- 04 8月, 2021 4 次提交
-
-
由 DENG Qingfang 提交于
This reverts commit 7e777021 ("mt7530 mt7530_fdb_write only set ivl bit vid larger than 1"). Before this series, the default value of all ports' PVID is 1, which is copied into the FDB entry, even if the ports are VLAN unaware. So `bridge fdb show` will show entries like `dev swp0 vlan 1 self` even on a VLAN-unaware bridge. The blamed commit does not solve that issue completely, instead it may cause a new issue that FDB is inaccessible in a VLAN-aware bridge with PVID 1. This series sets PVID to 0 on VLAN-unaware ports, so `bridge fdb show` will no longer print `vlan 1` on VLAN-unaware bridges, and that special case in fdb_write is not required anymore. Set FDB entries' filter ID to 1 to match the VLAN table. Signed-off-by: NDENG Qingfang <dqfext@gmail.com> Reviewed-by: NVladimir Oltean <olteanv@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 DENG Qingfang 提交于
As filter ID 1 is the only one used for bridges, set STP state on it. Signed-off-by: NDENG Qingfang <dqfext@gmail.com> Reviewed-by: NVladimir Oltean <olteanv@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 DENG Qingfang 提交于
Consider the following bridge configuration, where bond0 is not offloaded: +-- br0 --+ / / | \ / / | \ / | | bond0 / | | / \ swp0 swp1 swp2 swp3 swp4 . . . . . . A B C Ideally, when the switch receives a packet from swp3 or swp4, it should forward the packet to the CPU, according to the port matrix and unknown unicast flood settings. But packet loss will happen if the destination address is at one of the offloaded ports (swp0~2). For example, when client C sends a packet to A, the FDB lookup will indicate that it should be forwarded to swp0, but the port matrix of swp3 and swp4 is configured to only allow the CPU to be its destination, so it is dropped. However, this issue does not happen if the bridge is VLAN-aware. That is because VLAN-aware bridges use independent VLAN learning, i.e. use VID for FDB lookup, on offloaded ports. As swp3 and swp4 are not offloaded, shared VLAN learning with default filter ID of 0 is used instead. So the lookup for A with filter ID 0 never hits and the packet can be forwarded to the CPU. In the current code, only two combinations were used to toggle user ports' VLAN awareness: one is PCR.PORT_VLAN set to port matrix mode with PVC.VLAN_ATTR set to transparent port, the other is PCR.PORT_VLAN set to security mode with PVC.VLAN_ATTR set to user port. It turns out that only PVC.VLAN_ATTR contributes to VLAN awareness, and port matrix mode just skips the VLAN table lookup. The reference manual is somehow misleading when describing PORT_VLAN modes. It states that PORT_MEM (VLAN port member) is used for destination if the VLAN table lookup hits, but actually **PORT_MEM & PORT_MATRIX** (bitwise AND of VLAN port member and port matrix) is used instead, which means we can have two or more separate VLAN-aware bridges with the same PVID and traffic won't leak between them. Therefore, to solve this, enable independent VLAN learning with PVID 0 on VLAN-unaware bridges, by setting their PCR.PORT_VLAN to fallback mode, while leaving standalone ports in port matrix mode. The CPU port is always set to fallback mode to serve those bridges. During testing, it is found that FDB lookup with filter ID of 0 will also hit entries with VID 0 even with independent VLAN learning. To avoid that, install all VLANs with filter ID of 1. Signed-off-by: NDENG Qingfang <dqfext@gmail.com> Reviewed-by: NVladimir Oltean <olteanv@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 DENG Qingfang 提交于
Consider the following bridge configuration, where bond0 is not offloaded: +-- br0 --+ / / | \ / / | \ / | | bond0 / | | / \ swp0 swp1 swp2 swp3 swp4 . . . . . . A B C Address learning is enabled on offloaded ports (swp0~2) and the CPU port, so when client A sends a packet to C, the following will happen: 1. The switch learns that client A can be reached at swp0. 2. The switch probably already knows that client C can be reached at the CPU port, so it forwards the packet to the CPU. 3. The bridge core knows client C can be reached at bond0, so it forwards the packet back to the switch. 4. The switch learns that client A can be reached at the CPU port. 5. The switch forwards the packet to either swp3 or swp4, according to the packet's tag. That makes client A's MAC address flap between swp0 and the CPU port. If client B sends a packet to A, it is possible that the packet is forwarded to the CPU. With offload_fwd_mark = 1, the bridge core won't forward it back to the switch, resulting in packet loss. As we have the assisted_learning_on_cpu_port in DSA core now, enable that and disable hardware learning on the CPU port. Signed-off-by: NDENG Qingfang <dqfext@gmail.com> Reviewed-by: NVladimir Oltean <oltean@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 02 8月, 2021 1 次提交
-
-
由 Vladimir Oltean 提交于
It is desirable to reduce the surface of DSA_TAG_PROTO_NONE as much as we can, because we now have options for switches without hardware support for DSA tagging, and the occurrence in the mt7530 driver is in fact quite gratuitout and easy to remove. Since ds->ops->get_tag_protocol() is only called for CPU ports, the checks for a CPU port in mtk_get_tag_protocol() are redundant and can be removed. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Acked-by: NDENG Qingfang <dqfext@gmail.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 29 7月, 2021 3 次提交
-
-
由 Vladimir Oltean 提交于
Surprisingly, this configuration: ip link add br0 type bridge vlan_filtering 1 ip link set swp2 master br0 bridge vlan del dev swp2 vid 1 still has the sja1105 switch sending untagged packets to the CPU (and failing to decode them, since dsa_find_designated_bridge_port_by_vid searches by VID 1 and rightfully finds no bridge VLAN 1 on a port). Dumping the switch configuration, the VLANs are managed properly: - the pvid of swp2 is 1 in the MAC Configuration Table, but - only the CPU port is in the port membership of VLANID 1 in the VLAN Lookup Table When the ingress packets are tagged with VID 1, they are properly dropped. But when they are untagged, they are able to reach the CPU port. Also, when the pvid in the MAC Configuration Table is changed to e.g. 55 (an unused VLAN), the untagged packets are also dropped. So it looks like: - the switch bypasses ingress VLAN membership checks for untagged traffic - the reason why the untagged traffic is dropped when I make the pvid 55 is due to the lack of valid destination ports in VLAN 55, rather than an ingress membership violation - the ingress VLAN membership cheks are only done for VLAN-tagged traffic Interesting. It looks like there is an explicit bit to drop untagged traffic, so we should probably be using that to preserve user expectations. Note that only VLAN-aware ports should drop untagged packets due to no pvid - when VLAN-unaware, the software bridge doesn't do this even if there is no pvid on any bridge port and on the bridge itself. So the new sja1105_drop_untagged() function cannot simply be called with "false" from sja1105_bridge_vlan_add() and with "true" from sja1105_bridge_vlan_del. Instead, we need to also consider the VLAN awareness state. That means we need to hook the "drop untagged" setting in all the same places where the "commit pvid" logic is, and it needs to factor in all the state when flipping the "drop untagged" bit: is our current pvid in the VLAN Lookup Table, and is the current port in that VLAN's port membership list? VLAN-unaware ports will never drop untagged frames because these checks always succeed by construction, and the tag_8021q VLANs cannot be changed by the user. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
Now that we no longer have the ultra-central sja1105_build_vlan_table(), we need to be more careful about checking all corner cases manually. For example, when a port leaves a VLAN-aware bridge, it becomes standalone so its pvid should become a tag_8021q RX VLAN again. However, sja1105_commit_pvid() only gets called from sja1105_bridge_vlan_add() and from sja1105_vlan_filtering(), and no VLAN awareness change takes place (VLAN filtering is a global setting for sja1105, so the switch remains VLAN-aware overall). This means that we need to put another sja1105_commit_pvid() call in sja1105_bridge_member(). Fixes: 6dfd23d3 ("net: dsa: sja1105: delete vlan delta save/restore logic") Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
Currently there are issues when adding a bridge FDB entry as VLAN-aware and deleting it as VLAN-unaware, or vice versa. However this is an unneeded complication, since the bridge always installs its default FDB entries in VLAN 0 to match on VLAN-unaware ports, and in the default_pvid (VLAN 1) to match on VLAN-aware ports. So instead of trying to outsmart the bridge, just install all entries it gives us, and they will start matching packets when the vlan_filtering mode changes. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 27 7月, 2021 6 次提交
-
-
由 Vladimir Oltean 提交于
The main desire for having this feature in sja1105 is to support network stack termination for traffic coming from a VLAN-aware bridge. For sja1105, offloading the bridge data plane means sending packets as-is, with the proper VLAN tag, to the chip. The chip will look up its FDB and forward them to the correct destination port. But we support bridge data plane offload even for VLAN-unaware bridges, and the implementation there is different. In fact, VLAN-unaware bridging is governed by tag_8021q, so it makes sense to have the .bridge_fwd_offload_add() implementation fully within tag_8021q. The key difference is that we only support 1 VLAN-aware bridge, but we support multiple VLAN-unaware bridges. So we need to make sure that the forwarding domain is not crossed by packets injected from the stack. For this, we introduce the concept of a tag_8021q TX VLAN for bridge forwarding offload. As opposed to the regular TX VLANs which contain only 2 ports (the user port and the CPU port), a bridge data plane TX VLAN is "multicast" (or "imprecise"): it contains all the ports that are part of a certain bridge, and the hardware will select where the packet goes within this "imprecise" forwarding domain. Each VLAN-unaware bridge has its own "imprecise" TX VLAN, so we make use of the unique "bridge_num" provided by DSA for the data plane offload. We use the same 3 bits from the tag_8021q VLAN ID format to encode this bridge number. Note that these 3 bit positions have been used before for sub-VLANs in best-effort VLAN filtering mode. The difference is that for best-effort, the sub-VLANs were only valid on RX (and it was documented that the sub-VLAN field needed to be transmitted as zero). Whereas for the bridge data plane offload, these 3 bits are only valid on TX. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
This is already common knowledge by now, but the sja1105 does not have hardware support for DSA tagging for data plane packets, and tag_8021q sets up a unique pvid per port, transmitted as VLAN-tagged towards the CPU, for the source port to be decoded nonetheless. When the port is part of a VLAN-aware bridge, the pvid committed to hardware is taken from the bridge and not from tag_8021q, so we need to work with that the best we can. Configure the switches to send all packets to the CPU as VLAN-tagged (even ones that were originally untagged on the wire) and make use of dsa_untag_bridge_pvid() to get rid of it before we send those packets up the network stack. With the classified VLAN used by hardware known to the tagger, we first peek at the VID in an attempt to figure out if the packet was received from a VLAN-unaware port (standalone or under a VLAN-unaware bridge), case in which we can continue to call dsa_8021q_rcv(). If that is not the case, the packet probably came from a VLAN-aware bridge. So we call the DSA helper that finds for us a "designated bridge port" - one that is a member of the VLAN ID from the packet, and is in the proper STP state - basically these are all checks performed by br_handle_frame() in the software RX data path. The bridge will accept the packet as valid even if the source port was maybe wrong. So it will maybe learn the MAC SA of the packet on the wrong port, and its software FDB will be out of sync with the hardware FDB. So replies towards this same MAC DA will not work, because the bridge will send towards a different netdev. This is where the bridge data plane offload ("imprecise TX") added by the next patch comes in handy. The software FDB is wrong, true, but the hardware FDB isn't, and by offloading the bridge forwarding plane we have a chance to right a wrong, and have the hardware look up the FDB for us for the reply packet. So it all cancels out. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
With tag_sja1105.c's only ability being to perform an imprecise RX procedure and identify whether a packet comes from a VLAN-aware bridge or not, we have no way to determine whether a packet with VLAN ID 5 comes from, say, br0 or br1. Actually we could, but it would mean that we need to restrict all VLANs from br0 to be different from all VLANs from br1, and this includes the default_pvid, which makes a setup with 2 VLAN-aware bridges highly imprectical. The fact of the matter is that this isn't even that big of a practical limitation, since even with a single VLAN-aware bridge we can pretty much enforce forwarding isolation based on the VLAN port membership. So in the end, tell the user that they need to model their setup using a single VLAN-aware bridge. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
Now that best-effort VLAN filtering is gone and we are left with the imprecise RX and imprecise TX based in VLAN-aware mode, where the tagger just guesses the source port based on plausibility of the VLAN ID, 8021q uppers installed on top of a standalone port, while other ports of that switch are under a VLAN-aware bridge don't quite "just work". In fact it could be possible to restrict the VLAN IDs used by the 8021q uppers to not be shared with VLAN IDs used by that VLAN-aware bridge, but then the tagger needs to be patched to search for 8021q uppers too, not just for the "designated bridge port" which will be introduced in a later patch. I haven't given a possible implementation full thought, it seems maybe possible but not worth the effort right now. The only certain thing is that currently the tagger won't be able to figure out the source port for these packets because they will come with the VLAN ID of the 8021q upper and are no longer retagged to a tag_8021q sub-VLAN like the best effort VLAN filtering code used to do. So just deny these for the moment. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
With the best_effort_vlan_filtering mode now gone, the driver does not have 3 operating modes anymore (VLAN-unaware, VLAN-aware and best effort), but only 2. The idea is that we will gain support for network stack I/O through a VLAN-aware bridge, using the data plane offload framework (imprecise RX, imprecise TX). So the VLAN-aware use case will be more functional. But standalone ports that are part of the same switch when some other ports are under a VLAN-aware bridge should work too. Termination on those should work through the tag_8021q RX VLAN and TX VLAN. This was not possible using the old logic, because: - in VLAN-unaware mode, only the tag_8021q VLANs were committed to hw - in VLAN-aware mode, only the bridge VLANs were committed to hw - in best-effort VLAN mode, both the tag_8021q and bridge VLANs were committed to hw The strategy for the new VLAN-aware mode is to allow the bridge and the tag_8021q VLANs to coexist in the VLAN table at the same time. [ yes, we need to make sure that the bridge cannot install a tag_8021q VLAN, but ] This means that the save/restore logic introduced by commit ec5ae610 ("net: dsa: sja1105: save/restore VLANs using a delta commit method") does not serve a purpose any longer. We can delete it and restore the old code that simply adds a VLAN to the VLAN table and calls it a day. Note that we keep the sja1105_commit_pvid() function from those days, but adapt it slightly. Ports that are under a VLAN-aware bridge use the bridge's pvid, ports that are standalone or under a VLAN-unaware bridge use the tag_8021q pvid, for local termination or VLAN-unaware forwarding. Now, when the vlan_filtering property is toggled for the bridge, the pvid of the ports beneath it is the only thing that's changing, we no longer delete some VLANs and restore others. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Colin Ian King 提交于
The pointer table is being re-assigned with a value that is never read. The assignment is redundant and can be removed. Addresses-Coverity: ("Unused value") Signed-off-by: NColin Ian King <colin.king@canonical.com> Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 24 7月, 2021 1 次提交
-
-
由 Vladimir Oltean 提交于
The blamed commit modified the driver to accept the addition of VID 0 without doing anything, but deleting that VID still fails: [ 32.080780] mv88e6085 d0032004.mdio-mii:10 lan8: failed to kill vid 0081/0 Modify mv88e6xxx_port_vlan_leave() to do the same thing as the addition. Fixes: b8b79c41 ("net: dsa: mv88e6xxx: Fix adding vlan 0") Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 23 7月, 2021 1 次提交
-
-
由 Vladimir Oltean 提交于
The mv88e6xxx switches have the ability to receive FORWARD (data plane) frames from the CPU port and route them according to the FDB. We can use this to offload the forwarding process of packets sent by the software bridge. Because DSA supports bridge domain isolation between user ports, just sending FORWARD frames is not enough, as they might leak the intended broadcast domain of the bridge on behalf of which the packets are sent. It should be noted that FORWARD frames are also (and typically) used to forward data plane packets on DSA links in cross-chip topologies. The FORWARD frame header contains the source port and switch ID, and switches receiving this frame header forward the packet according to their cross-chip port-based VLAN table (PVT). To address the bridging domain isolation in the context of offloading the forwarding on TX, the idea is that we can reuse the parts of the PVT that don't have any physical switch mapped to them, one entry for each software bridge. The switches will therefore think that behind their upstream port lie many switches, all in fact backed up by software bridges through tag_dsa.c, which constructs FORWARD packets with the right switch ID corresponding to each bridge. The mapping we use is absolutely trivial: DSA gives us a unique bridge number, and we add the number of the physical switches in the DSA switch tree to that, to obtain a unique virtual bridge device number to use in the PVT. Co-developed-by: NTobias Waldekranz <tobias@waldekranz.com> Signed-off-by: NTobias Waldekranz <tobias@waldekranz.com> Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 22 7月, 2021 1 次提交
-
-
由 Vladimir Oltean 提交于
This simple series of commands: ip link add br0 type bridge vlan_filtering 1 ip link set swp0 master br0 fails on sja1105 with the following error: [ 33.439103] sja1105 spi0.1: vlan-lookup-table needs to have at least the default untagged VLAN [ 33.447710] sja1105 spi0.1: Invalid config, cannot upload Warning: sja1105: Failed to change VLAN Ethertype. For context, sja1105 has 3 operating modes: - SJA1105_VLAN_UNAWARE: the dsa_8021q_vlans are committed to hardware - SJA1105_VLAN_FILTERING_FULL: the bridge_vlans are committed to hardware - SJA1105_VLAN_FILTERING_BEST_EFFORT: both the dsa_8021q_vlans and the bridge_vlans are committed to hardware Swapping out a VLAN list and another in happens in sja1105_build_vlan_table(), which performs a delta update procedure. That function is called from a few places, notably from sja1105_vlan_filtering() which is called from the SWITCHDEV_ATTR_ID_BRIDGE_VLAN_FILTERING handler. The above set of 2 commands fails when run on a kernel pre-commit 8841f6e6 ("net: dsa: sja1105: make devlink property best_effort_vlan_filtering true by default"). So the priv->vlan_state transition that takes place is between VLAN-unaware and full VLAN filtering. So the dsa_8021q_vlans are swapped out and the bridge_vlans are swapped in. So why does it fail? Well, the bridge driver, through nbp_vlan_init(), first sets up the SWITCHDEV_ATTR_ID_BRIDGE_VLAN_FILTERING attribute, and only then proceeds to call nbp_vlan_add for the default_pvid. So when we swap out the dsa_8021q_vlans and swap in the bridge_vlans in the SWITCHDEV_ATTR_ID_BRIDGE_VLAN_FILTERING handler, there are no bridge VLANs (yet). So we have wiped the VLAN table clean, and the low-level static config checker complains of an invalid configuration. We _will_ add the bridge VLANs using the dynamic config interface, albeit later, when nbp_vlan_add() calls us. So it is natural that it fails. So why did it ever work? Surprisingly, it looks like I only tested this configuration with 2 things set up in a particular way: - a network manager that brings all ports up - a kernel with CONFIG_VLAN_8021Q=y It is widely known that commit ad1afb00 ("vlan_dev: VLAN 0 should be treated as "no vlan tag" (802.1p packet)") installs VID 0 to every net device that comes up. DSA treats these VLANs as bridge VLANs, and therefore, in my testing, the list of bridge_vlans was never empty. However, if CONFIG_VLAN_8021Q is not enabled, or the port is not up when it joins a VLAN-aware bridge, the bridge_vlans list will be temporarily empty, and the sja1105_static_config_reload() call from sja1105_vlan_filtering() will fail. To fix this, the simplest thing is to keep VID 4095, the one used for CPU-injected control packets since commit ed040abc ("net: dsa: sja1105: use 4095 as the private VLAN for untagged traffic"), in the list of bridge VLANs too, not just the list of tag_8021q VLANs. This ensures that the list of bridge VLANs will never be empty. Fixes: ec5ae610 ("net: dsa: sja1105: save/restore VLANs using a delta commit method") Reported-by: NRadu Pirea (NXP OSS) <radu-nicolae.pirea@oss.nxp.com> Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 7月, 2021 7 次提交
-
-
由 Eric Woudstra 提交于
Fixes my earlier patch which broke vlan unaware bridges. The IVL bit now only gets set for vid's larger than 1. Fixes: 11d8d98c ("mt7530 fix mt7530_fdb_write vid missing ivl bit") Signed-off-by: NEric Woudstra <ericwouds@gmail.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
The big problem which mandates cross-chip notifiers for tag_8021q is this: | sw0p0 sw0p1 sw0p2 sw0p3 sw0p4 [ user ] [ user ] [ user ] [ dsa ] [ cpu ] | +---------+ | sw1p0 sw1p1 sw1p2 sw1p3 sw1p4 [ user ] [ user ] [ user ] [ dsa ] [ dsa ] | +---------+ | sw2p0 sw2p1 sw2p2 sw2p3 sw2p4 [ user ] [ user ] [ user ] [ dsa ] [ dsa ] When the user runs: ip link add br0 type bridge ip link set sw0p0 master br0 ip link set sw2p0 master br0 It doesn't work. This is because dsa_8021q_crosschip_bridge_join() assumes that "ds" and "other_ds" are at most 1 hop away from each other, so it is sufficient to add the RX VLAN of {ds, port} into {other_ds, other_port} and vice versa and presto, the cross-chip link works. When there is another switch in the middle, such as in this case switch 1 with its DSA links sw1p3 and sw1p4, somebody needs to tell it about these VLANs too. Which is exactly why the problem is quadratic: when a port joins a bridge, for each port in the tree that's already in that same bridge we notify a tag_8021q VLAN addition of that port's RX VLAN to the entire tree. It is a very complicated web of VLANs. It must be mentioned that currently we install tag_8021q VLANs on too many ports (DSA links - to be precise, on all of them). For example, when sw2p0 joins br0, and assuming sw1p0 was part of br0 too, we add the RX VLAN of sw2p0 on the DSA links of switch 0 too, even though there isn't any port of switch 0 that is a member of br0 (at least yet). In theory we could notify only the switches which sit in between the port joining the bridge and the port reacting to that bridge_join event. But in practice that is impossible, because of the way 'link' properties are described in the device tree. The DSA bindings require DT writers to list out not only the real/physical DSA links, but in fact the entire routing table, like for example switch 0 above will have: sw0p3: port@3 { link = <&sw1p4 &sw2p4>; }; This was done because: /* TODO: ideally DSA ports would have a single dp->link_dp member, * and no dst->rtable nor this struct dsa_link would be needed, * but this would require some more complex tree walking, * so keep it stupid at the moment and list them all. */ but it is a perfect example of a situation where too much information is actively detrimential, because we are now in the position where we cannot distinguish a real DSA link from one that is put there to avoid the 'complex tree walking'. And because DT is ABI, there is not much we can change. And because we do not know which DSA links are real and which ones aren't, we can't really know if DSA switch A is in the data path between switches B and C, in the general case. So this is why tag_8021q RX VLANs are added on all DSA links, and probably why it will never change. On the other hand, at least the number of additions/deletions is well balanced, and this means that once we implement reference counting at the cross-chip notifier level a la fdb/mdb, there is absolutely zero need for a struct dsa_8021q_crosschip_link, it's all self-managing. In fact, with the tag_8021q notifiers emitted from the bridge join notifiers, it becomes so generic that sja1105 does not need to do anything anymore, we can just delete its implementation of the .crosschip_bridge_{join,leave} methods. Among other things we can simply delete is the home-grown implementation of sja1105_notify_crosschip_switches(). The reason why that is wrong is because it is not quadratic - it only covers remote switches to which we have a cross-chip bridging link and that does not cover in-between switches. This deletion is part of the same patch because sja1105 used to poke deep inside the guts of the tag_8021q context in order to do that. Because the cross-chip links went away, so needs the sja1105 code. Last but not least, dsa_8021q_setup_port() is simplified (and also renamed). Because our TAG_8021Q_VLAN_ADD notifier is designed to react on the CPU port too, the four dsa_8021q_vid_apply() calls: - 1 for RX VLAN on user port - 1 for the user port's RX VLAN on the CPU port - 1 for TX VLAN on user port - 1 for the user port's TX VLAN on the CPU port now get squashed into only 2 notifier calls via dsa_port_tag_8021q_vlan_add. And because the notifiers to add and to delete a tag_8021q VLAN are distinct, now we finally break up the port setup and teardown into separate functions instead of relying on a "bool enabled" flag which tells us what to do. Arguably it should have been this way from the get go. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
Right now, setting up tag_8021q is a 2-step operation for a driver, first the context structure needs to be created, then the VLANs need to be installed on the ports. A similar thing is true for teardown. Merge the 2 steps into the register/unregister methods, to be as transparent as possible for the driver as to what tag_8021q does behind the scenes. This also gets rid of the funny "bool setup == true means setup, == false means teardown" API that tag_8021q used to expose. Note that dsa_tag_8021q_register() must be called at least in the .setup() driver method and never earlier (like in the driver probe function). This is because the DSA switch tree is not initialized at probe time, and the cross-chip notifiers will not work. For symmetry with .setup(), the unregister method should be put in .teardown(). Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
Make tag_8021q a more central element of DSA and move the 2 driver specific operations outside of struct dsa_8021q_context (which is supposed to hold dynamic data and not really constant function pointers). Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
The basic problem description is as follows: Be there 3 switches in a daisy chain topology: | sw0p0 sw0p1 sw0p2 sw0p3 sw0p4 [ user ] [ user ] [ user ] [ dsa ] [ cpu ] | +---------+ | sw1p0 sw1p1 sw1p2 sw1p3 sw1p4 [ user ] [ user ] [ user ] [ dsa ] [ dsa ] | +---------+ | sw2p0 sw2p1 sw2p2 sw2p3 sw2p4 [ user ] [ user ] [ user ] [ user ] [ dsa ] The CPU will not be able to ping through the user ports of the bottom-most switch (like for example sw2p0), simply because tag_8021q was not coded up for this scenario - it has always assumed DSA switch trees with a single switch. To add support for the topology above, we must admit that the RX VLAN of sw2p0 must be added on some ports of switches 0 and 1 as well. This is in fact a textbook example of thing that can use the cross-chip notifier framework that DSA has set up in switch.c. There is only one problem: core DSA (switch.c) is not able right now to make the connection between a struct dsa_switch *ds and a struct dsa_8021q_context *ctx. Right now, it is drivers who call into tag_8021q.c and always provide a struct dsa_8021q_context *ctx pointer, and tag_8021q.c calls them back with the .tag_8021q_vlan_{add,del} methods. But with cross-chip notifiers, it is possible for tag_8021q to call drivers without drivers having ever asked for anything. A good example is right above: when sw2p0 wants to set itself up for tag_8021q, the .tag_8021q_vlan_add method needs to be called for switches 1 and 0, so that they transport sw2p0's VLANs towards the CPU without dropping them. So instead of letting drivers manage the tag_8021q context, add a tag_8021q_ctx pointer inside of struct dsa_switch, which will be populated when dsa_tag_8021q_register() returns success. The patch is fairly long-winded because we are partly reverting commit 5899ee36 ("net: dsa: tag_8021q: add a context structure") which made the driver-facing tag_8021q API use "ctx" instead of "ds". Now that we can access "ctx" directly from "ds", this is no longer needed. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
In preparation of moving tag_8021q to core DSA, move all initialization and teardown related to tag_8021q which is currently done by drivers in 2 functions called "register" and "unregister". These will gather more functionality in future patches, which will better justify the chosen naming scheme. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
Simply put, the best-effort VLAN filtering mode relied on VLAN retagging from a bridge VLAN towards a tag_8021q sub-VLAN in order to be able to decode the source port in the tagger, but the VLAN retagging implementation inside the sja1105 chips is not the best and we were relying on marginal operating conditions. The most notable limitation of the best-effort VLAN filtering mode is its incapacity to treat this case properly: ip link add br0 type bridge vlan_filtering 1 ip link set swp2 master br0 ip link set swp4 master br0 bridge vlan del dev swp4 vid 1 bridge vlan add dev swp4 vid 1 pvid When sending an untagged packet through swp2, the expectation is for it to be forwarded to swp4 as egress-tagged (so it will contain VLAN ID 1 on egress). But the switch will send it as egress-untagged. There was an attempt to fix this here: https://patchwork.kernel.org/project/netdevbpf/patch/20210407201452.1703261-2-olteanv@gmail.com/ but it failed miserably because it broke PTP RX timestamping, in a way that cannot be corrected due to hardware issues related to VLAN retagging. So with either PTP broken or pushing VLAN headers on egress for untagged packets being broken, the sad reality is that the best-effort VLAN filtering code is broken. Delete it. Note that this means there will be a temporary loss of functionality in this driver until it is replaced with something better (network stack RX/TX capability for "mode 2" as described in Documentation/networking/dsa/sja1105.rst, the "port under VLAN-aware bridge" case). We simply cannot keep this code until that driver rework is done, it is super bloated and tangled with tag_8021q. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 17 7月, 2021 1 次提交
-
-
由 Eric Woudstra 提交于
According to reference guides mt7530 (mt7620) and mt7531: NOTE: When IVL is reset, MAC[47:0] and FID[2:0] will be used to read/write the address table. When IVL is set, MAC[47:0] and CVID[11:0] will be used to read/write the address table. Since the function only fills in CVID and no FID, we need to set the IVL bit. The existing code does not set it. This is a fix for the issue I dropped here earlier: http://lists.infradead.org/pipermail/linux-mediatek/2021-June/025697.html With this patch, it is now possible to delete the 'self' fdb entry manually. However, wifi roaming still has the same issue, the entry does not get deleted automatically. Wifi roaming also needs a fix somewhere else to function correctly in combination with vlan. Signed-off-by: NEric Woudstra <ericwouds@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 7月, 2021 1 次提交
-
-
由 Geert Uytterhoeven 提交于
Making global2 support mandatory removed the Kconfig symbol NET_DSA_MV88E6XXX_GLOBAL2. This symbol also served as an intermediate symbol to make NET_DSA_MV88E6XXX_PTP depend on NET_DSA_MV88E6XXX. With the symbol removed, the user is always asked about PTP support for Marvell 88E6xxx switches, even if the latter support is not enabled. Fix this by reinstating the dependency. Fixes: 63368a74 ("net: dsa: mv88e6xxx: Make global2 support mandatory") Signed-off-by: NGeert Uytterhoeven <geert+renesas@glider.be> Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Reviewed-by: NVladimir Oltean <olteanv@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 14 7月, 2021 1 次提交
-
-
由 Vladimir Oltean 提交于
In May 2019 when commit 640f763f ("net: dsa: sja1105: Add support for Spanning Tree Protocol") was introduced, the comment that "STP does not get called for the CPU port" was true. This changed after commit 0394a63a ("net: dsa: enable and disable all ports") in August 2019 and went largely unnoticed, because the sja1105_bridge_stp_state_set() method did nothing different compared to the static setup done by sja1105_init_mac_settings(). With the ability to turn address learning off introduced by the blamed commit, there is a new priv->learn_ena port mask in the driver. When sja1105_bridge_stp_state_set() gets called and we are in BR_STATE_LEARNING or later, address learning is enabled or not depending on priv->learn_ena & BIT(port). So what happens is that priv->learn_ena is not being set from anywhere for the CPU port, and the static configuration done by sja1105_init_mac_settings() is being overwritten. To solve this, acknowledge that the static configuration of STP state is no longer necessary because the STP state is being set by the DSA core now, but what is necessary is to set priv->learn_ena for the CPU port. Fixes: 4d942354 ("net: dsa: sja1105: offload bridge port flags to device") Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 12 7月, 2021 1 次提交
-
-
由 kernel test robot 提交于
For_each_available_child_of_node should have of_node_put() before return around line 423. Generated by: scripts/coccinelle/iterators/for_each_child.cocci CC: Alexander Lobakin <alobakin@pm.me> Reported-by: Nkernel test robot <lkp@intel.com> Signed-off-by: Nkernel test robot <lkp@intel.com> Signed-off-by: NJulia Lawall <julia.lawall@inria.fr> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 02 7月, 2021 6 次提交
-
-
由 Marek Behún 提交于
Commit bf3504ce ("net: dsa: mv88e6xxx: Add 6390 family PCS registers to ethtool -d") added support for dumping SerDes PCS registers via ethtool -d for Peridot. The same implementation is also valid for Topaz, but was not enabled at the time. Signed-off-by: NMarek Behún <kabel@kernel.org> Fixes: bf3504ce ("net: dsa: mv88e6xxx: Add 6390 family PCS registers to ethtool -d") Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Marek Behún 提交于
Commit 0df95287 ("mv88e6xxx: Add serdes Rx statistics") added support for RX statistics on SerDes ports for Peridot. This same implementation is also valid for Topaz, but was not enabled at the time. We need to use the generic .serdes_get_lane() method instead of the Peridot specific one in the stats methods so that on Topaz the proper one is used. Signed-off-by: NMarek Behún <kabel@kernel.org> Fixes: 0df95287 ("mv88e6xxx: Add serdes Rx statistics") Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Marek Behún 提交于
Commit 23e8b470 ("net: dsa: mv88e6xxx: Add devlink param for ATU hash algorithm.") introduced ATU hash algorithm access via devlink, but did not enable it for Topaz. Enable this feature also for Topaz. Signed-off-by: NMarek Behún <kabel@kernel.org> Fixes: 23e8b470 ("net: dsa: mv88e6xxx: Add devlink param for ATU hash algorithm.") Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Marek Behún 提交于
Commit 9e5baf9b ("net: dsa: mv88e6xxx: add RMU disable op") introduced .rmu_disable() method with implementation for several models, but forgot to add Topaz, which can use the Peridot implementation. Use the Peridot implementation of .rmu_disable() on Topaz. Signed-off-by: NMarek Behún <kabel@kernel.org> Fixes: 9e5baf9b ("net: dsa: mv88e6xxx: add RMU disable op") Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Marek Behún 提交于
Commit 40cff8fc ("net: dsa: mv88e6xxx: Fix stats histogram mode") introduced wrong .stats_set_histogram() method for Topaz family. The Peridot method should be used instead. Signed-off-by: NMarek Behún <kabel@kernel.org> Fixes: 40cff8fc ("net: dsa: mv88e6xxx: Fix stats histogram mode") Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Marek Behún 提交于
Commit f3a2cd32 ("net: dsa: mv88e6xxx: introduce .port_set_policy") introduced .port_set_policy() method with implementation for several models, but forgot to add Topaz, which can use the 6352 implementation. Use the 6352 implementation of .port_set_policy() on Topaz. Signed-off-by: NMarek Behún <kabel@kernel.org> Fixes: f3a2cd32 ("net: dsa: mv88e6xxx: introduce .port_set_policy") Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 29 6月, 2021 1 次提交
-
-
由 Vladimir Oltean 提交于
The SJA1105P/Q/R/S and SJA1110 may have the same layout for the command to read/write/search for L2 Address Lookup entries, but as explained in the comments at the beginning of the sja1105_dynamic_config.c file, the command portion of the buffer is at the end, and we need to obtain a pointer to it by adding the length of the entry to the buffer. Alas, the length of an L2 Address Lookup entry is larger in SJA1110 than it is for SJA1105P/Q/R/S, so we need to create a common helper to access the command buffer, and this receives as argument the length of the entry buffer. Fixes: 3e77e59b ("net: dsa: sja1105: add support for the SJA1110 switch family") Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 25 6月, 2021 2 次提交
-
-
由 Vladimir Oltean 提交于
priv->cbs is an array of priv->info->num_cbs_shapers elements of type struct sja1105_cbs_entry which only get allocated if CONFIG_NET_SCH_CBS is enabled. However, sja1105_reload_cbs() is called from sja1105_static_config_reload() which in turn is called for any of the items in sja1105_reset_reasons, therefore during the normal runtime of the driver and not just from a code path which can be triggered by the tc-cbs offload. The sja1105_reload_cbs() function does not contain a check whether the priv->cbs array is NULL or not, it just assumes it isn't and proceeds to iterate through the credit-based shaper elements. This leads to a NULL pointer dereference. The solution is to return success if the priv->cbs array has not been allocated, since sja1105_reload_cbs() has nothing to do. Fixes: 4d752508 ("net: dsa: sja1105: offload the Credit-Based Shaper qdisc") Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
Mention support for the SJA1110 in menuconfig. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 23 6月, 2021 1 次提交
-
-
由 Florian Fainelli 提交于
In case CONFIG_VLAN_8021Q is not set, there will be no call down to the b53 driver to ensure that the default PVID VLAN entry will be configured with the appropriate untagged attribute towards the CPU port. We were implicitly relying on dsa_slave_vlan_rx_add_vid() to do that for us, instead make it explicit. Reported-by: NVladimir Oltean <olteanv@gmail.com> Signed-off-by: NFlorian Fainelli <f.fainelli@gmail.com> Reviewed-by: NVladimir Oltean <olteanv@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 22 6月, 2021 1 次提交
-
-
由 Eldar Gasanov 提交于
8021q module adds vlan 0 to all interfaces when it starts. When 8021q module is loaded it isn't possible to create bond with mv88e6xxx interfaces, bonding module dipslay error "Couldn't add bond vlan ids", because it tries to add vlan 0 to slave interfaces. There is unexpected behavior in the switch. When a PVID is assigned to a port the switch changes VID to PVID in ingress frames with VID 0 on the port. Expected that the switch doesn't assign PVID to tagged frames with VID 0. But there isn't a way to change this behavior in the switch. Fixes: 57e661aa ("net: dsa: mv88e6xxx: Link aggregation support") Signed-off-by: NEldar Gasanov <eldargasanov2@gmail.com> Reviewed-by: NVladimir Oltean <olteanv@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 19 6月, 2021 1 次提交
-
-
由 Vladimir Oltean 提交于
If reloading the static config fails for whatever reason, for example if sja1105_static_config_check_valid() fails, then we "goto out_unlock_ptp" but we print anyway that "Reset switch and programmed static config.", which is confusing because we didn't. We also do a bunch of other stuff like reprogram the XPCS and reload the credit-based shapers, as if a switch reset took place, which didn't. So just unlock the PTP lock and goto out, skipping all of that. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-