- 27 3月, 2020 1 次提交
-
-
由 Rafael J. Wysocki 提交于
The initial policy value set by intel_pstate_cpu_init() depends on whether or not CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE is set, but that is not necessary, because the core will set the policy to "performance" in cpufreq_init_policy() if the default governor is "performance" anyway. Accordingly, change intel_pstate_cpu_init() to always set policy to CPUFREQ_POLICY_POWERSAVE initially to provide a valid fallback value to cpufreq_init_policy() in case the default cpufreq governor is neither "powersave" nor "performance". Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 25 3月, 2020 2 次提交
-
-
由 Thomas Gleixner 提交于
The feature flag hwp_support_ids are supposed to match on is X86_FEATURE_HWP, not X86_FEATURE_APERFMPERF. Fix it. [ bp: Write commit message. ] Fixes: b11d77fa ("cpufreq: Convert to new X86 CPU match macros") Reported-by: Nkernel test robot <rong.a.chen@intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NBorislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20200324060124.GC11705@shao2-debian
-
由 Thomas Gleixner 提交于
The new macro set has a consistent namespace and uses C99 initializers instead of the grufty C89 ones. Get rid the of most local macro wrappers for consistency. The ones which make sense for readability are renamed to X86_MATCH*. In the centrino driver this also removes the two extra duplicates of family 6 model 13 which have no value at all. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NBorislav Petkov <bp@suse.de> Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lkml.kernel.org/r/87eetheu88.fsf@nanos.tec.linutronix.de
-
- 14 3月, 2020 1 次提交
-
-
由 Rafael J. Wysocki 提交于
There is still some code duplication between intel_pstate_verify_policy() and intel_cpufreq_verify_policy(), so avoid it by moving the common code into a separate function and calling it from both these places. No intentional functional impact. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 29 1月, 2020 1 次提交
-
-
由 Giovanni Gherdovich 提交于
On some platforms such as the Dell XPS 13 laptop the firmware disables turbo when the machine is disconnected from AC, and viceversa it enables it again when it's reconnected. In these cases a _PPC ACPI notification is issued. The scheduler needs to know freq_max for frequency-invariant calculations. To account for turbo availability to come and go, record freq_max at boot as if turbo was available and store it in a helper variable. Use a setter function to swap between freq_base and freq_max every time turbo goes off or on. Signed-off-by: NGiovanni Gherdovich <ggherdovich@suse.cz> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NIngo Molnar <mingo@kernel.org> Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lkml.kernel.org/r/20200122151617.531-7-ggherdovich@suse.cz
-
- 27 1月, 2020 1 次提交
-
-
由 Rafael J. Wysocki 提交于
In the process of modifying a cpufreq policy, the cpufreq core makes a copy of it including all of the internals which is stored on the CPU stack. Because struct cpufreq_policy is relatively large, this may cause the size of the stack frame to exceed the 2 KB limit and so the GCC complains when -Wframe-larger-than= is used. In fact, it is not necessary to copy the entire policy structure in order to modify it, however. First, because cpufreq_set_policy() obtains the min and max policy limits from frequency QoS now, it is not necessary to pass the limits to it from the callers. The only things that need to be passed to it from there are the new governor pointer or (if there is a built-in governor in the driver) the "policy" value representing the governor choice. They both can be passed as individual arguments, though, so make cpufreq_set_policy() take them this way and rework its callers accordingly. This avoids making copies of cpufreq policies in the callers of cpufreq_set_policy(). Second, cpufreq_set_policy() still needs to pass the new policy data to the ->verify() callback of the cpufreq driver whose task is to sanitize the min and max policy limits. It still does not need to make a full copy of struct cpufreq_policy for this purpose, but it needs to pass a few items from it to the driver in case they are needed (different drivers have different needs in that respect and all of them have to be covered). For this reason, introduce struct cpufreq_policy_data to hold copies of the members of struct cpufreq_policy used by the existing ->verify() driver callbacks and pass a pointer to a temporary structure of that type to ->verify() (instead of passing a pointer to full struct cpufreq_policy to it). While at it, notice that intel_pstate and longrun don't really need to verify the "policy" value in struct cpufreq_policy, so drop those check from them to avoid copying "policy" into struct cpufreq_policy_data (which allows it to be slightly smaller). Also while at it fix up white space in a couple of places and make cpufreq_set_policy() static (as it can be so). Fixes: 3000ce3c ("cpufreq: Use per-policy frequency QoS") Link: https://lore.kernel.org/linux-pm/CAMuHMdX6-jb1W8uC2_237m8ctCpsnGp=JCxqt8pCWVqNXHmkVg@mail.gmail.comReported-by: Nkbuild test robot <lkp@intel.com> Reported-by: NGeert Uytterhoeven <geert@linux-m68k.org> Cc: 5.4+ <stable@vger.kernel.org> # 5.4+ Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
- 13 1月, 2020 1 次提交
-
-
由 Harry Pan 提交于
Fix a spelling typo in the comment, no function change. Signed-off-by: NHarry Pan <harry.pan@intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 08 11月, 2019 1 次提交
-
-
由 Srinivas Pandruvada 提交于
The max value of EPB can only be 0x0F. Attempting to set more than that triggers an "unchecked MSR access error" warning which happens in intel_pstate_hwp_force_min_perf() called via cpufreq stop_cpu(). However, it is not even necessary to touch the EPB from intel_pstate, because it is restored on every CPU online by the intel_epb.c code, so let that code do the right thing and drop the redundant (and incorrect) EPB update from intel_pstate. Fixes: af3b7379 ("cpufreq: intel_pstate: Force HWP min perf before offline") Reported-by: NQian Cai <cai@lca.pw> Cc: 5.2+ <stable@vger.kernel.org> # 5.2+ Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> [ rjw: Changelog ] Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 06 11月, 2019 1 次提交
-
-
由 Jamal Shareef 提交于
Fix sparse warning: Using plain integer as NULL pointer. Replace assignment of 0 to pointers with NULL assignment. Signed-off-by: NJamal Shareef <jamal.k.shareef@gmail.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 21 10月, 2019 1 次提交
-
-
由 Rafael J. Wysocki 提交于
Replace the CPU device PM QoS used for the management of min and max frequency constraints in cpufreq (and its users) with per-policy frequency QoS to avoid problems with cpufreq policies covering more then one CPU. Namely, a cpufreq driver is registered with the subsys interface which calls cpufreq_add_dev() for each CPU, starting from CPU0, so currently the PM QoS notifiers are added to the first CPU in the policy (i.e. CPU0 in the majority of cases). In turn, when the cpufreq driver is unregistered, the subsys interface doing that calls cpufreq_remove_dev() for each CPU, starting from CPU0, and the PM QoS notifiers are only removed when cpufreq_remove_dev() is called for the last CPU in the policy, say CPUx, which as a rule is not CPU0 if the policy covers more than one CPU. Then, the PM QoS notifiers cannot be removed, because CPUx does not have them, and they are still there in the device PM QoS notifiers list of CPU0, which prevents new PM QoS notifiers from being registered for CPU0 on the next attempt to register the cpufreq driver. The same issue occurs when the first CPU in the policy goes offline before unregistering the driver. After this change it does not matter which CPU is the policy CPU at the driver registration time and whether or not it is online all the time, because the frequency QoS is per policy and not per CPU. Fixes: 67d874c3 ("cpufreq: Register notifiers with the PM QoS framework") Reported-by: NDmitry Osipenko <digetx@gmail.com> Tested-by: NDmitry Osipenko <digetx@gmail.com> Reported-by: NSudeep Holla <sudeep.holla@arm.com> Tested-by: NSudeep Holla <sudeep.holla@arm.com> Diagnosed-by: NViresh Kumar <viresh.kumar@linaro.org> Link: https://lore.kernel.org/linux-pm/5ad2624194baa2f53acc1f1e627eb7684c577a19.1562210705.git.viresh.kumar@linaro.org/T/#md2d89e95906b8c91c15f582146173dce2e86e99f Link: https://lore.kernel.org/linux-pm/20191017094612.6tbkwoq4harsjcqv@vireshk-i7/T/#m30d48cc23b9a80467fbaa16e30f90b3828a5a29bSigned-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
- 28 8月, 2019 4 次提交
-
-
由 Peter Zijlstra 提交于
Currently big microservers have _XEON_D while small microservers have _X, Make it uniformly: _D. for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_\(X\|XEON_D\)"` do sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*ATOM.*\)_X/\1_D/g' \ -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_XEON_D/\1_D/g' ${i} done Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NTony Luck <tony.luck@intel.com> Cc: x86@kernel.org Cc: Dave Hansen <dave.hansen@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Link: https://lkml.kernel.org/r/20190827195122.677152989@infradead.org
-
由 Peter Zijlstra 提交于
Currently big core clients with extra graphics on have: - _G - _GT3E Make it uniformly: _G for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_GT3E"` do sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_GT3E/\1_G/g' ${i} done Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NTony Luck <tony.luck@intel.com> Cc: x86@kernel.org Cc: Dave Hansen <dave.hansen@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Link: https://lkml.kernel.org/r/20190827195122.622802314@infradead.org
-
由 Peter Zijlstra 提交于
Currently big core mobile chips have either: - _L - _ULT - _MOBILE Make it uniformly: _L. for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_\(MOBILE\|ULT\)"` do sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_\(MOBILE\|ULT\)/\1_L/g' ${i} done Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NTony Luck <tony.luck@intel.com> Cc: x86@kernel.org Cc: Dave Hansen <dave.hansen@intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190827195122.568978530@infradead.org
-
由 Peter Zijlstra 提交于
Currently the big core client models either have: - no OPTDIFF - _CORE - _DESKTOP Make it uniformly: 'no OPTDIFF'. for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_\(CORE\|DESKTOP\)"` do sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_\(CORE\|DESKTOP\)/\1/g' ${i} done Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NTony Luck <tony.luck@intel.com> Cc: x86@kernel.org Cc: Dave Hansen <dave.hansen@intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190827195122.513945586@infradead.org
-
- 21 8月, 2019 1 次提交
-
-
由 Viresh Kumar 提交于
Intel pstate driver exposes min_perf_pct and max_perf_pct sysfs files, which can be used to force a limit on the min/max P state of the driver. Though these files eventually control the min/max frequencies that the CPUs will run at, they don't make a change to policy->min/max values. When the values of these files are changed (in passive mode of the driver), it leads to calling ->limits() callback of the cpufreq governors, like schedutil. On a call to it the governors shall forcefully update the frequency to come within the limits. Since the limits, i.e. policy->min/max, aren't updated by the driver, the governors fails to get the target freq within limit and sometimes aborts the update believing that the frequency is already set to the target value. This patch implements the QoS supported frequency constraints to update policy->min/max values whenever min_perf_pct or max_perf_pct files are updated. This is only done for the passive mode as of now, as the driver is already working fine in active mode. Fixes: ecd28842 ("cpufreq: schedutil: Don't set next_freq to UINT_MAX") Reported-by: NDoug Smythies <dsmythies@telus.net> Tested-by: NDoug Smythies <dsmythies@telus.net> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 09 7月, 2019 1 次提交
-
-
由 Viresh Kumar 提交于
The implementation of intel_pstate_update_max_freq() is quite similar to refresh_frequency_limits(), lets reuse it. Finding minimum of policy->user_policy.max and policy->cpuinfo.max_freq in intel_pstate_update_max_freq() is redundant as cpufreq_set_policy() will call the ->verify() callback of intel-pstate driver, which will do this comparison anyway and so dropping it from intel_pstate_update_max_freq() doesn't harm. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 05 6月, 2019 1 次提交
-
-
由 Thomas Gleixner 提交于
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation version 2 of the license extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 315 file(s). Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NAllison Randal <allison@lohutok.net> Reviewed-by: NArmijn Hemel <armijn@tjaldur.nl> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190531190115.503150771@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 08 4月, 2019 2 次提交
-
-
由 Borislav Petkov 提交于
Using static_cpu_has() is pointless on those paths, convert them to the boot_cpu_has() variant. No functional changes. Signed-off-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
While the cpuinfo.max_freq value doesn't really matter for intel_pstate in the active mode, in the passive mode it is used by governors as the maximum physical frequency of the CPU and the results of governor computations generally depend on it. Also it is made available to user space via sysfs and it should match the current HW configuration. For this reason, make intel_pstate update cpuinfo.max_freq for all CPUs if it detects a global change of turbo frequency settings from "disable" to "enable" or the other way associated with a _PPC change notification from the platform firmware. Note that policy_is_inactive(), cpufreq_cpu_acquire(), cpufreq_cpu_release(), and cpufreq_set_policy() need to be made available to it for this purpose. Link: https://bugzilla.kernel.org/show_bug.cgi?id=200759Reported-by: NGabriele Mazzotta <gabriele.mzt@gmail.com> Tested-by: NGabriele Mazzotta <gabriele.mzt@gmail.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
- 02 4月, 2019 2 次提交
-
-
由 Rafael J. Wysocki 提交于
In some cases, the platform firmware disables or enables turbo frequencies for all CPUs globally before triggering a _PPC change notification for one of them. Obviously, that global change affects all CPUs, not just the notified one, and it needs to be acted upon by cpufreq. The intel_pstate driver is able to detect such global changes of the settings, but it also needs to update policy limits for all CPUs if that happens, in particular if turbo frequencies are enabled globally - to allow them to be used. For this reason, introduce a new cpufreq driver callback to be invoked on _PPC notifications, if present, instead of simply calling cpufreq_update_policy() for the notified CPU and make intel_pstate use it to trigger policy updates for all CPUs in the system if global settings change. Link: https://bugzilla.kernel.org/show_bug.cgi?id=200759Reported-by: NGabriele Mazzotta <gabriele.mzt@gmail.com> Tested-by: NGabriele Mazzotta <gabriele.mzt@gmail.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
由 Borislav Petkov 提交于
This driver is Intel-only so loading on anything which is not Intel is pointless. Prevent it from doing so. While at it, correct the "not supported" print statement to say CPU "model" which is what that test does. Fixes: 076b862c (cpufreq: intel_pstate: Add reasons for failure and debug messages) Suggested-by: NErwan Velu <e.velu@criteo.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Reviewed-by: NThomas Renninger <trenn@suse.de> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 26 3月, 2019 1 次提交
-
-
由 Srinivas Pandruvada 提交于
The ACPI specification states that if the "Guaranteed Performance Register" is not implemented, the OSPM assumes guaranteed performance to always be equal to nominal performance. So for invalid or unimplemented guaranteed performance register, use nominal performance as guaranteed performance. This change will fall back to nominal_perf when guranteed_perf is invalid. If nominal_perf is also invalid or not present, fall back to the existing implementation, which is to read from HWP Capabilities MSR. Fixes: 86d333a8 ("cpufreq: intel_pstate: Add base_frequency attribute") Suggested-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: 4.20+ <stable@vger.kernel.org> # 4.20+ Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 12 3月, 2019 1 次提交
-
-
由 Rafael J. Wysocki 提交于
After commit b8bd1581 ("cpufreq: intel_pstate: Rework iowait boosting to be less aggressive") the handling of the case when the SCHED_CPUFREQ_IOWAIT flag is set again after a few iterations of intel_pstate_update_util() is a bit inconsistent, because the new value of cpu->iowait_boost may be lower than ONE_EIGHTH_FP if it was set before, but has not dropped down to zero just yet. Fix that up by ensuring that the new value of cpu->iowait_boost will always be at least ONE_EIGHTH_FP then. Fixes: b8bd1581 ("cpufreq: intel_pstate: Rework iowait boosting to be less aggressive") Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 18 2月, 2019 3 次提交
-
-
由 Rafael J. Wysocki 提交于
The current iowait boosting mechanism in intel_pstate_update_util() is quite aggressive, as it goes to the maximum P-state right away, and may cause excessive amounts of energy to be used, which is not desirable and arguably isn't necessary too. Follow commit a5a0809b ("cpufreq: schedutil: Make iowait boost more energy efficient") that reworked the analogous iowait boost mechanism in the schedutil governor and make the iowait boosting in intel_pstate_update_util() work along the same lines. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
There is only one caller of intel_pstate_get_base_pstate() and it is more straightforward to carry out the computation directly in the caller, so do that and drop intel_pstate_get_base_pstate(). No intentional changes of behavior. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
After commit 1a4fe38a ("cpufreq: intel_pstate: Remove max/min fractions to limit performance") the initial value of the pstate local variable in intel_pstate_max_within_limits() and the initial value of the max_pstate local variable in intel_pstate_prepare_request() are both immediately discarded, so initialize both these variables to their target values upfront. No intentional changes of behavior. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 13 2月, 2019 1 次提交
-
-
由 Erwan Velu 提交于
The init code path has several exceptions where the driver can decide not to load. As CONFIG_X86_INTEL_PSTATE is generally set to Y, the return code is not reachable. The initialization code is neither verbose of the reason why it did choose to prematurely exit, so it is difficult for a user to determine, on a given platform, why the driver didn't load properly. This patch is about reporting to the user the reason/context of why the driver failed to load. That is a precious hint when debugging a platform. Signed-off-by: NErwan Velu <e.velu@criteo.com> [ rjw: Subject & changelog, minor fixups ] Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 29 1月, 2019 1 次提交
-
-
由 Viresh Kumar 提交于
The cpufreq_global_kobject is created using kobject_create_and_add() helper, which assigns the kobj_type as dynamic_kobj_ktype and show/store routines are set to kobj_attr_show() and kobj_attr_store(). These routines pass struct kobj_attribute as an argument to the show/store callbacks. But all the cpufreq files created using the cpufreq_global_kobject expect the argument to be of type struct attribute. Things work fine currently as no one accesses the "attr" argument. We may not see issues even if the argument is used, as struct kobj_attribute has struct attribute as its first element and so they will both get same address. But this is logically incorrect and we should rather use struct kobj_attribute instead of struct global_attr in the cpufreq core and drivers and the show/store callbacks should take struct kobj_attribute as argument instead. This bug is caught using CFI CLANG builds in android kernel which catches mismatch in function prototypes for such callbacks. Reported-by: NDonghee Han <dh.han@samsung.com> Reported-by: NSangkyu Kim <skwith.kim@samsung.com> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 30 11月, 2018 1 次提交
-
-
由 Srinivas Pandruvada 提交于
Force HWP Request MAX = HWP Request MIN = HWP Capability MIN and EPP to 0xFF. In this way the performance limits on the offlined CPU will not influence performance limits on its sibling CPU, which is still online. If the sibling CPU is calling for higher performance, it will impact the max core performance. Here core performance will follow higher of the performance requests from each sibling. Reported-and-tested-by: NChen Yu <yu.c.chen@intel.com> Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 28 11月, 2018 1 次提交
-
-
由 Paul E. McKenney 提交于
Now that synchronize_rcu() waits for preempt-disable regions of code as well as RCU read-side critical sections, synchronize_sched() can be replaced by synchronize_rcu(). This commit therefore makes this change. Signed-off-by: NPaul E. McKenney <paulmck@linux.ibm.com> Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: Len Brown <lenb@kernel.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: <linux-pm@vger.kernel.org>
-
- 26 10月, 2018 1 次提交
-
-
由 Dominik Brodowski 提交于
While at it, add a few comments which config options #ifdef and #else statements refer to. Fixes: 86d333a8 (cpufreq: intel_pstate: Add base_frequency attribute) Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net> Acked-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 16 10月, 2018 1 次提交
-
-
由 Srinivas Pandruvada 提交于
Expose base_frequency to user space via cpufreq sysfs when HWP is in use. This HWP base frequency is read from the ACPI _CPC object if present, or from the HWP Capabilities MSR otherwise. On the majority of the HWP platforms the _CPC object will point to the HWP Capabilities MSR using the "Functional Fixed Hardware" address space type. The address space type also can simply be ACPI_TYPE_INTEGER, however, in which case the platform firmware can set its value at the initialization time based on the system constraints. Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> [ rjw: Changelog ] Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 02 10月, 2018 1 次提交
-
-
由 Peter Zijlstra 提交于
Going primarily by: https://en.wikipedia.org/wiki/List_of_Intel_Atom_microprocessors with additional information gleaned from other related pages; notably: - Bonnell shrink was called Saltwell - Moorefield is the Merriefield refresh which makes it Airmont The general naming scheme is: FAM6_ATOM_UARCH_SOCTYPE for i in `git grep -l FAM6_ATOM` ; do sed -i -e 's/ATOM_PINEVIEW/ATOM_BONNELL/g' \ -e 's/ATOM_LINCROFT/ATOM_BONNELL_MID/' \ -e 's/ATOM_PENWELL/ATOM_SALTWELL_MID/g' \ -e 's/ATOM_CLOVERVIEW/ATOM_SALTWELL_TABLET/g' \ -e 's/ATOM_CEDARVIEW/ATOM_SALTWELL/g' \ -e 's/ATOM_SILVERMONT1/ATOM_SILVERMONT/g' \ -e 's/ATOM_SILVERMONT2/ATOM_SILVERMONT_X/g' \ -e 's/ATOM_MERRIFIELD/ATOM_SILVERMONT_MID/g' \ -e 's/ATOM_MOOREFIELD/ATOM_AIRMONT_MID/g' \ -e 's/ATOM_DENVERTON/ATOM_GOLDMONT_X/g' \ -e 's/ATOM_GEMINI_LAKE/ATOM_GOLDMONT_PLUS/g' ${i} done Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: dave.hansen@linux.intel.com Cc: len.brown@intel.com Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 06 8月, 2018 1 次提交
-
-
由 Srinivas Pandruvada 提交于
When HWP is active turbo active ratio is not used, so we should allow policy max frequency above turbo activation ratio to be set. When HWP is not active, then any policy max frequency above turbo activation ratio can result upto max one-core turbo frequency. This fix helps better thermal control in turbo region when other methods like "Running Average Power Limit" is not available to use. Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 31 7月, 2018 1 次提交
-
-
由 Srinivas Pandruvada 提交于
Dynamic boosting of HWP performance on IO wake showed significant improvement to IO workloads. This series was intended for Skylake Xeon platforms only and feature was enabled by default based on CPU model number. But some Xeon platforms reused the Skylake desktop CPU model number. This caused some undesirable side effects to some graphics workloads. Since they are heavily IO bound, the increase in CPU performance decreased the power available for GPU to do its computing and hence decrease in graphics benchmark performance. For example on a Skylake desktop, GpuTest benchmark showed average FPS reduction from 529 to 506. This change makes sure that HWP boost feature is only enabled for Skylake server platforms by using ACPI FADT preferred PM Profile. If some desktop users wants to get benefit of boost, they can still enable boost from intel_pstate sysfs attribute "hwp_dynamic_boost". Fixes: 41ab43c9 (cpufreq: intel_pstate: enable boost for Skylake Xeon) Link: https://bugs.freedesktop.org/show_bug.cgi?id=107410Reported-by: NEero Tamminen <eero.t.tamminen@intel.com> Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Reviewed-by: NFrancisco Jerez <currojerez@riseup.net> Acked-by: NMel Gorman <mgorman@techsingularity.net> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 19 7月, 2018 1 次提交
-
-
由 Srinivas Pandruvada 提交于
On HWP platforms with Turbo 3.0, the HWP capability max ratio shows the maximum ratio of that core, which can be different than other cores. If we show the correct maximum frequency in cpufreq sysfs via cpuinfo_max_freq and scaling_max_freq then, user can know which cores can run faster for pinning some high priority tasks. Currently the max turbo frequency is shown as max frequency, which is the max of all cores, even if some cores can't reach that frequency even for single threaded workload. But it is possible that max ratio in HWP capabilities is set as 0xFF or some high invalid value (E.g. One KBL NUC). Since the actual performance can never exceed 1 core turbo frequency from MSR TURBO_RATIO_LIMIT, we use this as a bound check. Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 18 7月, 2018 1 次提交
-
-
由 Rafael J. Wysocki 提交于
Currently, intel_pstate doesn't register if _PSS is not present on HP Proliant systems, because it expects the firmware to take over CPU performance scaling in that case. However, if ACPI PCCH is present, the firmware expects the kernel to use it for CPU performance scaling and the pcc-cpufreq driver is loaded for that. Unfortunately, the firmware interface used by that driver is not scalable for fundamental reasons, so pcc-cpufreq is way suboptimal on systems with more than just a few CPUs. In fact, it is better to avoid using it at all. For this reason, modify intel_pstate to look for ACPI PCCH if _PSS is not present and register if it is there. Also prevent the pcc-cpufreq driver from trying to initialize itself if intel_pstate has been registered already. Fixes: fbbcdc07 (intel_pstate: skip the driver if ACPI has power mgmt option) Reported-by: NAndreas Herrmann <aherrmann@suse.com> Reviewed-by: NAndreas Herrmann <aherrmann@suse.com> Acked-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Tested-by: NAndreas Herrmann <aherrmann@suse.com> Cc: 4.16+ <stable@vger.kernel.org> # 4.16+ Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 02 7月, 2018 1 次提交
-
-
由 Xie Yisheng 提交于
match_string() returns the index of an array for a matching string, which can be used instead of open coded variant. Reviewed-by: NAndy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: NYisheng Xie <xieyisheng1@huawei.com> Acked-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 19 6月, 2018 1 次提交
-
-
由 Srinivas Pandruvada 提交于
When scaling max/min settings are changed, internally they are converted to a ratio using the max turbo 1 core turbo frequency. This works fine when 1 core max is same irrespective of the core. But under Turbo 3.0, this will not be the case. For example: Core 0: max turbo pstate: 43 (4.3GHz) Core 1: max turbo pstate: 45 (4.5GHz) In this case 1 core turbo ratio will be maximum of all, so it will be 45 (4.5GHz). Suppose scaling max is set to 4GHz (ratio 40) for all cores ,then on core one it will be = max_state * policy->max / max_freq; = 43 * (4000000/4500000) = 38 (3.8GHz) = 38 which is 200MHz less than the desired. On core2, it will be correctly set to ratio 40 (4GHz). Same holds true for scaling min frequency limit. So this requires usage of correct turbo max frequency for core one, which in this case is 4.3GHz. So we need to adjust per CPU cpu->pstate.turbo_freq using the maximum HWP ratio of that core. This change uses the HWP capability of a core to adjust max turbo frequency. But since Broadwell HWP doesn't use ratios in the HWP capabilities, we have to use legacy max 1 core turbo ratio. This is not a problem as the HWP capabilities don't differ among cores in Broadwell. We need to check for non Broadwell CPU model for applying this change, though. Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: 4.6+ <stable@vger.kernel.org> # 4.6+ Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 13 6月, 2018 1 次提交
-
-
由 Kees Cook 提交于
The vzalloc() function has no 2-factor argument form, so multiplication factors need to be wrapped in array_size(). This patch replaces cases of: vzalloc(a * b) with: vzalloc(array_size(a, b)) as well as handling cases of: vzalloc(a * b * c) with: vzalloc(array3_size(a, b, c)) This does, however, attempt to ignore constant size factors like: vzalloc(4 * 1024) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( vzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | vzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( vzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(u8) * COUNT + COUNT , ...) | vzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | vzalloc( - sizeof(char) * COUNT + COUNT , ...) | vzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( vzalloc( - sizeof(TYPE) * (COUNT_ID) + array_size(COUNT_ID, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT_ID + array_size(COUNT_ID, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * (COUNT_CONST) + array_size(COUNT_CONST, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT_CONST + array_size(COUNT_CONST, sizeof(TYPE)) , ...) | vzalloc( - sizeof(THING) * (COUNT_ID) + array_size(COUNT_ID, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT_ID + array_size(COUNT_ID, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * (COUNT_CONST) + array_size(COUNT_CONST, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT_CONST + array_size(COUNT_CONST, sizeof(THING)) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ vzalloc( - SIZE * COUNT + array_size(COUNT, SIZE) , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( vzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( vzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | vzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | vzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | vzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | vzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | vzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( vzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( vzalloc(C1 * C2 * C3, ...) | vzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants. @@ expression E1, E2; constant C1, C2; @@ ( vzalloc(C1 * C2, ...) | vzalloc( - E1 * E2 + array_size(E1, E2) , ...) ) Signed-off-by: NKees Cook <keescook@chromium.org>
-