850bd ("xfs: fix high key handling in the rt allocator's query_range function") Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NChandan Babu R <chandanrlinux@gmail.com> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.14-rc4 commit d634525d category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d634525db63e9e946c3229fb93c8d9b763afbaf3 ------------------------------------------------- There is no reason for this wrapper existing anymore. All the places that use KM_NOFS allocation are within transaction contexts and hence covered by memalloc_nofs_save/restore contexts. Hence we don't need any special handling of vmalloc for large IOs anymore and so special casing this code isn't necessary. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.14-rc4 commit 98fe2c3c category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=98fe2c3cef21b784e2efd1d9d891430d95b4f073 ------------------------------------------------- Since commit 59bb4798 ("mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)"), the core slab code now guarantees slab alignment in all situations sufficient for IO purposes (i.e. minimum of 512 byte alignment of >= 512 byte sized heap allocations) we no longer need the workaround in the XFS code to provide this guarantee. Replace the use of kmem_alloc_io() with kmem_alloc() or kmem_alloc_large() appropriately, and remove the kmem_alloc_io() interface altogether. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.14-rc4 commit de2860f4 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=de2860f4636256836450c6543be744a50118fc66 ------------------------------------------------- During log recovery of an XFS filesystem with 64kB directory buffers, rebuilding a buffer split across two log records results in a memory allocation warning from krealloc like this: xfs filesystem being mounted at /mnt/scratch supports timestamps until 2038 (0x7fffffff) XFS (dm-0): Unmounting Filesystem XFS (dm-0): Mounting V5 Filesystem XFS (dm-0): Starting recovery (logdev: internal) ------------[ cut here ]------------ WARNING: CPU: 5 PID: 3435170 at mm/page_alloc.c:3539 get_page_from_freelist+0xdee/0xe40 ..... RIP: 0010:get_page_from_freelist+0xdee/0xe40 Call Trace: ? complete+0x3f/0x50 __alloc_pages+0x16f/0x300 alloc_pages+0x87/0x110 kmalloc_order+0x2c/0x90 kmalloc_order_trace+0x1d/0x90 __kmalloc_track_caller+0x215/0x270 ? xlog_recover_add_to_cont_trans+0x63/0x1f0 krealloc+0x54/0xb0 xlog_recover_add_to_cont_trans+0x63/0x1f0 xlog_recovery_process_trans+0xc1/0xd0 xlog_recover_process_ophdr+0x86/0x130 xlog_recover_process_data+0x9f/0x160 xlog_recover_process+0xa2/0x120 xlog_do_recovery_pass+0x40b/0x7d0 ? __irq_work_queue_local+0x4f/0x60 ? irq_work_queue+0x3a/0x50 xlog_do_log_recovery+0x70/0x150 xlog_do_recover+0x38/0x1d0 xlog_recover+0xd8/0x170 xfs_log_mount+0x181/0x300 xfs_mountfs+0x4a1/0x9b0 xfs_fs_fill_super+0x3c0/0x7b0 get_tree_bdev+0x171/0x270 ? suffix_kstrtoint.constprop.0+0xf0/0xf0 xfs_fs_get_tree+0x15/0x20 vfs_get_tree+0x24/0xc0 path_mount+0x2f5/0xaf0 __x64_sys_mount+0x108/0x140 do_syscall_64+0x3a/0x70 entry_SYSCALL_64_after_hwframe+0x44/0xae Essentially, we are taking a multi-order allocation from kmem_alloc() (which has an open coded no fail, no warn loop) and then reallocating it out to 64kB using krealloc(__GFP_NOFAIL) and that is then triggering the above warning. This is a regression caused by converting this code from an open coded no fail/no warn reallocation loop to using __GFP_NOFAIL. What we actually need here is kvrealloc(), so that if contiguous page allocation fails we fall back to vmalloc() and we don't get nasty warnings happening in XFS. Fixes: 771915c4 ("xfs: remove kmem_realloc()") Signed-off-by: NDave Chinner <dchinner@redhat.com> Acked-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.14-rc4 commit 0ed17f01 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0ed17f01c85401abf1706d9825796fc6661c0889 ------------------------------------------------- The inode inactivation and CIL tracking percpu structures are per-xfs_mount structures. That means when we get a CPU dead notification, we need to then iterate all the per-cpu structure instances to process them. Rather than keeping linked lists of per-cpu structures in each subsystem, add a list of all xfs_mounts that the generic xfs_cpu_dead() function will iterate and call into each subsystem appropriately. This allows us to handle both per-mount and global XFS percpu state from xfs_cpu_dead(), and avoids the need to link subsystem structures that can be easily found from the xfs_mount into their own global lists. Signed-off-by: NDave Chinner <dchinner@redhat.com> [djwong: expand some comments about mount list setup ordering rules] Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.14-rc4 commit f1653c2e category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f1653c2e2831e9db6cd68473bbec581782df03a5 ------------------------------------------------- We need to move to per-cpu state for both deferred inode inactivation and CIL tracking, but to do that we need to handle CPUs being removed from the system by the hot-plug code. Introduce generic XFS infrastructure to handle CPU hotplug events that is set up at module init time and torn down at module exit time. Initially, we only need CPU dead notifications, so we only set up a callback for these notifications. The infrastructure can be updated in future for other CPU hotplug state machine notifications easily if ever needed. Signed-off-by: NDave Chinner <dchinner@redhat.com> [djwong: rearrange some macros, fix function prototypes] Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.14-rc1 commit 81a448d7 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=81a448d7b0668ae39c08e6f34a54cc7eafb844f1 ------------------------------------------------- While reviewing the buffer item recovery code, the thought occurred to me: in V5 filesystems we use log sequence number (LSN) tracking to avoid replaying older metadata updates against newer log items. However, we use the magic number of the ondisk buffer to find the LSN of the ondisk metadata, which means that if an attacker can control the layout of the realtime device precisely enough that the start of an rt bitmap block matches the magic and UUID of some other kind of block, they can control the purported LSN of that spoofed block and thereby break log replay. Since realtime bitmap and summary blocks don't have headers at all, we have no way to tell if a block really should be replayed. The best we can do is replay unconditionally and hope for the best. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NCarlos Maiolino <cmaiolino@redhat.com> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.14-rc1 commit d8f4c2d0 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d8f4c2d0398fa1d92cacf854daf80d21a46bfefc ------------------------------------------------- From the department of "WTAF? How did we miss that!?"... When we are recovering a buffer, the first thing we do is check the buffer magic number and extract the LSN from the buffer. If the LSN is older than the current LSN, we replay the modification to it. If the metadata on disk is newer than the transaction in the log, we skip it. This is a fundamental v5 filesystem metadata recovery behaviour. generic/482 failed with an attribute writeback failure during log recovery. The write verifier caught the corruption before it got written to disk, and the attr buffer dump looked like: XFS (dm-3): Metadata corruption detected at xfs_attr3_leaf_verify+0x275/0x2e0, xfs_attr3_leaf block 0x19be8 XFS (dm-3): Unmount and run xfs_repair XFS (dm-3): First 128 bytes of corrupted metadata buffer: 00000000: 00 00 00 00 00 00 00 00 3b ee 00 00 4d 2a 01 e1 ........;...M*.. 00000010: 00 00 00 00 00 01 9b e8 00 00 00 01 00 00 05 38 ...............8 ^^^^^^^^^^^^^^^^^^^^^^^ 00000020: df 39 5e 51 58 ac 44 b6 8d c5 e7 10 44 09 bc 17 .9^QX.D.....D... 00000030: 00 00 00 00 00 02 00 83 00 03 00 cc 0f 24 01 00 .............$.. 00000040: 00 68 0e bc 0f c8 00 10 00 00 00 00 00 00 00 00 .h.............. 00000050: 00 00 3c 31 0f 24 01 00 00 00 3c 32 0f 88 01 00 ..<1.$....<2.... 00000060: 00 00 3c 33 0f d8 01 00 00 00 00 00 00 00 00 00 ..<3............ 00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ ..... The highlighted bytes are the LSN that was replayed into the buffer: 0x100000538. This is cycle 1, block 0x538. Prior to replay, that block on disk looks like this: $ sudo xfs_db -c "fsb 0x417d" -c "type attr3" -c p /dev/mapper/thin-vol hdr.info.hdr.forw = 0 hdr.info.hdr.back = 0 hdr.info.hdr.magic = 0x3bee hdr.info.crc = 0xb5af0bc6 (correct) hdr.info.bno = 105448 hdr.info.lsn = 0x100000900 ^^^^^^^^^^^ hdr.info.uuid = df395e51-58ac-44b6-8dc5-e7104409bc17 hdr.info.owner = 131203 hdr.count = 2 hdr.usedbytes = 120 hdr.firstused = 3796 hdr.holes = 1 hdr.freemap[0-2] = [base,size] Note the LSN stamped into the buffer on disk: 1/0x900. The version on disk is much newer than the log transaction that was being replayed. That's a bug, and should -never- happen. So I immediately went to look at xlog_recover_get_buf_lsn() to check that we handled the LSN correctly. I was wondering if there was a similar "two commits with the same start LSN skips the second replay" problem with buffers. I didn't get that far, because I found a much more basic, rudimentary bug: xlog_recover_get_buf_lsn() doesn't recognise buffers with XFS_ATTR3_LEAF_MAGIC set in them!!! IOWs, attr3 leaf buffers fall through the magic number checks unrecognised, so trigger the "recover immediately" behaviour instead of undergoing an LSN check. IOWs, we incorrectly replay ATTR3 leaf buffers and that causes silent on disk corruption of inode attribute forks and potentially other things.... Git history shows this is *another* zero day bug, this time introduced in commit 50d5c8d8 ("xfs: check LSN ordering for v5 superblocks during recovery") which failed to handle the attr3 leaf buffers in recovery. And we've failed to handle them ever since... Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.14-rc1 commit 32baa63d category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=32baa63d82ee3f5ab3bd51bae6bf7d1c15aed8c7 ------------------------------------------------- When we log an inode, we format the "log inode" core and set an LSN in that inode core. We do that via xfs_inode_item_format_core(), which calls: xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); to format the log inode. It writes the LSN from the inode item into the log inode, and if recovery decides the inode item needs to be replayed, it recovers the log inode LSN field and writes it into the on disk inode LSN field. Now this might seem like a reasonable thing to do, but it is wrong on multiple levels. Firstly, if the item is not yet in the AIL, item->li_lsn is zero. i.e. the first time the inode it is logged and formatted, the LSN we write into the log inode will be zero. If we only log it once, recovery will run and can write this zero LSN into the inode. This means that the next time the inode is logged and log recovery runs, it will *always* replay changes to the inode regardless of whether the inode is newer on disk than the version in the log and that violates the entire purpose of recording the LSN in the inode at writeback time (i.e. to stop it going backwards in time on disk during recovery). Secondly, if we commit the CIL to the journal so the inode item moves to the AIL, and then relog the inode, the LSN that gets stamped into the log inode will be the LSN of the inode's current location in the AIL, not it's age on disk. And it's not the LSN that will be associated with the current change. That means when log recovery replays this inode item, the LSN that ends up on disk is the LSN for the previous changes in the log, not the current changes being replayed. IOWs, after recovery the LSN on disk is not in sync with the LSN of the modifications that were replayed into the inode. This, again, violates the recovery ordering semantics that on-disk writeback LSNs provide. Hence the inode LSN in the log dinode is -always- invalid. Thirdly, recovery actually has the LSN of the log transaction it is replaying right at hand - it uses it to determine if it should replay the inode by comparing it to the on-disk inode's LSN. But it doesn't use that LSN to stamp the LSN into the inode which will be written back when the transaction is fully replayed. It uses the one in the log dinode, which we know is always going to be incorrect. Looking back at the change history, the inode logging was broken by commit 93f958f9 ("xfs: cull unnecessary icdinode fields") way back in 2016 by a stupid idiot who thought he knew how this code worked. i.e. me. That commit replaced an in memory di_lsn field that was updated only at inode writeback time from the inode item.li_lsn value - and hence always contained the same LSN that appeared in the on-disk inode - with a read of the inode item LSN at inode format time. CLearly these are not the same thing. Before 93f958f9, the log recovery behaviour was irrelevant, because the LSN in the log inode always matched the on-disk LSN at the time the inode was logged, hence recovery of the transaction would never make the on-disk LSN in the inode go backwards or get out of sync. A symptom of the problem is this, caught from a failure of generic/482. Before log recovery, the inode has been allocated but never used: xfs_db> inode 393388 xfs_db> p core.magic = 0x494e core.mode = 0 .... v3.crc = 0x99126961 (correct) v3.change_count = 0 v3.lsn = 0 v3.flags2 = 0 v3.cowextsize = 0 v3.crtime.sec = Thu Jan 1 10:00:00 1970 v3.crtime.nsec = 0 After log recovery: xfs_db> p core.magic = 0x494e core.mode = 020444 .... v3.crc = 0x23e68f23 (correct) v3.change_count = 2 v3.lsn = 0 v3.flags2 = 0 v3.cowextsize = 0 v3.crtime.sec = Thu Jul 22 17:03:03 2021 v3.crtime.nsec = 751000000 ... You can see that the LSN of the on-disk inode is 0, even though it clearly has been written to disk. I point out this inode, because the generic/482 failure occurred because several adjacent inodes in this specific inode cluster were not replayed correctly and still appeared to be zero on disk when all the other metadata (inobt, finobt, directories, etc) indicated they should be allocated and written back. The fix for this is two-fold. The first is that we need to either revert the LSN changes in 93f958f9 or stop logging the inode LSN altogether. If we do the former, log recovery does not need to change but we add 8 bytes of memory per inode to store what is largely a write-only inode field. If we do the latter, log recovery needs to stamp the on-disk inode in the same manner that inode writeback does. I prefer the latter, because we shouldn't really be trying to log and replay changes to the on disk LSN as the on-disk value is the canonical source of the on-disk version of the inode. It also matches the way we recover buffer items - we create a buf_log_item that carries the current recovery transaction LSN that gets stamped into the buffer by the write verifier when it gets written back when the transaction is fully recovered. However, this might break log recovery on older kernels even more, so I'm going to simply ignore the logged value in recovery and stamp the on-disk inode with the LSN of the transaction being recovered that will trigger writeback on transaction recovery completion. This will ensure that the on-disk inode LSN always reflects the LSN of the last change that was written to disk, regardless of whether it comes from log recovery or runtime writeback. Fixes: 93f958f9 ("xfs: cull unnecessary icdinode fields") Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.14-rc1 commit 8191d822 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8191d8222c514c69a8e1ac46bd9812b9e0aab7d0 ------------------------------------------------- xfs: avoid unnecessary waits in xfs_log_force_lsn() Before waiting on a iclog in xfs_log_force_lsn(), we don't check to see if the iclog has already been completed and the contents on stable storage. We check for completed iclogs in xfs_log_force(), so we should do the same thing for xfs_log_force_lsn(). This fixed some random up-to-30s pauses seen in unmounting filesystems in some tests. A log force ends up waiting on completed iclog, and that doesn't then get flushed (and hence the log force get completed) until the background log worker issues a log force that flushes the iclog in question. Then the unmount unblocks and continues. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.14-rc1 commit 2bf1ec0f category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2bf1ec0ff067ff8f692d261b29c713f3583f7e2a ------------------------------------------------- After fixing the tail_lsn vs cache flush race, generic/482 continued to fail in a similar way where cache flushes were missing before iclog FUA writes. Tracing of iclog state changes during the fsstress workload portion of the test (via xlog_iclog* events) indicated that iclog writes were coming from two sources - CIL pushes and log forces (due to fsync/O_SYNC operations). All of the cases where a recovery problem was triggered indicated that the log force was the source of the iclog write that was not preceeded by a cache flush. This was an oversight in the modifications made in commit eef983ff ("xfs: journal IO cache flush reductions"). Log forces for fsync imply a data device cache flush has been issued if an iclog was flushed to disk and is indicated to the caller via the log_flushed parameter so they can elide the device cache flush if the journal issued one. The change in eef983ff results in iclogs only issuing a cache flush if XLOG_ICL_NEED_FLUSH is set on the iclog, but this was not added to the iclogs that the log force code flushes to disk. Hence log forces are no longer guaranteeing that a cache flush is issued, hence opening up a potential on-disk ordering failure. Log forces should also set XLOG_ICL_NEED_FUA as well to ensure that the actual iclogs it forces to the journal are also on stable storage before it returns to the caller. This patch introduces the xlog_force_iclog() helper function to encapsulate the process of taking a reference to an iclog, switching its state if WANT_SYNC and flushing it to stable storage correctly. Both xfs_log_force() and xfs_log_force_lsn() are converted to use it, as is xlog_unmount_write() which has an elaborate method of doing exactly the same "write this iclog to stable storage" operation. Further, if the log force code needs to wait on a iclog in the WANT_SYNC state, it needs to ensure that iclog also results in a cache flush being issued. This covers the case where the iclog contains the commit record of the CIL flush that the log force triggered, but it hasn't been written yet because there is still an active reference to the iclog. Note: this whole cache flush whack-a-mole patch is a result of log forces still being iclog state centric rather than being CIL sequence centric. Most of this nasty code will go away in future when log forces are converted to wait on CIL sequence push completion rather than iclog completion. With the CIL push algorithm guaranteeing that the CIL checkpoint is fully on stable storage when it completes, we no longer need to iterate iclogs and push them to ensure a CIL sequence push has completed and so all this nasty iclog iteration and flushing code will go away. Fixes: eef983ff ("xfs: journal IO cache flush reductions") Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.14-rc1 commit 45eddb41 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=45eddb414047c366744cc60dd6cef7c7e58c6ab9 ------------------------------------------------- We force iclogs in several places - we need them all to have the same cache flush semantics, so start by factoring out the iclog force into a common helper. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.14-rc1 commit 0dc8f7f1 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0dc8f7f139f07aaca1afcec0ade5718c4ebba91e ------------------------------------------------- There is a race between the new CIL async data device metadata IO completion cache flush and the log tail in the iclog the flush covers being updated. This can be seen by repeating generic/482 in a loop and eventually log recovery fails with a failures such as this: XFS (dm-3): Starting recovery (logdev: internal) XFS (dm-3): bad inode magic/vsn daddr 228352 #0 (magic=0) XFS (dm-3): Metadata corruption detected at xfs_inode_buf_verify+0x180/0x190, xfs_inode block 0x37c00 xfs_inode_buf_verify XFS (dm-3): Unmount and run xfs_repair XFS (dm-3): First 128 bytes of corrupted metadata buffer: 00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ XFS (dm-3): metadata I/O error in "xlog_recover_items_pass2+0x55/0xc0" at daddr 0x37c00 len 32 error 117 Analysis of the logwrite replay shows that there were no writes to the data device between the FUA @ write 124 and the FUA at write @ 125, but log recovery @ 125 failed. The difference was the one log write @ 125 moved the tail of the log forwards from (1,8) to (1,32) and so the inode create intent in (1,8) was not replayed and so the inode cluster was zero on disk when replay of the first inode item in (1,32) was attempted. What this meant was that the journal write that occurred at @ 125 did not ensure that metadata completed before the iclog was written was correctly on stable storage. The tail of the log moved forward, so IO must have been completed between the two iclog writes. This means that there is a race condition between the unconditional async cache flush in the CIL push work and the tail LSN that is written to the iclog. This happens like so: CIL push work AIL push work ------------- ------------- Add to committing list start async data dev cache flush ..... <flush completes> <all writes to old tail lsn are stable> xlog_write .... push inode create buffer <start IO> ..... xlog_write(commit record) .... <IO completes> log tail moves xlog_assign_tail_lsn() start_lsn == commit_lsn <no iclog preflush!> xlog_state_release_iclog __xlog_state_release_iclog() <writes *new* tail_lsn into iclog> xlog_sync() .... submit_bio() <tail in log moves forward without flushing written metadata> Essentially, this can only occur if the commit iclog is issued without a cache flush. If the iclog bio is submitted with REQ_PREFLUSH, then it will guarantee that all the completed IO is one stable storage before the iclog bio with the new tail LSN in it is written to the log. IOWs, the tail lsn that is written to the iclog needs to be sampled *before* we issue the cache flush that guarantees all IO up to that LSN has been completed. To fix this without giving up the performance advantage of the flush/FUA optimisations (e.g. g/482 runtime halves with 5.14-rc1 compared to 5.13), we need to ensure that we always issue a cache flush if the tail LSN changes between the initial async flush and the commit record being written. THis requires sampling the tail_lsn before we start the flush, and then passing the sampled tail LSN to xlog_state_release_iclog() so it can determine if the the tail LSN has changed while writing the checkpoint. If the tail LSN has changed, then it needs to set the NEED_FLUSH flag on the iclog and we'll issue another cache flush before writing the iclog. Fixes: eef983ff ("xfs: journal IO cache flush reductions") Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.14-rc1 commit 9d392064 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9d3920644081edf311878b56e0c1e1477991a195 ------------------------------------------------- Fold __xlog_state_release_iclog into its only caller to prepare make an upcoming fix easier. Signed-off-by: NDave Chinner <dchinner@redhat.com> [hch: split from a larger patch] Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.14-rc1 commit b5d721ea category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b5d721eaae47eaa4b4c2754699dadacc4cbca2e0 ------------------------------------------------- The recent journal flush/FUA changes replaced the flushing of the data device on every iclog write with an up-front async data device cache flush. Unfortunately, the assumption of which this was based on has been proven incorrect by the flush vs log tail update ordering issue. As the fix for that issue uses the XLOG_ICL_NEED_FLUSH flag to indicate that data device needs a cache flush, we now need to (once again) ensure that an iclog write to external logs that need a cache flush to be issued actually issue a cache flush to the data device as well as the log device. Fixes: eef983ff ("xfs: journal IO cache flush reductions") Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.14-rc1 commit b1e27239 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b1e27239b9169f07edba0ca0e52805645a1768ba ------------------------------------------------- We incorrectly flush the log device instead of the data device when trying to ensure metadata is correctly on disk before writing the unmount record. Fixes: eef983ff ("xfs: journal IO cache flush reductions") Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.14-rc1 commit 0925fecc category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0925fecc557471b6f6a488c3590a275151210572 ------------------------------------------------- During a realtime grow operation, we run a single transaction for each rt bitmap block added to the filesystem. This means that each step has to be careful to increase sb_rblocks appropriately. Fix the integer overflow error in this calculation that can happen when the extent size is very large. Found by running growfs to add a rt volume to a filesystem formatted with a 1g rt extent size. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.14-rc1 commit 5838d035 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5838d0356bb3c320867c393f12b169c01a870bda ------------------------------------------------- While running xfs/168, I noticed a second source of post-shrink corruption errors causing shutdowns. Let's say that directory B has a low inode number and is a child of directory A, which has a high number. If B is empty but open, and unlinked from A, B's dotdot link continues to point to A. If A is then unlinked and the filesystem shrunk so that A is no longer a valid inode, a subsequent AIL push of B will trip the inode verifiers because the dotdot entry points outside of the filesystem. To avoid this problem, reset B's dotdot entry to the root directory when unlinking directories, since the root directory cannot be removed. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NGao Xiang <hsiangkao@linux.alibaba.com> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.13-rc4 commit 1effb72a category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1effb72a8179a02c2dd8a268454ccf50bf68aa50 ------------------------------------------------- The iclogbuf ring attached to the struct xlog is circular, hence the first and last iclogs in the ring can only be determined by comparing them against the log->l_iclog pointer. In xfs_cil_push_work(), we want to wait on previous iclogs that were issued so that we can flush them to stable storage with the commit record write, and it simply waits on the previous iclog in the ring. This, however, leads to CIL push hangs in generic/019 like so: task:kworker/u33:0 state:D stack:12680 pid: 7 ppid: 2 flags:0x00004000 Workqueue: xfs-cil/pmem1 xlog_cil_push_work Call Trace: __schedule+0x30b/0x9f0 schedule+0x68/0xe0 xlog_wait_on_iclog+0x121/0x190 ? wake_up_q+0xa0/0xa0 xlog_cil_push_work+0x994/0xa10 ? _raw_spin_lock+0x15/0x20 ? xfs_swap_extents+0x920/0x920 process_one_work+0x1ab/0x390 worker_thread+0x56/0x3d0 ? rescuer_thread+0x3c0/0x3c0 kthread+0x14d/0x170 ? __kthread_bind_mask+0x70/0x70 ret_from_fork+0x1f/0x30 With other threads blocking in either xlog_state_get_iclog_space() waiting for iclog space or xlog_grant_head_wait() waiting for log reservation space. The problem here is that the previous iclog on the ring might actually be a future iclog. That is, if log->l_iclog points at commit_iclog, commit_iclog is the first (oldest) iclog in the ring and there are no previous iclogs pending as they have all completed their IO and been activated again. IOWs, commit_iclog->ic_prev points to an iclog that will be written in the future, not one that has been written in the past. Hence, in this case, waiting on the ->ic_prev iclog is incorrect behaviour, and depending on the state of the future iclog, we can end up with a circular ABA wait cycle and we hang. The fix is made more complex by the fact that many iclogs states cannot be used to determine if the iclog is a past or future iclog. Hence we have to determine past iclogs by checking the LSN of the iclog rather than their state. A past ACTIVE iclog will have a LSN of zero, while a future ACTIVE iclog will have a LSN greater than the current iclog. We don't wait on either of these cases. Similarly, a future iclog that hasn't completed IO will have an LSN greater than the current iclog and so we don't wait on them. A past iclog that is still undergoing IO completion will have a LSN less than the current iclog and those are the only iclogs that we need to wait on. Hence we can use the iclog LSN to determine what iclogs we need to wait on here. Fixes: 5fd9256ce156 ("xfs: separate CIL commit record IO") Reported-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.13-rc4 commit a1bb8505 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a1bb8505e92101df94080f81298e3640f5fbe037 ------------------------------------------------- The iclog callback chain has it's own lock. That was added way back in 2008 by myself to alleviate severe lock contention on the icloglock in commit 114d23aa ("[XFS] Per iclog callback chain lock"). This was long before delayed logging took the icloglock out of the hot transaction commit path and removed all contention on it. Hence the separate ic_callback_lock doesn't serve any scalability purpose anymore, and hasn't for close on a decade. Further, we only attach callbacks to iclogs in one place where we are already taking the icloglock soon after attaching the callbacks. We also have to drop the icloglock to run callbacks and grab it immediately afterwards again. So given that the icloglock is no longer hot, making it cover callbacks again doesn't really change the locking patterns very much at all. We also need to extend the icloglock to cover callback addition to fix a zero-day UAF in the CIL push code. This occurs when shutdown races with xlog_cil_push_work() and the shutdown runs the callbacks before the push releases the iclog. This results in the CIL context structure attached to the iclog being freed by the callback before the CIL push has finished referencing it, leading to UAF bugs. Hence, to avoid this UAF, we need the callback attachment to be atomic with post processing of the commit iclog and references to the structures being attached to the iclog. This requires holding the icloglock as that's the only way to serialise iclog state against a shutdown in progress. The result is we need to be using the icloglock to protect the callback list addition and removal and serialise them with shutdown. That makes the ic_callback_lock redundant and so it can be removed. Fixes: 71e330b5 ("xfs: Introduce delayed logging core code") Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.13-rc4 commit b6903358 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b6903358c230c517b29ecdb6123276d96cc0beab ------------------------------------------------- If we are processing callbacks on an iclog, nothing can be concurrently adding callbacks to the loop. We only add callbacks to the iclog when they are in ACTIVE or WANT_SYNC state, and we explicitly do not add callbacks if the iclog is already in IOERROR state. The only way to have a dequeue racing with an enqueue is to be processing a shutdown without a direct reference to an iclog in ACTIVE or WANT_SYNC state. As the enqueue avoids this race condition, we only ever need a single dequeue operation in xlog_state_do_iclog_callbacks(). Hence we can remove the loop. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.13-rc4 commit 6be00102 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6be001021f0b307c8c1544e8b3ac87de20d711de ------------------------------------------------- It's completely unnecessary because callbacks are added to iclogs without holding the icloglock, hence no amount of ordering between the icloglock and ic_callback_lock will order the removal of callbacks from the iclog. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.13-rc4 commit 4e6b8270 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4e6b8270c820c8c57a73f869799a0af2b56eff3e ------------------------------------------------- If any part of log intent item recovery fails, we should shut down the log immediately to stop the log from writing a clean unmount record to disk, because the metadata is not consistent. The inability to cancel a dirty transaction catches most of these cases, but there are a few things that have slipped through the cracks, such as ENOSPC from a transaction allocation, or runtime errors that result in cancellation of a non-dirty transaction. This solves some weird behaviors reported by customers where a system goes down, the first mount fails, the second succeeds, but then the fs goes down later because of inconsistent metadata. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.13-rc4 commit 81ed9475 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=81ed94751b1513fcc5978dcc06eb1f5b4e55a785 ------------------------------------------------- During regular operation, the xfs_inactive operations create transactions with zero block reservation because in general we're freeing space, not asking for more. The per-AG space reservations created at mount time enable us to handle expansions of the refcount btree without needing to reserve blocks to the transaction. Unfortunately, log recovery doesn't create the per-AG space reservations when intent items are being recovered. This isn't an issue for intent item recovery itself because they explicitly request blocks, but any inode inactivation that can happen during log recovery uses the same xfs_inactive paths as regular runtime. If a refcount btree expansion happens, the transaction will fail due to blk_res_used > blk_res, and we shut down the filesystem unnecessarily. Fix this problem by making per-AG reservations temporarily so that we can handle the inactivations, and releasing them at the end. This brings the recovery environment closer to the runtime environment. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.13-rc4 commit 5f9b4b0d category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5f9b4b0de8dc2fb8eb655463b438001c111570fe ------------------------------------------------- In doing an investigation into AIL push stalls, I was looking at the log force code to see if an async CIL push could be done instead. This lead me to xfs_log_force_lsn() and looking at how it works. xfs_log_force_lsn() is only called from inode synchronisation contexts such as fsync(), and it takes the ip->i_itemp->ili_last_lsn value as the LSN to sync the log to. This gets passed to xlog_cil_force_lsn() via xfs_log_force_lsn() to flush the CIL to the journal, and then used by xfs_log_force_lsn() to flush the iclogs to the journal. The problem is that ip->i_itemp->ili_last_lsn does not store a log sequence number. What it stores is passed to it from the ->iop_committing method, which is called by xfs_log_commit_cil(). The value this passes to the iop_committing method is the CIL context sequence number that the item was committed to. As it turns out, xlog_cil_force_lsn() converts the sequence to an actual commit LSN for the related context and returns that to xfs_log_force_lsn(). xfs_log_force_lsn() overwrites it's "lsn" variable that contained a sequence with an actual LSN and then uses that to sync the iclogs. This caused me some confusion for a while, even though I originally wrote all this code a decade ago. ->iop_committing is only used by a couple of log item types, and only inode items use the sequence number it is passed. Let's clean up the API, CIL structures and inode log item to call it a sequence number, and make it clear that the high level code is using CIL sequence numbers and not on-disk LSNs for integrity synchronisation purposes. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NAllison Henderson <allison.henderson@oracle.com> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.13-rc4 commit 19f4e7cc category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=19f4e7cc819771812a7f527d7897c2deffbf7a00 ------------------------------------------------- A hang with tasks stuck on the CIL hard throttle was reported and largely diagnosed by Donald Buczek, who discovered that it was a result of the CIL context space usage decrementing in committed transactions once the hard throttle limit had been hit and processes were already blocked. This resulted in the CIL push not waking up those waiters because the CIL context was no longer over the hard throttle limit. The surprising aspect of this was the CIL space usage going backwards regularly enough to trigger this situation. Assumptions had been made in design that the relogging process would only increase the size of the objects in the CIL, and so that space would only increase. This change and commit message fixes the issue and documents the result of an audit of the triggers that can cause the CIL space to go backwards, how large the backwards steps tend to be, the frequency in which they occur, and what the impact on the CIL accounting code is. Even though the CIL ctx->space_used can go backwards, it will only do so if the log item is already logged to the CIL and contains a space reservation for it's entire logged state. This is tracked by the shadow buffer state on the log item. If the item is not previously logged in the CIL it has no shadow buffer nor log vector, and hence the entire size of the logged item copied to the log vector is accounted to the CIL space usage. i.e. it will always go up in this case. If the item has a log vector (i.e. already in the CIL) and the size decreases, then the existing log vector will be overwritten and the space usage will go down. This is the only condition where the space usage reduces, and it can only occur when an item is already tracked in the CIL. Hence we are safe from CIL space usage underruns as a result of log items decreasing in size when they are relogged. Typically this reduction in CIL usage occurs from metadata blocks being free, such as when a btree block merge occurs or a directory enter/xattr entry is removed and the da-tree is reduced in size. This generally results in a reduction in size of around a single block in the CIL, but also tends to increase the number of log vectors because the parent and sibling nodes in the tree needs to be updated when a btree block is removed. If a multi-level merge occurs, then we see reduction in size of 2+ blocks, but again the log vector count goes up. The other vector is inode fork size changes, which only log the current size of the fork and ignore the previously logged size when the fork is relogged. Hence if we are removing items from the inode fork (dir/xattr removal in shortform, extent record removal in extent form, etc) the relogged size of the inode for can decrease. No other log items can decrease in size either because they are a fixed size (e.g. dquots) or they cannot be relogged (e.g. relogging an intent actually creates a new intent log item and doesn't relog the old item at all.) Hence the only two vectors for CIL context size reduction are relogging inode forks and marking buffers active in the CIL as stale. Long story short: the majority of the code does the right thing and handles the reduction in log item size correctly, and only the CIL hard throttle implementation is problematic and needs fixing. This patch makes that fix, as well as adds comments in the log item code that result in items shrinking in size when they are relogged as a clear reminder that this can and does happen frequently. The throttle fix is based upon the change Donald proposed, though it goes further to ensure that once the throttle is activated, it captures all tasks until the CIL push issues a wakeup, regardless of whether the CIL space used has gone back under the throttle threshold. This ensures that we prevent tasks reducing the CIL slightly under the throttle threshold and then making more changes that push it well over the throttle limit. This is acheived by checking if the throttle wait queue is already active as a condition of throttling. Hence once we start throttling, we continue to apply the throttle until the CIL context push wakes everything on the wait queue. We can use waitqueue_active() for the waitqueue manipulations and checks as they are all done under the ctx->xc_push_lock. Hence the waitqueue has external serialisation and we can safely peek inside the wait queue without holding the internal waitqueue locks. Many thanks to Donald for his diagnostic and analysis work to isolate the cause of this hang. Reported-and-tested-by: NDonald Buczek <buczek@molgen.mpg.de> Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChandan Babu R <chandanrlinux@gmail.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NAllison Henderson <allison.henderson@oracle.com> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.13-rc4 commit eef983ff category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=eef983ffeae7a1cdde8c3338155ae2dd74b8621b ------------------------------------------------- Currently every journal IO is issued as REQ_PREFLUSH | REQ_FUA to guarantee the ordering requirements the journal has w.r.t. metadata writeback. THe two ordering constraints are: 1. we cannot overwrite metadata in the journal until we guarantee that the dirty metadata has been written back in place and is stable. 2. we cannot write back dirty metadata until it has been written to the journal and guaranteed to be stable (and hence recoverable) in the journal. The ordering guarantees of #1 are provided by REQ_PREFLUSH. This causes the journal IO to issue a cache flush and wait for it to complete before issuing the write IO to the journal. Hence all completed metadata IO is guaranteed to be stable before the journal overwrites the old metadata. The ordering guarantees of #2 are provided by the REQ_FUA, which ensures the journal writes do not complete until they are on stable storage. Hence by the time the last journal IO in a checkpoint completes, we know that the entire checkpoint is on stable storage and we can unpin the dirty metadata and allow it to be written back. This is the mechanism by which ordering was first implemented in XFS way back in 2002 by commit 95d97c36e5155075ba2eb22b17562cfcc53fcf96 ("Add support for drive write cache flushing") in the xfs-archive tree. A lot has changed since then, most notably we now use delayed logging to checkpoint the filesystem to the journal rather than write each individual transaction to the journal. Cache flushes on journal IO are necessary when individual transactions are wholly contained within a single iclog. However, CIL checkpoints are single transactions that typically span hundreds to thousands of individual journal writes, and so the requirements for device cache flushing have changed. That is, the ordering rules I state above apply to ordering of atomic transactions recorded in the journal, not to the journal IO itself. Hence we need to ensure metadata is stable before we start writing a new transaction to the journal (guarantee #1), and we need to ensure the entire transaction is stable in the journal before we start metadata writeback (guarantee #2). Hence we only need a REQ_PREFLUSH on the journal IO that starts a new journal transaction to provide #1, and it is not on any other journal IO done within the context of that journal transaction. The CIL checkpoint already issues a cache flush before it starts writing to the log, so we no longer need the iclog IO to issue a REQ_REFLUSH for us. Hence if XLOG_START_TRANS is passed to xlog_write(), we no longer need to mark the first iclog in the log write with REQ_PREFLUSH for this case. As an added bonus, this ordering mechanism works for both internal and external logs, meaning we can remove the explicit data device cache flushes from the iclog write code when using external logs. Given the new ordering semantics of commit records for the CIL, we need iclogs containing commit records to issue a REQ_PREFLUSH. We also require unmount records to do this. Hence for both XLOG_COMMIT_TRANS and XLOG_UNMOUNT_TRANS xlog_write() calls we need to mark the first iclog being written with REQ_PREFLUSH. For both commit records and unmount records, we also want them immediately on stable storage, so we want to also mark the iclogs that contain these records to be marked REQ_FUA. That means if a record is split across multiple iclogs, they are all marked REQ_FUA and not just the last one so that when the transaction is completed all the parts of the record are on stable storage. And for external logs, unmount records need a pre-write data device cache flush similar to the CIL checkpoint cache pre-flush as the internal iclog write code does not do this implicitly anymore. As an optimisation, when the commit record lands in the same iclog as the journal transaction starts, we don't need to wait for anything and can simply use REQ_FUA to provide guarantee #2. This means that for fsync() heavy workloads, the cache flush behaviour is completely unchanged and there is no degradation in performance as a result of optimise the multi-IO transaction case. The most notable sign that there is less IO latency on my test machine (nvme SSDs) is that the "noiclogs" rate has dropped substantially. This metric indicates that the CIL push is blocking in xlog_get_iclog_space() waiting for iclog IO completion to occur. With 8 iclogs of 256kB, the rate is appoximately 1 noiclog event to every 4 iclog writes. IOWs, every 4th call to xlog_get_iclog_space() is blocking waiting for log IO. With the changes in this patch, this drops to 1 noiclog event for every 100 iclog writes. Hence it is clear that log IO is completing much faster than it was previously, but it is also clear that for large iclog sizes, this isn't the performance limiting factor on this hardware. With smaller iclogs (32kB), however, there is a substantial difference. With the cache flush modifications, the journal is now running at over 4000 write IOPS, and the journal throughput is largely identical to the 256kB iclogs and the noiclog event rate stays low at about 1:50 iclog writes. The existing code tops out at about 2500 IOPS as the number of cache flushes dominate performance and latency. The noiclog event rate is about 1:4, and the performance variance is quite large as the journal throughput can fall to less than half the peak sustained rate when the cache flush rate prevents metadata writeback from keeping up and the log runs out of space and throttles reservations. As a result: logbsize fsmark create rate rm -rf before 32kb 152851+/-5.3e+04 5m28s patched 32kb 221533+/-1.1e+04 5m24s before 256kb 220239+/-6.2e+03 4m58s patched 256kb 228286+/-9.2e+03 5m06s The rm -rf times are included because I ran them, but the differences are largely noise. This workload is largely metadata read IO latency bound and the changes to the journal cache flushing doesn't really make any noticable difference to behaviour apart from a reduction in noiclog events from background CIL pushing. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChandan Babu R <chandanrlinux@gmail.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NAllison Henderson <allison.henderson@oracle.com> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.13-rc4 commit 3468bb1c category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3468bb1ca6e8840789e13c7b9d8b0c556b4fbe79 ------------------------------------------------- The CIL push is the only call to xlog_write that sets this variable to true. The other callers don't need a start rec, and they tell xlog_write what to do by passing the type of ophdr they need written in the flags field. The need_start_rec parameter essentially tells xlog_write to to write an extra ophdr with a XLOG_START_TRANS type, so get rid of the variable to do this and pass XLOG_START_TRANS as the flag value into xlog_write() from the CIL push. $ size fs/xfs/xfs_log.o* text data bss dec hex filename 27595 560 8 28163 6e03 fs/xfs/xfs_log.o.orig 27454 560 8 28022 6d76 fs/xfs/xfs_log.o.patched Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChandan Babu R <chandanrlinux@gmail.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NAllison Henderson <allison.henderson@oracle.com> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-