- 27 11月, 2018 1 次提交
-
-
由 Daniel Borkmann 提交于
Make fetching of the BPF call address from ppc64 JIT generic. ppc64 was using a slightly different variant rather than through the insns' imm field encoding as the target address would not fit into that space. Therefore, the target subprog number was encoded into the insns' offset and fetched through fp->aux->func[off]->bpf_func instead. Given there are other JITs with this issue and the mechanism of fetching the address is JIT-generic, move it into the core as a helper instead. On the JIT side, we get information on whether the retrieved address is a fixed one, that is, not changing through JIT passes, or a dynamic one. For the former, JITs can optimize their imm emission because this doesn't change jump offsets throughout JIT process. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Reviewed-by: NSandipan Das <sandipan@linux.ibm.com> Tested-by: NSandipan Das <sandipan@linux.ibm.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 11 11月, 2018 1 次提交
-
-
由 Andrey Ignatov 提交于
Currently BPF verifier allows narrow loads for a context field only with offset zero. E.g. if there is a __u32 field then only the following loads are permitted: * off=0, size=1 (narrow); * off=0, size=2 (narrow); * off=0, size=4 (full). On the other hand LLVM can generate a load with offset different than zero that make sense from program logic point of view, but verifier doesn't accept it. E.g. tools/testing/selftests/bpf/sendmsg4_prog.c has code: #define DST_IP4 0xC0A801FEU /* 192.168.1.254 */ ... if ((ctx->user_ip4 >> 24) == (bpf_htonl(DST_IP4) >> 24) && where ctx is struct bpf_sock_addr. Some versions of LLVM can produce the following byte code for it: 8: 71 12 07 00 00 00 00 00 r2 = *(u8 *)(r1 + 7) 9: 67 02 00 00 18 00 00 00 r2 <<= 24 10: 18 03 00 00 00 00 00 fe 00 00 00 00 00 00 00 00 r3 = 4261412864 ll 12: 5d 32 07 00 00 00 00 00 if r2 != r3 goto +7 <LBB0_6> where `*(u8 *)(r1 + 7)` means narrow load for ctx->user_ip4 with size=1 and offset=3 (7 - sizeof(ctx->user_family) = 3). This load is currently rejected by verifier. Verifier code that rejects such loads is in bpf_ctx_narrow_access_ok() what means any is_valid_access implementation, that uses the function, works this way, e.g. bpf_skb_is_valid_access() for __sk_buff or sock_addr_is_valid_access() for bpf_sock_addr. The patch makes such loads supported. Offset can be in [0; size_default) but has to be multiple of load size. E.g. for __u32 field the following loads are supported now: * off=0, size=1 (narrow); * off=1, size=1 (narrow); * off=2, size=1 (narrow); * off=3, size=1 (narrow); * off=0, size=2 (narrow); * off=2, size=2 (narrow); * off=0, size=4 (full). Reported-by: NYonghong Song <yhs@fb.com> Signed-off-by: NAndrey Ignatov <rdna@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 26 10月, 2018 1 次提交
-
-
由 Daniel Borkmann 提交于
Rick reported that the BPF JIT could potentially fill the entire module space with BPF programs from unprivileged users which would prevent later attempts to load normal kernel modules or privileged BPF programs, for example. If JIT was enabled but unsuccessful to generate the image, then before commit 290af866 ("bpf: introduce BPF_JIT_ALWAYS_ON config") we would always fall back to the BPF interpreter. Nowadays in the case where the CONFIG_BPF_JIT_ALWAYS_ON could be set, then the load will abort with a failure since the BPF interpreter was compiled out. Add a global limit and enforce it for unprivileged users such that in case of BPF interpreter compiled out we fail once the limit has been reached or we fall back to BPF interpreter earlier w/o using module mem if latter was compiled in. In a next step, fair share among unprivileged users can be resolved in particular for the case where we would fail hard once limit is reached. Fixes: 290af866 ("bpf: introduce BPF_JIT_ALWAYS_ON config") Fixes: 0a14842f ("net: filter: Just In Time compiler for x86-64") Co-Developed-by: NRick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Jann Horn <jannh@google.com> Cc: Kees Cook <keescook@chromium.org> Cc: LKML <linux-kernel@vger.kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 20 10月, 2018 1 次提交
-
-
由 Song Liu 提交于
BPF programs of BPF_PROG_TYPE_CGROUP_SKB need to access headers in the skb. This patch enables direct access of skb for these programs. Two helper functions bpf_compute_and_save_data_end() and bpf_restore_data_end() are introduced. There are used in __cgroup_bpf_run_filter_skb(), to compute proper data_end for the BPF program, and restore original data afterwards. Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 16 10月, 2018 1 次提交
-
-
由 Daniel Borkmann 提交于
Add a generic sk_msg layer, and convert current sockmap and later kTLS over to make use of it. While sk_buff handles network packet representation from netdevice up to socket, sk_msg handles data representation from application to socket layer. This means that sk_msg framework spans across ULP users in the kernel, and enables features such as introspection or filtering of data with the help of BPF programs that operate on this data structure. Latter becomes in particular useful for kTLS where data encryption is deferred into the kernel, and as such enabling the kernel to perform L7 introspection and policy based on BPF for TLS connections where the record is being encrypted after BPF has run and came to a verdict. In order to get there, first step is to transform open coding of scatter-gather list handling into a common core framework that subsystems can use. The code itself has been split and refactored into three bigger pieces: i) the generic sk_msg API which deals with managing the scatter gather ring, providing helpers for walking and mangling, transferring application data from user space into it, and preparing it for BPF pre/post-processing, ii) the plain sock map itself where sockets can be attached to or detached from; these bits are independent of i) which can now be used also without sock map, and iii) the integration with plain TCP as one protocol to be used for processing L7 application data (later this could e.g. also be extended to other protocols like UDP). The semantics are the same with the old sock map code and therefore no change of user facing behavior or APIs. While pursuing this work it also helped finding a number of bugs in the old sockmap code that we've fixed already in earlier commits. The test_sockmap kselftest suite passes through fine as well. Joint work with John. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 18 8月, 2018 1 次提交
-
-
由 Daniel Borkmann 提交于
Commits 109980b8 ("bpf: don't select potentially stale ri->map from buggy xdp progs") and 7c300131 ("bpf: fix ri->map_owner pointer on bpf_prog_realloc") tried to mitigate that buggy programs using bpf_redirect_map() helper call do not leave stale maps behind. Idea was to add a map_owner cookie into the per CPU struct redirect_info which was set to prog->aux by the prog making the helper call as a proof that the map is not stale since the prog is implicitly holding a reference to it. This owner cookie could later on get compared with the program calling into BPF whether they match and therefore the redirect could proceed with processing the map safely. In (obvious) hindsight, this approach breaks down when tail calls are involved since the original caller's prog->aux pointer does not have to match the one from one of the progs out of the tail call chain, and therefore the xdp buffer will be dropped instead of redirected. A way around that would be to fix the issue differently (which also allows to remove related work in fast path at the same time): once the life-time of a redirect map has come to its end we use it's map free callback where we need to wait on synchronize_rcu() for current outstanding xdp buffers and remove such a map pointer from the redirect info if found to be present. At that time no program is using this map anymore so we simply invalidate the map pointers to NULL iff they previously pointed to that instance while making sure that the redirect path only reads out the map once. Fixes: 97f91a7c ("bpf: add bpf_redirect_map helper routine") Fixes: 109980b8 ("bpf: don't select potentially stale ri->map from buggy xdp progs") Reported-by: NSebastiano Miano <sebastiano.miano@polito.it> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NJohn Fastabend <john.fastabend@gmail.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 11 8月, 2018 2 次提交
-
-
由 Martin KaFai Lau 提交于
This patch allows a BPF_PROG_TYPE_SK_REUSEPORT bpf prog to select a SO_REUSEPORT sk from a BPF_MAP_TYPE_REUSEPORT_ARRAY introduced in the earlier patch. "bpf_run_sk_reuseport()" will return -ECONNREFUSED when the BPF_PROG_TYPE_SK_REUSEPORT prog returns SK_DROP. The callers, in inet[6]_hashtable.c and ipv[46]/udp.c, are modified to handle this case and return NULL immediately instead of continuing the sk search from its hashtable. It re-uses the existing SO_ATTACH_REUSEPORT_EBPF setsockopt to attach BPF_PROG_TYPE_SK_REUSEPORT. The "sk_reuseport_attach_bpf()" will check if the attaching bpf prog is in the new SK_REUSEPORT or the existing SOCKET_FILTER type and then check different things accordingly. One level of "__reuseport_attach_prog()" call is removed. The "sk_unhashed() && ..." and "sk->sk_reuseport_cb" tests are pushed back to "reuseport_attach_prog()" in sock_reuseport.c. sock_reuseport.c seems to have more knowledge on those test requirements than filter.c. In "reuseport_attach_prog()", after new_prog is attached to reuse->prog, the old_prog (if any) is also directly freed instead of returning the old_prog to the caller and asking the caller to free. The sysctl_optmem_max check is moved back to the "sk_reuseport_attach_filter()" and "sk_reuseport_attach_bpf()". As of other bpf prog types, the new BPF_PROG_TYPE_SK_REUSEPORT is only bounded by the usual "bpf_prog_charge_memlock()" during load time instead of bounded by both bpf_prog_charge_memlock and sysctl_optmem_max. Signed-off-by: NMartin KaFai Lau <kafai@fb.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 Martin KaFai Lau 提交于
This patch adds a BPF_PROG_TYPE_SK_REUSEPORT which can select a SO_REUSEPORT sk from a BPF_MAP_TYPE_REUSEPORT_ARRAY. Like other non SK_FILTER/CGROUP_SKB program, it requires CAP_SYS_ADMIN. BPF_PROG_TYPE_SK_REUSEPORT introduces "struct sk_reuseport_kern" to store the bpf context instead of using the skb->cb[48]. At the SO_REUSEPORT sk lookup time, it is in the middle of transiting from a lower layer (ipv4/ipv6) to a upper layer (udp/tcp). At this point, it is not always clear where the bpf context can be appended in the skb->cb[48] to avoid saving-and-restoring cb[]. Even putting aside the difference between ipv4-vs-ipv6 and udp-vs-tcp. It is not clear if the lower layer is only ipv4 and ipv6 in the future and will it not touch the cb[] again before transiting to the upper layer. For example, in udp_gro_receive(), it uses the 48 byte NAPI_GRO_CB instead of IP[6]CB and it may still modify the cb[] after calling the udp[46]_lib_lookup_skb(). Because of the above reason, if sk->cb is used for the bpf ctx, saving-and-restoring is needed and likely the whole 48 bytes cb[] has to be saved and restored. Instead of saving, setting and restoring the cb[], this patch opts to create a new "struct sk_reuseport_kern" and setting the needed values in there. The new BPF_PROG_TYPE_SK_REUSEPORT and "struct sk_reuseport_(kern|md)" will serve all ipv4/ipv6 + udp/tcp combinations. There is no protocol specific usage at this point and it is also inline with the current sock_reuseport.c implementation (i.e. no protocol specific requirement). In "struct sk_reuseport_md", this patch exposes data/data_end/len with semantic similar to other existing usages. Together with "bpf_skb_load_bytes()" and "bpf_skb_load_bytes_relative()", the bpf prog can peek anywhere in the skb. The "bind_inany" tells the bpf prog that the reuseport group is bind-ed to a local INANY address which cannot be learned from skb. The new "bind_inany" is added to "struct sock_reuseport" which will be used when running the new "BPF_PROG_TYPE_SK_REUSEPORT" bpf prog in order to avoid repeating the "bind INANY" test on "sk_v6_rcv_saddr/sk->sk_rcv_saddr" every time a bpf prog is run. It can only be properly initialized when a "sk->sk_reuseport" enabled sk is adding to a hashtable (i.e. during "reuseport_alloc()" and "reuseport_add_sock()"). The new "sk_select_reuseport()" is the main helper that the bpf prog will use to select a SO_REUSEPORT sk. It is the only function that can use the new BPF_MAP_TYPE_REUSEPORT_ARRAY. As mentioned in the earlier patch, the validity of a selected sk is checked in run time in "sk_select_reuseport()". Doing the check in verification time is difficult and inflexible (consider the map-in-map use case). The runtime check is to compare the selected sk's reuseport_id with the reuseport_id that we want. This helper will return -EXXX if the selected sk cannot serve the incoming request (e.g. reuseport_id not match). The bpf prog can decide if it wants to do SK_DROP as its discretion. When the bpf prog returns SK_PASS, the kernel will check if a valid sk has been selected (i.e. "reuse_kern->selected_sk != NULL"). If it does , it will use the selected sk. If not, the kernel will select one from "reuse->socks[]" (as before this patch). The SK_DROP and SK_PASS handling logic will be in the next patch. Signed-off-by: NMartin KaFai Lau <kafai@fb.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 10 8月, 2018 2 次提交
-
-
由 Toshiaki Makita 提交于
We need some mechanism to disable napi_direct on calling xdp_return_frame_rx_napi() from some context. When veth gets support of XDP_REDIRECT, it will redirects packets which are redirected from other devices. On redirection veth will reuse xdp_mem_info of the redirection source device to make return_frame work. But in this case .ndo_xdp_xmit() called from veth redirection uses xdp_mem_info which is not guarded by NAPI, because the .ndo_xdp_xmit() is not called directly from the rxq which owns the xdp_mem_info. This approach introduces a flag in bpf_redirect_info to indicate that napi_direct should be disabled even when _rx_napi variant is used as well as helper functions to use it. A NAPI handler who wants to use this flag needs to call xdp_set_return_frame_no_direct() before processing packets, and call xdp_clear_return_frame_no_direct() after xdp_do_flush_map() before exiting NAPI. v4: - Use bpf_redirect_info for storing the flag instead of xdp_mem_info to avoid per-frame copy cost. Signed-off-by: NToshiaki Makita <makita.toshiaki@lab.ntt.co.jp> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 Toshiaki Makita 提交于
We are going to add kern_flags field in redirect_info for kernel internal use. In order to avoid function call to access the flags, make redirect_info accessible from modules. Also as it is now non-static, add prefix bpf_ to redirect_info. v6: - Fix sparse warning around EXPORT_SYMBOL. Signed-off-by: NToshiaki Makita <makita.toshiaki@lab.ntt.co.jp> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 08 7月, 2018 1 次提交
-
-
由 Toshiaki Makita 提交于
Otherwise we end up with attempting to send packets from down devices or to send oversized packets, which may cause unexpected driver/device behaviour. Generic XDP has already done this check, so reuse the logic in native XDP. Fixes: 814abfab ("xdp: add bpf_redirect helper function") Signed-off-by: NToshiaki Makita <makita.toshiaki@lab.ntt.co.jp> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 30 6月, 2018 1 次提交
-
-
由 Daniel Borkmann 提交于
Partially undo commit 9facc336 ("bpf: reject any prog that failed read-only lock") since it caused a regression, that is, syzkaller was able to manage to cause a panic via fault injection deep in set_memory_ro() path by letting an allocation fail: In x86's __change_page_attr_set_clr() it was able to change the attributes of the primary mapping but not in the alias mapping via cpa_process_alias(), so the second, inner call to the __change_page_attr() via __change_page_attr_set_clr() had to split a larger page and failed in the alloc_pages() with the artifically triggered allocation error which is then propagated down to the call site. Thus, for set_memory_ro() this means that it returned with an error, but from debugging a probe_kernel_write() revealed EFAULT on that memory since the primary mapping succeeded to get changed. Therefore the subsequent hdr->locked = 0 reset triggered the panic as it was performed on read-only memory, so call-site assumptions were infact wrong to assume that it would either succeed /or/ not succeed at all since there's no such rollback in set_memory_*() calls from partial change of mappings, in other words, we're left in a state that is "half done". A later undo via set_memory_rw() is succeeding though due to matching permissions on that part (aka due to the try_preserve_large_page() succeeding). While reproducing locally with explicitly triggering this error, the initial splitting only happens on rare occasions and in real world it would additionally need oom conditions, but that said, it could partially fail. Therefore, it is definitely wrong to bail out on set_memory_ro() error and reject the program with the set_memory_*() semantics we have today. Shouldn't have gone the extra mile since no other user in tree today infact checks for any set_memory_*() errors, e.g. neither module_enable_ro() / module_disable_ro() for module RO/NX handling which is mostly default these days nor kprobes core with alloc_insn_page() / free_insn_page() as examples that could be invoked long after bootup and original 314beb9b ("x86: bpf_jit_comp: secure bpf jit against spraying attacks") did neither when it got first introduced to BPF so "improving" with bailing out was clearly not right when set_memory_*() cannot handle it today. Kees suggested that if set_memory_*() can fail, we should annotate it with __must_check, and all callers need to deal with it gracefully given those set_memory_*() markings aren't "advisory", but they're expected to actually do what they say. This might be an option worth to move forward in future but would at the same time require that set_memory_*() calls from supporting archs are guaranteed to be "atomic" in that they provide rollback if part of the range fails, once that happened, the transition from RW -> RO could be made more robust that way, while subsequent RO -> RW transition /must/ continue guaranteeing to always succeed the undo part. Reported-by: syzbot+a4eb8c7766952a1ca872@syzkaller.appspotmail.com Reported-by: syzbot+d866d1925855328eac3b@syzkaller.appspotmail.com Fixes: 9facc336 ("bpf: reject any prog that failed read-only lock") Cc: Laura Abbott <labbott@redhat.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 21 6月, 2018 1 次提交
-
-
由 Eric Dumazet 提交于
After commit 9facc336 ("bpf: reject any prog that failed read-only lock") offsetof(struct bpf_binary_header, image) became 3 instead of 4, breaking powerpc BPF badly, since instructions need to be word aligned. Fixes: 9facc336 ("bpf: reject any prog that failed read-only lock") Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Martin KaFai Lau <kafai@fb.com> Cc: Alexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 6月, 2018 3 次提交
-
-
由 Toshiaki Makita 提交于
Commit 67f29e07 ("bpf: devmap introduce dev_map_enqueue") changed the return value type of __devmap_lookup_elem() from struct net_device * to struct bpf_dtab_netdev * but forgot to modify generic XDP code accordingly. Thus generic XDP incorrectly used struct bpf_dtab_netdev where struct net_device is expected, then skb->dev was set to invalid value. v2: - Fix compiler warning without CONFIG_BPF_SYSCALL. Fixes: 67f29e07 ("bpf: devmap introduce dev_map_enqueue") Signed-off-by: NToshiaki Makita <makita.toshiaki@lab.ntt.co.jp> Acked-by: NYonghong Song <yhs@fb.com> Acked-by: NJesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 Daniel Borkmann 提交于
We currently lock any JITed image as read-only via bpf_jit_binary_lock_ro() as well as the BPF image as read-only through bpf_prog_lock_ro(). In the case any of these would fail we throw a WARN_ON_ONCE() in order to yell loudly to the log. Perhaps, to some extend, this may be comparable to an allocation where __GFP_NOWARN is explicitly not set. Added via 65869a47 ("bpf: improve read-only handling"), this behavior is slightly different compared to any of the other in-kernel set_memory_ro() users who do not check the return code of set_memory_ro() and friends /at all/ (e.g. in the case of module_enable_ro() / module_disable_ro()). Given in BPF this is mandatory hardening step, we want to know whether there are any issues that would leave both BPF data writable. So it happens that syzkaller enabled fault injection and it triggered memory allocation failure deep inside x86's change_page_attr_set_clr() which was triggered from set_memory_ro(). Now, there are two options: i) leaving everything as is, and ii) reworking the image locking code in order to have a final checkpoint out of the central bpf_prog_select_runtime() which probes whether any of the calls during prog setup weren't successful, and then bailing out with an error. Option ii) is a better approach since this additional paranoia avoids altogether leaving any potential W+X pages from BPF side in the system. Therefore, lets be strict about it, and reject programs in such unlikely occasion. While testing I noticed also that one bpf_prog_lock_ro() call was missing on the outer dummy prog in case of calls, e.g. in the destructor we call bpf_prog_free_deferred() on the main prog where we try to bpf_prog_unlock_free() the program, and since we go via bpf_prog_select_runtime() do that as well. Reported-by: syzbot+3b889862e65a98317058@syzkaller.appspotmail.com Reported-by: syzbot+9e762b52dd17e616a7a5@syzkaller.appspotmail.com Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NMartin KaFai Lau <kafai@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Daniel Borkmann 提交于
While testing I found that when hitting error path in bpf_prog_load() where we jump to free_used_maps and prog contained BPF to BPF calls that were JITed earlier, then we never clean up the bpf_prog_kallsyms_add() done under jit_subprogs(). Add proper API to make BPF kallsyms deletion more clear and fix that. Fixes: 1c2a088a ("bpf: x64: add JIT support for multi-function programs") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NMartin KaFai Lau <kafai@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 03 6月, 2018 3 次提交
-
-
由 Daniel Borkmann 提交于
Wang reported that all the testcases for BPF_PROG_TYPE_PERF_EVENT program type in test_verifier report the following errors on x86_32: 172/p unpriv: spill/fill of different pointers ldx FAIL Unexpected error message! 0: (bf) r6 = r10 1: (07) r6 += -8 2: (15) if r1 == 0x0 goto pc+3 R1=ctx(id=0,off=0,imm=0) R6=fp-8,call_-1 R10=fp0,call_-1 3: (bf) r2 = r10 4: (07) r2 += -76 5: (7b) *(u64 *)(r6 +0) = r2 6: (55) if r1 != 0x0 goto pc+1 R1=ctx(id=0,off=0,imm=0) R2=fp-76,call_-1 R6=fp-8,call_-1 R10=fp0,call_-1 fp-8=fp 7: (7b) *(u64 *)(r6 +0) = r1 8: (79) r1 = *(u64 *)(r6 +0) 9: (79) r1 = *(u64 *)(r1 +68) invalid bpf_context access off=68 size=8 378/p check bpf_perf_event_data->sample_period byte load permitted FAIL Failed to load prog 'Permission denied'! 0: (b7) r0 = 0 1: (71) r0 = *(u8 *)(r1 +68) invalid bpf_context access off=68 size=1 379/p check bpf_perf_event_data->sample_period half load permitted FAIL Failed to load prog 'Permission denied'! 0: (b7) r0 = 0 1: (69) r0 = *(u16 *)(r1 +68) invalid bpf_context access off=68 size=2 380/p check bpf_perf_event_data->sample_period word load permitted FAIL Failed to load prog 'Permission denied'! 0: (b7) r0 = 0 1: (61) r0 = *(u32 *)(r1 +68) invalid bpf_context access off=68 size=4 381/p check bpf_perf_event_data->sample_period dword load permitted FAIL Failed to load prog 'Permission denied'! 0: (b7) r0 = 0 1: (79) r0 = *(u64 *)(r1 +68) invalid bpf_context access off=68 size=8 Reason is that struct pt_regs on x86_32 doesn't fully align to 8 byte boundary due to its size of 68 bytes. Therefore, bpf_ctx_narrow_access_ok() will then bail out saying that off & (size_default - 1) which is 68 & 7 doesn't cleanly align in the case of sample_period access from struct bpf_perf_event_data, hence verifier wrongly thinks we might be doing an unaligned access here though underlying arch can handle it just fine. Therefore adjust this down to machine size and check and rewrite the offset for narrow access on that basis. We also need to fix corresponding pe_prog_is_valid_access(), since we hit the check for off % size != 0 (e.g. 68 % 8 -> 4) in the first and last test. With that in place, progs for tracing work on x86_32. Reported-by: NWang YanQing <udknight@gmail.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Tested-by: NWang YanQing <udknight@gmail.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Daniel Borkmann 提交于
While some of the BPF map lookup helpers provide a ->map_gen_lookup() callback for inlining the map lookup altogether it is not available for every map, so the remaining ones have to call bpf_map_lookup_elem() helper which does a dispatch to map->ops->map_lookup_elem(). In times of retpolines, this will control and trap speculative execution rather than letting it do its work for the indirect call and will therefore cause a slowdown. Likewise, bpf_map_update_elem() and bpf_map_delete_elem() do not have an inlined version and need to call into their map->ops->map_update_elem() resp. map->ops->map_delete_elem() handlers. Before: # bpftool prog dump xlated id 1 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = map[id:1] 5: (85) call __htab_map_lookup_elem#232656 6: (15) if r0 == 0x0 goto pc+4 7: (71) r1 = *(u8 *)(r0 +35) 8: (55) if r1 != 0x0 goto pc+1 9: (72) *(u8 *)(r0 +35) = 1 10: (07) r0 += 56 11: (15) if r0 == 0x0 goto pc+4 12: (bf) r2 = r0 13: (18) r1 = map[id:1] 15: (85) call bpf_map_delete_elem#215008 <-- indirect call via 16: (95) exit helper After: # bpftool prog dump xlated id 1 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = map[id:1] 5: (85) call __htab_map_lookup_elem#233328 6: (15) if r0 == 0x0 goto pc+4 7: (71) r1 = *(u8 *)(r0 +35) 8: (55) if r1 != 0x0 goto pc+1 9: (72) *(u8 *)(r0 +35) = 1 10: (07) r0 += 56 11: (15) if r0 == 0x0 goto pc+4 12: (bf) r2 = r0 13: (18) r1 = map[id:1] 15: (85) call htab_lru_map_delete_elem#238240 <-- direct call 16: (95) exit In all three lookup/update/delete cases however we can use the actual address of the map callback directly if we find that there's only a single path with a map pointer leading to the helper call, meaning when the map pointer has not been poisoned from verifier side. Example code can be seen above for the delete case. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Daniel Borkmann 提交于
Add several test cases where the same or different map pointers originate from different paths in the program and execute a map lookup or tail call at a common location. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 28 5月, 2018 1 次提交
-
-
由 Andrey Ignatov 提交于
In addition to already existing BPF hooks for sys_bind and sys_connect, the patch provides new hooks for sys_sendmsg. It leverages existing BPF program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` that provides access to socket itlself (properties like family, type, protocol) and user-passed `struct sockaddr *` so that BPF program can override destination IP and port for system calls such as sendto(2) or sendmsg(2) and/or assign source IP to the socket. The hooks are implemented as two new attach types: `BPF_CGROUP_UDP4_SENDMSG` and `BPF_CGROUP_UDP6_SENDMSG` for UDPv4 and UDPv6 correspondingly. UDPv4 and UDPv6 separate attach types for same reason as sys_bind and sys_connect hooks, i.e. to prevent reading from / writing to e.g. user_ip6 fields when user passes sockaddr_in since it'd be out-of-bound. The difference with already existing hooks is sys_sendmsg are implemented only for unconnected UDP. For TCP it doesn't make sense to change user-provided `struct sockaddr *` at sendto(2)/sendmsg(2) time since socket either was already connected and has source/destination set or wasn't connected and call to sendto(2)/sendmsg(2) would lead to ENOTCONN anyway. Connected UDP is already handled by sys_connect hooks that can override source/destination at connect time and use fast-path later, i.e. these hooks don't affect UDP fast-path. Rewriting source IP is implemented differently than that in sys_connect hooks. When sys_sendmsg is used with unconnected UDP it doesn't work to just bind socket to desired local IP address since source IP can be set on per-packet basis by using ancillary data (cmsg(3)). So no matter if socket is bound or not, source IP has to be rewritten on every call to sys_sendmsg. To do so two new fields are added to UAPI `struct bpf_sock_addr`; * `msg_src_ip4` to set source IPv4 for UDPv4; * `msg_src_ip6` to set source IPv6 for UDPv6. Signed-off-by: NAndrey Ignatov <rdna@fb.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NMartin KaFai Lau <kafai@fb.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 19 5月, 2018 1 次提交
-
-
由 John Fastabend 提交于
Currently sk_msg programs only have access to the raw data. However, it is often useful when building policies to have the policies specific to the socket endpoint. This allows using the socket tuple as input into filters, etc. This patch adds ctx access to the sock fields. Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Acked-by: NMartin KaFai Lau <kafai@fb.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 15 5月, 2018 1 次提交
-
-
由 John Fastabend 提交于
This patch only refactors the existing sockmap code. This will allow much of the psock initialization code path and bpf helper codes to work for both sockmap bpf map types that are backed by an array, the currently supported type, and the new hash backed bpf map type sockhash. Most the fallout comes from three changes, - Pushing bpf programs into an independent structure so we can use it from the htab struct in the next patch. - Generalizing helpers to use void *key instead of the hardcoded u32. - Instead of passing map/key through the metadata we now do the lookup inline. This avoids storing the key in the metadata which will be useful when keys can be longer than 4 bytes. We rename the sk pointers to sk_redir at this point as well to avoid any confusion between the current sk pointer and the redirect pointer sk_redir. Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 04 5月, 2018 2 次提交
-
-
由 Daniel Borkmann 提交于
The main part of this work is to finally allow removal of LD_ABS and LD_IND from the BPF core by reimplementing them through native eBPF instead. Both LD_ABS/LD_IND were carried over from cBPF and keeping them around in native eBPF caused way more trouble than actually worth it. To just list some of the security issues in the past: * fdfaf64e ("x86: bpf_jit: support negative offsets") * 35607b02 ("sparc: bpf_jit: fix loads from negative offsets") * e0ee9c12 ("x86: bpf_jit: fix two bugs in eBPF JIT compiler") * 07aee943 ("bpf, sparc: fix usage of wrong reg for load_skb_regs after call") * 6d59b7db ("bpf, s390x: do not reload skb pointers in non-skb context") * 87338c8e ("bpf, ppc64: do not reload skb pointers in non-skb context") For programs in native eBPF, LD_ABS/LD_IND are pretty much legacy these days due to their limitations and more efficient/flexible alternatives that have been developed over time such as direct packet access. LD_ABS/LD_IND only cover 1/2/4 byte loads into a register, the load happens in host endianness and its exception handling can yield unexpected behavior. The latter is explained in depth in f6b1b3bf ("bpf: fix subprog verifier bypass by div/mod by 0 exception") with similar cases of exceptions we had. In native eBPF more recent program types will disable LD_ABS/LD_IND altogether through may_access_skb() in verifier, and given the limitations in terms of exception handling, it's also disabled in programs that use BPF to BPF calls. In terms of cBPF, the LD_ABS/LD_IND is used in networking programs to access packet data. It is not used in seccomp-BPF but programs that use it for socket filtering or reuseport for demuxing with cBPF. This is mostly relevant for applications that have not yet migrated to native eBPF. The main complexity and source of bugs in LD_ABS/LD_IND is coming from their implementation in the various JITs. Most of them keep the model around from cBPF times by implementing a fastpath written in asm. They use typically two from the BPF program hidden CPU registers for caching the skb's headlen (skb->len - skb->data_len) and skb->data. Throughout the JIT phase this requires to keep track whether LD_ABS/LD_IND are used and if so, the two registers need to be recached each time a BPF helper would change the underlying packet data in native eBPF case. At least in eBPF case, available CPU registers are rare and the additional exit path out of the asm written JIT helper makes it also inflexible since not all parts of the JITer are in control from plain C. A LD_ABS/LD_IND implementation in eBPF therefore allows to significantly reduce the complexity in JITs with comparable performance results for them, e.g.: test_bpf tcpdump port 22 tcpdump complex x64 - before 15 21 10 14 19 18 - after 7 10 10 7 10 15 arm64 - before 40 91 92 40 91 151 - after 51 64 73 51 62 113 For cBPF we now track any usage of LD_ABS/LD_IND in bpf_convert_filter() and cache the skb's headlen and data in the cBPF prologue. The BPF_REG_TMP gets remapped from R8 to R2 since it's mainly just used as a local temporary variable. This allows to shrink the image on x86_64 also for seccomp programs slightly since mapping to %rsi is not an ereg. In callee-saved R8 and R9 we now track skb data and headlen, respectively. For normal prologue emission in the JITs this does not add any extra instructions since R8, R9 are pushed to stack in any case from eBPF side. cBPF uses the convert_bpf_ld_abs() emitter which probes the fast path inline already and falls back to bpf_skb_load_helper_{8,16,32}() helper relying on the cached skb data and headlen as well. R8 and R9 never need to be reloaded due to bpf_helper_changes_pkt_data() since all skb access in cBPF is read-only. Then, for the case of native eBPF, we use the bpf_gen_ld_abs() emitter, which calls the bpf_skb_load_helper_{8,16,32}_no_cache() helper unconditionally, does neither cache skb data and headlen nor has an inlined fast path. The reason for the latter is that native eBPF does not have any extra registers available anyway, but even if there were, it avoids any reload of skb data and headlen in the first place. Additionally, for the negative offsets, we provide an alternative bpf_skb_load_bytes_relative() helper in eBPF which operates similarly as bpf_skb_load_bytes() and allows for more flexibility. Tested myself on x64, arm64, s390x, from Sandipan on ppc64. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Björn Töpel 提交于
This commit wires up the xskmap to XDP_SKB layer. Signed-off-by: NBjörn Töpel <bjorn.topel@intel.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 29 4月, 2018 1 次提交
-
-
由 Yonghong Song 提交于
Currently, stackmap and bpf_get_stackid helper are provided for bpf program to get the stack trace. This approach has a limitation though. If two stack traces have the same hash, only one will get stored in the stackmap table, so some stack traces are missing from user perspective. This patch implements a new helper, bpf_get_stack, will send stack traces directly to bpf program. The bpf program is able to see all stack traces, and then can do in-kernel processing or send stack traces to user space through shared map or bpf_perf_event_output. Acked-by: NAlexei Starovoitov <ast@fb.com> Signed-off-by: NYonghong Song <yhs@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 17 4月, 2018 1 次提交
-
-
由 Jesper Dangaard Brouer 提交于
This is done to prepare for the next patch, and it is also nice to move this XDP related struct out of filter.h. Signed-off-by: NJesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 31 3月, 2018 2 次提交
-
-
由 Andrey Ignatov 提交于
== The problem == There is a use-case when all processes inside a cgroup should use one single IP address on a host that has multiple IP configured. Those processes should use the IP for both ingress and egress, for TCP and UDP traffic. So TCP/UDP servers should be bound to that IP to accept incoming connections on it, and TCP/UDP clients should make outgoing connections from that IP. It should not require changing application code since it's often not possible. Currently it's solved by intercepting glibc wrappers around syscalls such as `bind(2)` and `connect(2)`. It's done by a shared library that is preloaded for every process in a cgroup so that whenever TCP/UDP server calls `bind(2)`, the library replaces IP in sockaddr before passing arguments to syscall. When application calls `connect(2)` the library transparently binds the local end of connection to that IP (`bind(2)` with `IP_BIND_ADDRESS_NO_PORT` to avoid performance penalty). Shared library approach is fragile though, e.g.: * some applications clear env vars (incl. `LD_PRELOAD`); * `/etc/ld.so.preload` doesn't help since some applications are linked with option `-z nodefaultlib`; * other applications don't use glibc and there is nothing to intercept. == The solution == The patch provides much more reliable in-kernel solution for the 1st part of the problem: binding TCP/UDP servers on desired IP. It does not depend on application environment and implementation details (whether glibc is used or not). It adds new eBPF program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` and attach types `BPF_CGROUP_INET4_BIND` and `BPF_CGROUP_INET6_BIND` (similar to already existing `BPF_CGROUP_INET_SOCK_CREATE`). The new program type is intended to be used with sockets (`struct sock`) in a cgroup and provided by user `struct sockaddr`. Pointers to both of them are parts of the context passed to programs of newly added types. The new attach types provides hooks in `bind(2)` system call for both IPv4 and IPv6 so that one can write a program to override IP addresses and ports user program tries to bind to and apply such a program for whole cgroup. == Implementation notes == [1] Separate attach types for `AF_INET` and `AF_INET6` are added intentionally to prevent reading/writing to offsets that don't make sense for corresponding socket family. E.g. if user passes `sockaddr_in` it doesn't make sense to read from / write to `user_ip6[]` context fields. [2] The write access to `struct bpf_sock_addr_kern` is implemented using special field as an additional "register". There are just two registers in `sock_addr_convert_ctx_access`: `src` with value to write and `dst` with pointer to context that can't be changed not to break later instructions. But the fields, allowed to write to, are not available directly and to access them address of corresponding pointer has to be loaded first. To get additional register the 1st not used by `src` and `dst` one is taken, its content is saved to `bpf_sock_addr_kern.tmp_reg`, then the register is used to load address of pointer field, and finally the register's content is restored from the temporary field after writing `src` value. Signed-off-by: NAndrey Ignatov <rdna@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 Andrey Ignatov 提交于
== The problem == There are use-cases when a program of some type can be attached to multiple attach points and those attach points must have different permissions to access context or to call helpers. E.g. context structure may have fields for both IPv4 and IPv6 but it doesn't make sense to read from / write to IPv6 field when attach point is somewhere in IPv4 stack. Same applies to BPF-helpers: it may make sense to call some helper from some attach point, but not from other for same prog type. == The solution == Introduce `expected_attach_type` field in in `struct bpf_attr` for `BPF_PROG_LOAD` command. If scenario described in "The problem" section is the case for some prog type, the field will be checked twice: 1) At load time prog type is checked to see if attach type for it must be known to validate program permissions correctly. Prog will be rejected with EINVAL if it's the case and `expected_attach_type` is not specified or has invalid value. 2) At attach time `attach_type` is compared with `expected_attach_type`, if prog type requires to have one, and, if they differ, attach will be rejected with EINVAL. The `expected_attach_type` is now available as part of `struct bpf_prog` in both `bpf_verifier_ops->is_valid_access()` and `bpf_verifier_ops->get_func_proto()` () and can be used to check context accesses and calls to helpers correspondingly. Initially the idea was discussed by Alexei Starovoitov <ast@fb.com> and Daniel Borkmann <daniel@iogearbox.net> here: https://marc.info/?l=linux-netdev&m=152107378717201&w=2Signed-off-by: NAndrey Ignatov <rdna@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 30 3月, 2018 2 次提交
-
-
由 John Fastabend 提交于
Add support for the BPF_F_INGRESS flag in skb redirect helper. To do this convert skb into a scatterlist and push into ingress queue. This is the same logic that is used in the sk_msg redirect helper so it should feel familiar. Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 John Fastabend 提交于
Add support for the BPF_F_INGRESS flag in sk_msg redirect helper. To do this add a scatterlist ring for receiving socks to check before calling into regular recvmsg call path. Additionally, because the poll wakeup logic only checked the skb recv queue we need to add a hook in TCP stack (similar to write side) so that we have a way to wake up polling socks when a scatterlist is redirected to that sock. After this all that is needed is for the redirect helper to push the scatterlist into the psock receive queue. Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 29 3月, 2018 1 次提交
-
-
由 Jakub Kicinski 提交于
BPF_LDST_BYTES() does not put it's argument in parenthesis when referencing it. This makes it impossible to pass pointers obtained by address-of operator (e.g. BPF_LDST_BYTES(&insn)). Add the parenthesis. Signed-off-by: NJakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: NQuentin Monnet <quentin.monnet@netronome.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 20 3月, 2018 1 次提交
-
-
由 John Fastabend 提交于
This implements a BPF ULP layer to allow policy enforcement and monitoring at the socket layer. In order to support this a new program type BPF_PROG_TYPE_SK_MSG is used to run the policy at the sendmsg/sendpage hook. To attach the policy to sockets a sockmap is used with a new program attach type BPF_SK_MSG_VERDICT. Similar to previous sockmap usages when a sock is added to a sockmap, via a map update, if the map contains a BPF_SK_MSG_VERDICT program type attached then the BPF ULP layer is created on the socket and the attached BPF_PROG_TYPE_SK_MSG program is run for every msg in sendmsg case and page/offset in sendpage case. BPF_PROG_TYPE_SK_MSG Semantics/API: BPF_PROG_TYPE_SK_MSG supports only two return codes SK_PASS and SK_DROP. Returning SK_DROP free's the copied data in the sendmsg case and in the sendpage case leaves the data untouched. Both cases return -EACESS to the user. Returning SK_PASS will allow the msg to be sent. In the sendmsg case data is copied into kernel space buffers before running the BPF program. The kernel space buffers are stored in a scatterlist object where each element is a kernel memory buffer. Some effort is made to coalesce data from the sendmsg call here. For example a sendmsg call with many one byte iov entries will likely be pushed into a single entry. The BPF program is run with data pointers (start/end) pointing to the first sg element. In the sendpage case data is not copied. We opt not to copy the data by default here, because the BPF infrastructure does not know what bytes will be needed nor when they will be needed. So copying all bytes may be wasteful. Because of this the initial start/end data pointers are (0,0). Meaning no data can be read or written. This avoids reading data that may be modified by the user. A new helper is added later in this series if reading and writing the data is needed. The helper call will do a copy by default so that the page is exclusively owned by the BPF call. The verdict from the BPF_PROG_TYPE_SK_MSG applies to the entire msg in the sendmsg() case and the entire page/offset in the sendpage case. This avoids ambiguity on how to handle mixed return codes in the sendmsg case. Again a helper is added later in the series if a verdict needs to apply to multiple system calls and/or only a subpart of the currently being processed message. The helper msg_redirect_map() can be used to select the socket to send the data on. This is used similar to existing redirect use cases. This allows policy to redirect msgs. Pseudo code simple example: The basic logic to attach a program to a socket is as follows, // load the programs bpf_prog_load(SOCKMAP_TCP_MSG_PROG, BPF_PROG_TYPE_SK_MSG, &obj, &msg_prog); // lookup the sockmap bpf_map_msg = bpf_object__find_map_by_name(obj, "my_sock_map"); // get fd for sockmap map_fd_msg = bpf_map__fd(bpf_map_msg); // attach program to sockmap bpf_prog_attach(msg_prog, map_fd_msg, BPF_SK_MSG_VERDICT, 0); Adding sockets to the map is done in the normal way, // Add a socket 'fd' to sockmap at location 'i' bpf_map_update_elem(map_fd_msg, &i, fd, BPF_ANY); After the above any socket attached to "my_sock_map", in this case 'fd', will run the BPF msg verdict program (msg_prog) on every sendmsg and sendpage system call. For a complete example see BPF selftests or sockmap samples. Implementation notes: It seemed the simplest, to me at least, to use a refcnt to ensure psock is not lost across the sendmsg copy into the sg, the bpf program running on the data in sg_data, and the final pass to the TCP stack. Some performance testing may show a better method to do this and avoid the refcnt cost, but for now use the simpler method. Another item that will come after basic support is in place is supporting MSG_MORE flag. At the moment we call sendpages even if the MSG_MORE flag is set. An enhancement would be to collect the pages into a larger scatterlist and pass down the stack. Notice that bpf_tcp_sendmsg() could support this with some additional state saved across sendmsg calls. I built the code to support this without having to do refactoring work. Other features TBD include ZEROCOPY and the TCP_RECV_QUEUE/TCP_NO_QUEUE support. This will follow initial series shortly. Future work could improve size limits on the scatterlist rings used here. Currently, we use MAX_SKB_FRAGS simply because this was being used already in the TLS case. Future work could extend the kernel sk APIs to tune this depending on workload. This is a trade-off between memory usage and throughput performance. Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 14 2月, 2018 1 次提交
-
-
由 Jesper Dangaard Brouer 提交于
If is sufficient with a forward declaration of struct xdp_rxq_info in linux/filter.h, which avoids including net/xdp.h. This was originally suggested by John Fastabend during the review phase, but wasn't included in the final patchset revision. Thus, this followup. Suggested-by: NJohn Fastabend <john.fastabend@gmail.com> Signed-off-by: NJesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 27 1月, 2018 1 次提交
-
-
由 Daniel Borkmann 提交于
Recent findings by syzcaller fixed in 7891a87e ("bpf: arsh is not supported in 32 bit alu thus reject it") triggered a warning in the interpreter due to unknown opcode not being rejected by the verifier. The 'return 0' for an unknown opcode is really not optimal, since with BPF to BPF calls, this would go untracked by the verifier. Do two things here to improve the situation: i) perform basic insn sanity check early on in the verification phase and reject every non-uapi insn right there. The bpf_opcode_in_insntable() table reuses the same mapping as the jumptable in ___bpf_prog_run() sans the non-public mappings. And ii) in ___bpf_prog_run() we do need to BUG in the case where the verifier would ever create an unknown opcode due to some rewrites. Note that JITs do not have such issues since they would punt to interpreter in these situations. Moreover, the BPF_JIT_ALWAYS_ON would also help to avoid such unknown opcodes in the first place. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 26 1月, 2018 2 次提交
-
-
由 Lawrence Brakmo 提交于
Adds support for passing up to 4 arguments to sock_ops bpf functions. It reusues the reply union, so the bpf_sock_ops structures are not increased in size. Signed-off-by: NLawrence Brakmo <brakmo@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Lawrence Brakmo 提交于
This patch adds a macro, SOCK_OPS_SET_FIELD, for writing to struct tcp_sock or struct sock fields. This required adding a new field "temp" to struct bpf_sock_ops_kern for temporary storage that is used by sock_ops_convert_ctx_access. It is used to store and recover the contents of a register, so the register can be used to store the address of the sk. Since we cannot overwrite the dst_reg because it contains the pointer to ctx, nor the src_reg since it contains the value we want to store, we need an extra register to contain the address of the sk. Also adds the macro SOCK_OPS_GET_OR_SET_FIELD that calls one of the GET or SET macros depending on the value of the TYPE field. Signed-off-by: NLawrence Brakmo <brakmo@fb.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 06 1月, 2018 1 次提交
-
-
由 Jesper Dangaard Brouer 提交于
This patch only introduce the core data structures and API functions. All XDP enabled drivers must use the API before this info can used. There is a need for XDP to know more about the RX-queue a given XDP frames have arrived on. For both the XDP bpf-prog and kernel side. Instead of extending xdp_buff each time new info is needed, the patch creates a separate read-mostly struct xdp_rxq_info, that contains this info. We stress this data/cache-line is for read-only info. This is NOT for dynamic per packet info, use the data_meta for such use-cases. The performance advantage is this info can be setup at RX-ring init time, instead of updating N-members in xdp_buff. A possible (driver level) micro optimization is that xdp_buff->rxq assignment could be done once per XDP/NAPI loop. The extra pointer deref only happens for program needing access to this info (thus, no slowdown to existing use-cases). Signed-off-by: NJesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 21 12月, 2017 1 次提交
-
-
由 Daniel Borkmann 提交于
Currently a dump of an xlated prog (post verifier stage) doesn't correlate used helpers as well as maps. The prog info lists involved map ids, however there's no correlation of where in the program they are used as of today. Likewise, bpftool does not correlate helper calls with the target functions. The latter can be done w/o any kernel changes through kallsyms, and also has the advantage that this works with inlined helpers and BPF calls. Example, via interpreter: # tc filter show dev foo ingress filter protocol all pref 49152 bpf chain 0 filter protocol all pref 49152 bpf chain 0 handle 0x1 foo.o:[ingress] \ direct-action not_in_hw id 1 tag c74773051b364165 <-- prog id:1 * Output before patch (calls/maps remain unclear): # bpftool prog dump xlated id 1 <-- dump prog id:1 0: (b7) r1 = 2 1: (63) *(u32 *)(r10 -4) = r1 2: (bf) r2 = r10 3: (07) r2 += -4 4: (18) r1 = 0xffff95c47a8d4800 6: (85) call unknown#73040 7: (15) if r0 == 0x0 goto pc+18 8: (bf) r2 = r10 9: (07) r2 += -4 10: (bf) r1 = r0 11: (85) call unknown#73040 12: (15) if r0 == 0x0 goto pc+23 [...] * Output after patch: # bpftool prog dump xlated id 1 0: (b7) r1 = 2 1: (63) *(u32 *)(r10 -4) = r1 2: (bf) r2 = r10 3: (07) r2 += -4 4: (18) r1 = map[id:2] <-- map id:2 6: (85) call bpf_map_lookup_elem#73424 <-- helper call 7: (15) if r0 == 0x0 goto pc+18 8: (bf) r2 = r10 9: (07) r2 += -4 10: (bf) r1 = r0 11: (85) call bpf_map_lookup_elem#73424 12: (15) if r0 == 0x0 goto pc+23 [...] # bpftool map show id 2 <-- show/dump/etc map id:2 2: hash_of_maps flags 0x0 key 4B value 4B max_entries 3 memlock 4096B Example, JITed, same prog: # tc filter show dev foo ingress filter protocol all pref 49152 bpf chain 0 filter protocol all pref 49152 bpf chain 0 handle 0x1 foo.o:[ingress] \ direct-action not_in_hw id 3 tag c74773051b364165 jited # bpftool prog show id 3 3: sched_cls tag c74773051b364165 loaded_at Dec 19/13:48 uid 0 xlated 384B jited 257B memlock 4096B map_ids 2 # bpftool prog dump xlated id 3 0: (b7) r1 = 2 1: (63) *(u32 *)(r10 -4) = r1 2: (bf) r2 = r10 3: (07) r2 += -4 4: (18) r1 = map[id:2] <-- map id:2 6: (85) call __htab_map_lookup_elem#77408 <-+ inlined rewrite 7: (15) if r0 == 0x0 goto pc+2 | 8: (07) r0 += 56 | 9: (79) r0 = *(u64 *)(r0 +0) <-+ 10: (15) if r0 == 0x0 goto pc+24 11: (bf) r2 = r10 12: (07) r2 += -4 [...] Example, same prog, but kallsyms disabled (in that case we are also not allowed to pass any relative offsets, etc, so prog becomes pointer sanitized on dump): # sysctl kernel.kptr_restrict=2 kernel.kptr_restrict = 2 # bpftool prog dump xlated id 3 0: (b7) r1 = 2 1: (63) *(u32 *)(r10 -4) = r1 2: (bf) r2 = r10 3: (07) r2 += -4 4: (18) r1 = map[id:2] 6: (85) call bpf_unspec#0 7: (15) if r0 == 0x0 goto pc+2 [...] Example, BPF calls via interpreter: # bpftool prog dump xlated id 1 0: (85) call pc+2#__bpf_prog_run_args32 1: (b7) r0 = 1 2: (95) exit 3: (b7) r0 = 2 4: (95) exit Example, BPF calls via JIT: # sysctl net.core.bpf_jit_enable=1 net.core.bpf_jit_enable = 1 # sysctl net.core.bpf_jit_kallsyms=1 net.core.bpf_jit_kallsyms = 1 # bpftool prog dump xlated id 1 0: (85) call pc+2#bpf_prog_3b185187f1855c4c_F 1: (b7) r0 = 1 2: (95) exit 3: (b7) r0 = 2 4: (95) exit And finally, an example for tail calls that is now working as well wrt correlation: # bpftool prog dump xlated id 2 [...] 10: (b7) r2 = 8 11: (85) call bpf_trace_printk#-41312 12: (bf) r1 = r6 13: (18) r2 = map[id:1] 15: (b7) r3 = 0 16: (85) call bpf_tail_call#12 17: (b7) r1 = 42 18: (6b) *(u16 *)(r6 +46) = r1 19: (b7) r0 = 0 20: (95) exit # bpftool map show id 1 1: prog_array flags 0x0 key 4B value 4B max_entries 1 memlock 4096B Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 18 12月, 2017 2 次提交
-
-
由 Alexei Starovoitov 提交于
Typical JIT does several passes over bpf instructions to compute total size and relative offsets of jumps and calls. With multitple bpf functions calling each other all relative calls will have invalid offsets intially therefore we need to additional last pass over the program to emit calls with correct offsets. For example in case of three bpf functions: main: call foo call bpf_map_lookup exit foo: call bar exit bar: exit We will call bpf_int_jit_compile() indepedently for main(), foo() and bar() x64 JIT typically does 4-5 passes to converge. After these initial passes the image for these 3 functions will be good except call targets, since start addresses of foo() and bar() are unknown when we were JITing main() (note that call bpf_map_lookup will be resolved properly during initial passes). Once start addresses of 3 functions are known we patch call_insn->imm to point to right functions and call bpf_int_jit_compile() again which needs only one pass. Additional safety checks are done to make sure this last pass doesn't produce image that is larger or smaller than previous pass. When constant blinding is on it's applied to all functions at the first pass, since doing it once again at the last pass can change size of the JITed code. Tested on x64 and arm64 hw with JIT on/off, blinding on/off. x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter. All other JITs that support normal BPF_CALL will behave the same way since bpf-to-bpf call is equivalent to bpf-to-kernel call from JITs point of view. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 Alexei Starovoitov 提交于
global bpf_jit_enable variable is tested multiple times in JITs, blinding and verifier core. The malicious root can try to toggle it while loading the programs. This race condition was accounted for and there should be no issues, but it's safer to avoid this race condition. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-