1. 28 7月, 2014 3 次提交
    • P
      KVM: PPC: Book3S: Controls for in-kernel sPAPR hypercall handling · 699a0ea0
      Paul Mackerras 提交于
      This provides a way for userspace controls which sPAPR hcalls get
      handled in the kernel.  Each hcall can be individually enabled or
      disabled for in-kernel handling, except for H_RTAS.  The exception
      for H_RTAS is because userspace can already control whether
      individual RTAS functions are handled in-kernel or not via the
      KVM_PPC_RTAS_DEFINE_TOKEN ioctl, and because the numeric value for
      H_RTAS is out of the normal sequence of hcall numbers.
      
      Hcalls are enabled or disabled using the KVM_ENABLE_CAP ioctl for the
      KVM_CAP_PPC_ENABLE_HCALL capability on the file descriptor for the VM.
      The args field of the struct kvm_enable_cap specifies the hcall number
      in args[0] and the enable/disable flag in args[1]; 0 means disable
      in-kernel handling (so that the hcall will always cause an exit to
      userspace) and 1 means enable.  Enabling or disabling in-kernel
      handling of an hcall is effective across the whole VM.
      
      The ability for KVM_ENABLE_CAP to be used on a VM file descriptor
      on PowerPC is new, added by this commit.  The KVM_CAP_ENABLE_CAP_VM
      capability advertises that this ability exists.
      
      When a VM is created, an initial set of hcalls are enabled for
      in-kernel handling.  The set that is enabled is the set that have
      an in-kernel implementation at this point.  Any new hcall
      implementations from this point onwards should not be added to the
      default set without a good reason.
      
      No distinction is made between real-mode and virtual-mode hcall
      implementations; the one setting controls them both.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      699a0ea0
    • A
      KVM: PPC: BOOK3S: PR: Emulate instruction counter · 06da28e7
      Aneesh Kumar K.V 提交于
      Writing to IC is not allowed in the privileged mode.
      Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      06da28e7
    • A
      KVM: PPC: BOOK3S: PR: Emulate virtual timebase register · 8f42ab27
      Aneesh Kumar K.V 提交于
      virtual time base register is a per VM, per cpu register that needs
      to be saved and restored on vm exit and entry. Writing to VTB is not
      allowed in the privileged mode.
      Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      [agraf: fix compile error]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      8f42ab27
  2. 06 7月, 2014 1 次提交
  3. 30 5月, 2014 5 次提交
    • A
      KVM: PPC: Disable NX for old magic page using guests · f3383cf8
      Alexander Graf 提交于
      Old guests try to use the magic page, but map their trampoline code inside
      of an NX region.
      
      Since we can't fix those old kernels, try to detect whether the guest is sane
      or not. If not, just disable NX functionality in KVM so that old guests at
      least work at all. For newer guests, add a bit that we can set to keep NX
      functionality available.
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      f3383cf8
    • A
      KVM: PPC: Book3S PR: Expose TAR facility to guest · e14e7a1e
      Alexander Graf 提交于
      POWER8 implements a new register called TAR. This register has to be
      enabled in FSCR and then from KVM's point of view is mere storage.
      
      This patch enables the guest to use TAR.
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      e14e7a1e
    • A
      KVM: PPC: Book3S PR: Handle Facility interrupt and FSCR · 616dff86
      Alexander Graf 提交于
      POWER8 introduced a new interrupt type called "Facility unavailable interrupt"
      which contains its status message in a new register called FSCR.
      
      Handle these exits and try to emulate instructions for unhandled facilities.
      Follow-on patches enable KVM to expose specific facilities into the guest.
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      616dff86
    • A
      KVM: PPC: Make shared struct aka magic page guest endian · 5deb8e7a
      Alexander Graf 提交于
      The shared (magic) page is a data structure that contains often used
      supervisor privileged SPRs accessible via memory to the user to reduce
      the number of exits we have to take to read/write them.
      
      When we actually share this structure with the guest we have to maintain
      it in guest endianness, because some of the patch tricks only work with
      native endian load/store operations.
      
      Since we only share the structure with either host or guest in little
      endian on book3s_64 pr mode, we don't have to worry about booke or book3s hv.
      
      For booke, the shared struct stays big endian. For book3s_64 hv we maintain
      the struct in host native endian, since it never gets shared with the guest.
      
      For book3s_64 pr we introduce a variable that tells us which endianness the
      shared struct is in and route every access to it through helper inline
      functions that evaluate this variable.
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      5deb8e7a
    • A
      KVM: PPC: BOOK3S: PR: Enable Little Endian PR guest · e5ee5422
      Aneesh Kumar K.V 提交于
      This patch make sure we inherit the LE bit correctly in different case
      so that we can run Little Endian distro in PR mode
      Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      e5ee5422
  4. 27 1月, 2014 5 次提交
    • M
      KVM: PPC: Book3S HV: Add new state for transactional memory · 7b490411
      Michael Neuling 提交于
      Add new state for transactional memory (TM) to kvm_vcpu_arch.  Also add
      asm-offset bits that are going to be required.
      
      This also moves the existing TFHAR, TFIAR and TEXASR SPRs into a
      CONFIG_PPC_TRANSACTIONAL_MEM section.  This requires some code changes to
      ensure we still compile with CONFIG_PPC_TRANSACTIONAL_MEM=N.  Much of the added
      the added #ifdefs are removed in a later patch when the bulk of the TM code is
      added.
      Signed-off-by: NMichael Neuling <mikey@neuling.org>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      [agraf: fix merge conflict]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      7b490411
    • A
      KVM: PPC: Book3S HV: Basic little-endian guest support · d682916a
      Anton Blanchard 提交于
      We create a guest MSR from scratch when delivering exceptions in
      a few places.  Instead of extracting LPCR[ILE] and inserting it
      into MSR_LE each time, we simply create a new variable intr_msr which
      contains the entire MSR to use.  For a little-endian guest, userspace
      needs to set the ILE (interrupt little-endian) bit in the LPCR for
      each vcpu (or at least one vcpu in each virtual core).
      
      [paulus@samba.org - removed H_SET_MODE implementation from original
      version of the patch, and made kvmppc_set_lpcr update vcpu->arch.intr_msr.]
      Signed-off-by: NAnton Blanchard <anton@samba.org>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      d682916a
    • P
      KVM: PPC: Book3S HV: Add support for DABRX register on POWER7 · 8563bf52
      Paul Mackerras 提交于
      The DABRX (DABR extension) register on POWER7 processors provides finer
      control over which accesses cause a data breakpoint interrupt.  It
      contains 3 bits which indicate whether to enable accesses in user,
      kernel and hypervisor modes respectively to cause data breakpoint
      interrupts, plus one bit that enables both real mode and virtual mode
      accesses to cause interrupts.  Currently, KVM sets DABRX to allow
      both kernel and user accesses to cause interrupts while in the guest.
      
      This adds support for the guest to specify other values for DABRX.
      PAPR defines a H_SET_XDABR hcall to allow the guest to set both DABR
      and DABRX with one call.  This adds a real-mode implementation of
      H_SET_XDABR, which shares most of its code with the existing H_SET_DABR
      implementation.  To support this, we add a per-vcpu field to store the
      DABRX value plus code to get and set it via the ONE_REG interface.
      
      For Linux guests to use this new hcall, userspace needs to add
      "hcall-xdabr" to the set of strings in the /chosen/hypertas-functions
      property in the device tree.  If userspace does this and then migrates
      the guest to a host where the kernel doesn't include this patch, then
      userspace will need to implement H_SET_XDABR by writing the specified
      DABR value to the DABR using the ONE_REG interface.  In that case, the
      old kernel will set DABRX to DABRX_USER | DABRX_KERNEL.  That should
      still work correctly, at least for Linux guests, since Linux guests
      cope with getting data breakpoint interrupts in modes that weren't
      requested by just ignoring the interrupt, and Linux guests never set
      DABRX_BTI.
      
      The other thing this does is to make H_SET_DABR and H_SET_XDABR work
      on POWER8, which has the DAWR and DAWRX instead of DABR/X.  Guests that
      know about POWER8 should use H_SET_MODE rather than H_SET_[X]DABR, but
      guests running in POWER7 compatibility mode will still use H_SET_[X]DABR.
      For them, this adds the logic to convert DABR/X values into DAWR/X values
      on POWER8.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      8563bf52
    • M
      KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs · b005255e
      Michael Neuling 提交于
      This adds fields to the struct kvm_vcpu_arch to store the new
      guest-accessible SPRs on POWER8, adds code to the get/set_one_reg
      functions to allow userspace to access this state, and adds code to
      the guest entry and exit to context-switch these SPRs between host
      and guest.
      
      Note that DPDES (Directed Privileged Doorbell Exception State) is
      shared between threads on a core; hence we store it in struct
      kvmppc_vcore and have the master thread save and restore it.
      Signed-off-by: NMichael Neuling <mikey@neuling.org>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      b005255e
    • P
      KVM: PPC: Book3S HV: Align physical and virtual CPU thread numbers · e0b7ec05
      Paul Mackerras 提交于
      On a threaded processor such as POWER7, we group VCPUs into virtual
      cores and arrange that the VCPUs in a virtual core run on the same
      physical core.  Currently we don't enforce any correspondence between
      virtual thread numbers within a virtual core and physical thread
      numbers.  Physical threads are allocated starting at 0 on a first-come
      first-served basis to runnable virtual threads (VCPUs).
      
      POWER8 implements a new "msgsndp" instruction which guest kernels can
      use to interrupt other threads in the same core or sub-core.  Since
      the instruction takes the destination physical thread ID as a parameter,
      it becomes necessary to align the physical thread IDs with the virtual
      thread IDs, that is, to make sure virtual thread N within a virtual
      core always runs on physical thread N.
      
      This means that it's possible that thread 0, which is where we call
      __kvmppc_vcore_entry, may end up running some other vcpu than the
      one whose task called kvmppc_run_core(), or it may end up running
      no vcpu at all, if for example thread 0 of the virtual core is
      currently executing in userspace.  However, we do need thread 0
      to be responsible for switching the MMU -- a previous version of
      this patch that had other threads switching the MMU was found to
      be responsible for occasional memory corruption and machine check
      interrupts in the guest on POWER7 machines.
      
      To accommodate this, we no longer pass the vcpu pointer to
      __kvmppc_vcore_entry, but instead let the assembly code load it from
      the PACA.  Since the assembly code will need to know the kvm pointer
      and the thread ID for threads which don't have a vcpu, we move the
      thread ID into the PACA and we add a kvm pointer to the virtual core
      structure.
      
      In the case where thread 0 has no vcpu to run, it still calls into
      kvmppc_hv_entry in order to do the MMU switch, and then naps until
      either its vcpu is ready to run in the guest, or some other thread
      needs to exit the guest.  In the latter case, thread 0 jumps to the
      code that switches the MMU back to the host.  This control flow means
      that now we switch the MMU before loading any guest vcpu state.
      Similarly, on guest exit we now save all the guest vcpu state before
      switching the MMU back to the host.  This has required substantial
      code movement, making the diff rather large.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      e0b7ec05
  5. 09 1月, 2014 2 次提交
  6. 18 10月, 2013 1 次提交
  7. 17 10月, 2013 14 次提交
    • A
      kvm: powerpc: book3s: Add a new config variable CONFIG_KVM_BOOK3S_HV_POSSIBLE · 9975f5e3
      Aneesh Kumar K.V 提交于
      This help ups to select the relevant code in the kernel code
      when we later move HV and PR bits as seperate modules. The patch
      also makes the config options for PR KVM selectable
      Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      9975f5e3
    • A
      kvm: powerpc: book3s: pr: Rename KVM_BOOK3S_PR to KVM_BOOK3S_PR_POSSIBLE · 7aa79938
      Aneesh Kumar K.V 提交于
      With later patches supporting PR kvm as a kernel module, the changes
      that has to be built into the main kernel binary to enable PR KVM module
      is now selected via KVM_BOOK3S_PR_POSSIBLE
      Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      7aa79938
    • B
      KVM: PPC: E500: Add userspace debug stub support · ce11e48b
      Bharat Bhushan 提交于
      This patch adds the debug stub support on booke/bookehv.
      Now QEMU debug stub can use hw breakpoint, watchpoint and
      software breakpoint to debug guest.
      
      This is how we save/restore debug register context when switching
      between guest, userspace and kernel user-process:
      
      When QEMU is running
       -> thread->debug_reg == QEMU debug register context.
       -> Kernel will handle switching the debug register on context switch.
       -> no vcpu_load() called
      
      QEMU makes ioctls (except RUN)
       -> This will call vcpu_load()
       -> should not change context.
       -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs
      
      QEMU Makes RUN ioctl
       -> Save thread->debug_reg on STACK
       -> Store thread->debug_reg == vcpu->debug_reg
       -> load thread->debug_reg
       -> RUN VCPU ( So thread points to vcpu context )
      
      Context switch happens When VCPU running
       -> makes vcpu_load() should not load any context
       -> kernel loads the vcpu context as thread->debug_regs points to vcpu context.
      
      On heavyweight_exit
       -> Load the context saved on stack in thread->debug_reg
      
      Currently we do not support debug resource emulation to guest,
      On debug exception, always exit to user space irrespective of
      user space is expecting the debug exception or not. If this is
      unexpected exception (breakpoint/watchpoint event not set by
      userspace) then let us leave the action on user space. This
      is similar to what it was before, only thing is that now we
      have proper exit state available to user space.
      Signed-off-by: NBharat Bhushan <bharat.bhushan@freescale.com>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      ce11e48b
    • B
      KVM: PPC: E500: Using "struct debug_reg" · 547465ef
      Bharat Bhushan 提交于
      For KVM also use the "struct debug_reg" defined in asm/processor.h
      Signed-off-by: NBharat Bhushan <bharat.bhushan@freescale.com>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      547465ef
    • P
      KVM: PPC: Book3S PR: Better handling of host-side read-only pages · 93b159b4
      Paul Mackerras 提交于
      Currently we request write access to all pages that get mapped into the
      guest, even if the guest is only loading from the page.  This reduces
      the effectiveness of KSM because it means that we unshare every page we
      access.  Also, we always set the changed (C) bit in the guest HPTE if
      it allows writing, even for a guest load.
      
      This fixes both these problems.  We pass an 'iswrite' flag to the
      mmu.xlate() functions and to kvmppc_mmu_map_page() to indicate whether
      the access is a load or a store.  The mmu.xlate() functions now only
      set C for stores.  kvmppc_gfn_to_pfn() now calls gfn_to_pfn_prot()
      instead of gfn_to_pfn() so that it can indicate whether we need write
      access to the page, and get back a 'writable' flag to indicate whether
      the page is writable or not.  If that 'writable' flag is clear, we then
      make the host HPTE read-only even if the guest HPTE allowed writing.
      
      This means that we can get a protection fault when the guest writes to a
      page that it has mapped read-write but which is read-only on the host
      side (perhaps due to KSM having merged the page).  Thus we now call
      kvmppc_handle_pagefault() for protection faults as well as HPTE not found
      faults.  In kvmppc_handle_pagefault(), if the access was allowed by the
      guest HPTE and we thus need to install a new host HPTE, we then need to
      remove the old host HPTE if there is one.  This is done with a new
      function, kvmppc_mmu_unmap_page(), which uses kvmppc_mmu_pte_vflush() to
      find and remove the old host HPTE.
      
      Since the memslot-related functions require the KVM SRCU read lock to
      be held, this adds srcu_read_lock/unlock pairs around the calls to
      kvmppc_handle_pagefault().
      
      Finally, this changes kvmppc_mmu_book3s_32_xlate_pte() to not ignore
      guest HPTEs that don't permit access, and to return -EPERM for accesses
      that are not permitted by the page protections.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      93b159b4
    • P
      KVM: PPC: Book3S PR: Allocate kvm_vcpu structs from kvm_vcpu_cache · 3ff95502
      Paul Mackerras 提交于
      This makes PR KVM allocate its kvm_vcpu structs from the kvm_vcpu_cache
      rather than having them embedded in the kvmppc_vcpu_book3s struct,
      which is allocated with vzalloc.  The reason is to reduce the
      differences between PR and HV KVM in order to make is easier to have
      them coexist in one kernel binary.
      
      With this, the kvm_vcpu struct has a pointer to the kvmppc_vcpu_book3s
      struct.  The pointer to the kvmppc_book3s_shadow_vcpu struct has moved
      from the kvmppc_vcpu_book3s struct to the kvm_vcpu struct, and is only
      present for 32-bit, since it is only used for 32-bit.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      [agraf: squash in compile fix from Aneesh]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      3ff95502
    • P
      KVM: PPC: Book3S PR: Make HPT accesses and updates SMP-safe · 9308ab8e
      Paul Mackerras 提交于
      This adds a per-VM mutex to provide mutual exclusion between vcpus
      for accesses to and updates of the guest hashed page table (HPT).
      This also makes the code use single-byte writes to the HPT entry
      when updating of the reference (R) and change (C) bits.  The reason
      for doing this, rather than writing back the whole HPTE, is that on
      non-PAPR virtual machines, the guest OS might be writing to the HPTE
      concurrently, and writing back the whole HPTE might conflict with
      that.  Also, real hardware does single-byte writes to update R and C.
      
      The new mutex is taken in kvmppc_mmu_book3s_64_xlate() when reading
      the HPT and updating R and/or C, and in the PAPR HPT update hcalls
      (H_ENTER, H_REMOVE, etc.).  Having the mutex means that we don't need
      to use a hypervisor lock bit in the HPT update hcalls, and we don't
      need to be careful about the order in which the bytes of the HPTE are
      updated by those hcalls.
      
      The other change here is to make emulated TLB invalidations (tlbie)
      effective across all vcpus.  To do this we call kvmppc_mmu_pte_vflush
      for all vcpus in kvmppc_ppc_book3s_64_tlbie().
      
      For 32-bit, this makes the setting of the accessed and dirty bits use
      single-byte writes, and makes tlbie invalidate shadow HPTEs for all
      vcpus.
      
      With this, PR KVM can successfully run SMP guests.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      9308ab8e
    • P
      KVM: PPC: Book3S PR: Allow guest to use 64k pages · a4a0f252
      Paul Mackerras 提交于
      This adds the code to interpret 64k HPTEs in the guest hashed page
      table (HPT), 64k SLB entries, and to tell the guest about 64k pages
      in kvm_vm_ioctl_get_smmu_info().  Guest 64k pages are still shadowed
      by 4k pages.
      
      This also adds another hash table to the four we have already in
      book3s_mmu_hpte.c to allow us to find all the PTEs that we have
      instantiated that match a given 64k guest page.
      
      The tlbie instruction changed starting with POWER6 to use a bit in
      the RB operand to indicate large page invalidations, and to use other
      RB bits to indicate the base and actual page sizes and the segment
      size.  64k pages came in slightly earlier, with POWER5++.
      We use one bit in vcpu->arch.hflags to indicate that the emulated
      cpu supports 64k pages, and another to indicate that it has the new
      tlbie definition.
      
      The KVM_PPC_GET_SMMU_INFO ioctl presents a bit of a problem, because
      the MMU capabilities depend on which CPU model we're emulating, but it
      is a VM ioctl not a VCPU ioctl and therefore doesn't get passed a VCPU
      fd.  In addition, commonly-used userspace (QEMU) calls it before
      setting the PVR for any VCPU.  Therefore, as a best effort we look at
      the first vcpu in the VM and return 64k pages or not depending on its
      capabilities.  We also make the PVR default to the host PVR on recent
      CPUs that support 1TB segments (and therefore multiple page sizes as
      well) so that KVM_PPC_GET_SMMU_INFO will include 64k page and 1TB
      segment support on those CPUs.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      a4a0f252
    • P
      KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu · a2d56020
      Paul Mackerras 提交于
      Currently PR-style KVM keeps the volatile guest register values
      (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than
      the main kvm_vcpu struct.  For 64-bit, the shadow_vcpu exists in two
      places, a kmalloc'd struct and in the PACA, and it gets copied back
      and forth in kvmppc_core_vcpu_load/put(), because the real-mode code
      can't rely on being able to access the kmalloc'd struct.
      
      This changes the code to copy the volatile values into the shadow_vcpu
      as one of the last things done before entering the guest.  Similarly
      the values are copied back out of the shadow_vcpu to the kvm_vcpu
      immediately after exiting the guest.  We arrange for interrupts to be
      still disabled at this point so that we can't get preempted on 64-bit
      and end up copying values from the wrong PACA.
      
      This means that the accessor functions in kvm_book3s.h for these
      registers are greatly simplified, and are same between PR and HV KVM.
      In places where accesses to shadow_vcpu fields are now replaced by
      accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs.
      Finally, on 64-bit, we don't need the kmalloc'd struct at all any more.
      
      With this, the time to read the PVR one million times in a loop went
      from 567.7ms to 575.5ms (averages of 6 values), an increase of about
      1.4% for this worse-case test for guest entries and exits.  The
      standard deviation of the measurements is about 11ms, so the
      difference is only marginally significant statistically.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      a2d56020
    • P
      KVM: PPC: Book3S HV: Support POWER6 compatibility mode on POWER7 · 388cc6e1
      Paul Mackerras 提交于
      This enables us to use the Processor Compatibility Register (PCR) on
      POWER7 to put the processor into architecture 2.05 compatibility mode
      when running a guest.  In this mode the new instructions and registers
      that were introduced on POWER7 are disabled in user mode.  This
      includes all the VSX facilities plus several other instructions such
      as ldbrx, stdbrx, popcntw, popcntd, etc.
      
      To select this mode, we have a new register accessible through the
      set/get_one_reg interface, called KVM_REG_PPC_ARCH_COMPAT.  Setting
      this to zero gives the full set of capabilities of the processor.
      Setting it to one of the "logical" PVR values defined in PAPR puts
      the vcpu into the compatibility mode for the corresponding
      architecture level.  The supported values are:
      
      0x0f000002	Architecture 2.05 (POWER6)
      0x0f000003	Architecture 2.06 (POWER7)
      0x0f100003	Architecture 2.06+ (POWER7+)
      
      Since the PCR is per-core, the architecture compatibility level and
      the corresponding PCR value are stored in the struct kvmppc_vcore, and
      are therefore shared between all vcpus in a virtual core.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      [agraf: squash in fix to add missing break statements and documentation]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      388cc6e1
    • P
      KVM: PPC: Book3S HV: Add support for guest Program Priority Register · 4b8473c9
      Paul Mackerras 提交于
      POWER7 and later IBM server processors have a register called the
      Program Priority Register (PPR), which controls the priority of
      each hardware CPU SMT thread, and affects how fast it runs compared
      to other SMT threads.  This priority can be controlled by writing to
      the PPR or by use of a set of instructions of the form or rN,rN,rN
      which are otherwise no-ops but have been defined to set the priority
      to particular levels.
      
      This adds code to context switch the PPR when entering and exiting
      guests and to make the PPR value accessible through the SET/GET_ONE_REG
      interface.  When entering the guest, we set the PPR as late as
      possible, because if we are setting a low thread priority it will
      make the code run slowly from that point on.  Similarly, the
      first-level interrupt handlers save the PPR value in the PACA very
      early on, and set the thread priority to the medium level, so that
      the interrupt handling code runs at a reasonable speed.
      Acked-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      4b8473c9
    • P
      KVM: PPC: Book3S HV: Store LPCR value for each virtual core · a0144e2a
      Paul Mackerras 提交于
      This adds the ability to have a separate LPCR (Logical Partitioning
      Control Register) value relating to a guest for each virtual core,
      rather than only having a single value for the whole VM.  This
      corresponds to what real POWER hardware does, where there is a LPCR
      per CPU thread but most of the fields are required to have the same
      value on all active threads in a core.
      
      The per-virtual-core LPCR can be read and written using the
      GET/SET_ONE_REG interface.  Userspace can can only modify the
      following fields of the LPCR value:
      
      DPFD	Default prefetch depth
      ILE	Interrupt little-endian
      TC	Translation control (secondary HPT hash group search disable)
      
      We still maintain a per-VM default LPCR value in kvm->arch.lpcr, which
      contains bits relating to memory management, i.e. the Virtualized
      Partition Memory (VPM) bits and the bits relating to guest real mode.
      When this default value is updated, the update needs to be propagated
      to the per-vcore values, so we add a kvmppc_update_lpcr() helper to do
      that.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      [agraf: fix whitespace]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      a0144e2a
    • P
      KVM: PPC: Book3S HV: Implement timebase offset for guests · 93b0f4dc
      Paul Mackerras 提交于
      This allows guests to have a different timebase origin from the host.
      This is needed for migration, where a guest can migrate from one host
      to another and the two hosts might have a different timebase origin.
      However, the timebase seen by the guest must not go backwards, and
      should go forwards only by a small amount corresponding to the time
      taken for the migration.
      
      Therefore this provides a new per-vcpu value accessed via the one_reg
      interface using the new KVM_REG_PPC_TB_OFFSET identifier.  This value
      defaults to 0 and is not modified by KVM.  On entering the guest, this
      value is added onto the timebase, and on exiting the guest, it is
      subtracted from the timebase.
      
      This is only supported for recent POWER hardware which has the TBU40
      (timebase upper 40 bits) register.  Writing to the TBU40 register only
      alters the upper 40 bits of the timebase, leaving the lower 24 bits
      unchanged.  This provides a way to modify the timebase for guest
      migration without disturbing the synchronization of the timebase
      registers across CPU cores.  The kernel rounds up the value given
      to a multiple of 2^24.
      
      Timebase values stored in KVM structures (struct kvm_vcpu, struct
      kvmppc_vcore, etc.) are stored as host timebase values.  The timebase
      values in the dispatch trace log need to be guest timebase values,
      however, since that is read directly by the guest.  This moves the
      setting of vcpu->arch.dec_expires on guest exit to a point after we
      have restored the host timebase so that vcpu->arch.dec_expires is a
      host timebase value.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      93b0f4dc
    • P
      KVM: PPC: Book3S HV: Save/restore SIAR and SDAR along with other PMU registers · 14941789
      Paul Mackerras 提交于
      Currently we are not saving and restoring the SIAR and SDAR registers in
      the PMU (performance monitor unit) on guest entry and exit.  The result
      is that performance monitoring tools in the guest could get false
      information about where a program was executing and what data it was
      accessing at the time of a performance monitor interrupt.  This fixes
      it by saving and restoring these registers along with the other PMU
      registers on guest entry/exit.
      
      This also provides a way for userspace to access these values for a
      vcpu via the one_reg interface.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      14941789
  8. 14 10月, 2013 1 次提交
  9. 08 7月, 2013 2 次提交
  10. 27 4月, 2013 6 次提交
    • B
      KVM: PPC: Book3S: Add kernel emulation for the XICS interrupt controller · bc5ad3f3
      Benjamin Herrenschmidt 提交于
      This adds in-kernel emulation of the XICS (eXternal Interrupt
      Controller Specification) interrupt controller specified by PAPR, for
      both HV and PR KVM guests.
      
      The XICS emulation supports up to 1048560 interrupt sources.
      Interrupt source numbers below 16 are reserved; 0 is used to mean no
      interrupt and 2 is used for IPIs.  Internally these are represented in
      blocks of 1024, called ICS (interrupt controller source) entities, but
      that is not visible to userspace.
      
      Each vcpu gets one ICP (interrupt controller presentation) entity,
      used to store the per-vcpu state such as vcpu priority, pending
      interrupt state, IPI request, etc.
      
      This does not include any API or any way to connect vcpus to their
      ICP state; that will be added in later patches.
      
      This is based on an initial implementation by Michael Ellerman
      <michael@ellerman.id.au> reworked by Benjamin Herrenschmidt and
      Paul Mackerras.
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      [agraf: fix typo, add dependency on !KVM_MPIC]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      bc5ad3f3
    • M
      KVM: PPC: Book3S: Add infrastructure to implement kernel-side RTAS calls · 8e591cb7
      Michael Ellerman 提交于
      For pseries machine emulation, in order to move the interrupt
      controller code to the kernel, we need to intercept some RTAS
      calls in the kernel itself.  This adds an infrastructure to allow
      in-kernel handlers to be registered for RTAS services by name.
      A new ioctl, KVM_PPC_RTAS_DEFINE_TOKEN, then allows userspace to
      associate token values with those service names.  Then, when the
      guest requests an RTAS service with one of those token values, it
      will be handled by the relevant in-kernel handler rather than being
      passed up to userspace as at present.
      Signed-off-by: NMichael Ellerman <michael@ellerman.id.au>
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      [agraf: fix warning]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      8e591cb7
    • A
      KVM: PPC: Support irq routing and irqfd for in-kernel MPIC · de9ba2f3
      Alexander Graf 提交于
      Now that all the irq routing and irqfd pieces are generic, we can expose
      real irqchip support to all of KVM's internal helpers.
      
      This allows us to use irqfd with the in-kernel MPIC.
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      de9ba2f3
    • S
      kvm/ppc/mpic: add KVM_CAP_IRQ_MPIC · eb1e4f43
      Scott Wood 提交于
      Enabling this capability connects the vcpu to the designated in-kernel
      MPIC.  Using explicit connections between vcpus and irqchips allows
      for flexibility, but the main benefit at the moment is that it
      simplifies the code -- KVM doesn't need vm-global state to remember
      which MPIC object is associated with this vm, and it doesn't need to
      care about ordering between irqchip creation and vcpu creation.
      Signed-off-by: NScott Wood <scottwood@freescale.com>
      [agraf: add stub functions for kvmppc_mpic_{dis,}connect_vcpu]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      eb1e4f43
    • S
      kvm/ppc/mpic: in-kernel MPIC emulation · 5df554ad
      Scott Wood 提交于
      Hook the MPIC code up to the KVM interfaces, add locking, etc.
      Signed-off-by: NScott Wood <scottwood@freescale.com>
      [agraf: add stub function for kvmppc_mpic_set_epr, non-booke, 64bit]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      5df554ad
    • P
      KVM: PPC: Book3S HV: Report VPA and DTL modifications in dirty map · c35635ef
      Paul Mackerras 提交于
      At present, the KVM_GET_DIRTY_LOG ioctl doesn't report modifications
      done by the host to the virtual processor areas (VPAs) and dispatch
      trace logs (DTLs) registered by the guest.  This is because those
      modifications are done either in real mode or in the host kernel
      context, and in neither case does the access go through the guest's
      HPT, and thus no change (C) bit gets set in the guest's HPT.
      
      However, the changes done by the host do need to be tracked so that
      the modified pages get transferred when doing live migration.  In
      order to track these modifications, this adds a dirty flag to the
      struct representing the VPA/DTL areas, and arranges to set the flag
      when the VPA/DTL gets modified by the host.  Then, when we are
      collecting the dirty log, we also check the dirty flags for the
      VPA and DTL for each vcpu and set the relevant bit in the dirty log
      if necessary.  Doing this also means we now need to keep track of
      the guest physical address of the VPA/DTL areas.
      
      So as not to lose track of modifications to a VPA/DTL area when it gets
      unregistered, or when a new area gets registered in its place, we need
      to transfer the dirty state to the rmap chain.  This adds code to
      kvmppc_unpin_guest_page() to do that if the area was dirty.  To simplify
      that code, we now require that all VPA, DTL and SLB shadow buffer areas
      fit within a single host page.  Guests already comply with this
      requirement because pHyp requires that these areas not cross a 4k
      boundary.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      c35635ef