1. 12 4月, 2014 1 次提交
    • D
      net: Fix use after free by removing length arg from sk_data_ready callbacks. · 676d2369
      David S. Miller 提交于
      Several spots in the kernel perform a sequence like:
      
      	skb_queue_tail(&sk->s_receive_queue, skb);
      	sk->sk_data_ready(sk, skb->len);
      
      But at the moment we place the SKB onto the socket receive queue it
      can be consumed and freed up.  So this skb->len access is potentially
      to freed up memory.
      
      Furthermore, the skb->len can be modified by the consumer so it is
      possible that the value isn't accurate.
      
      And finally, no actual implementation of this callback actually uses
      the length argument.  And since nobody actually cared about it's
      value, lots of call sites pass arbitrary values in such as '0' and
      even '1'.
      
      So just remove the length argument from the callback, that way there
      is no confusion whatsoever and all of these use-after-free cases get
      fixed as a side effect.
      
      Based upon a patch by Eric Dumazet and his suggestion to audit this
      issue tree-wide.
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      676d2369
  2. 10 4月, 2014 1 次提交
    • D
      net: sctp: test if association is dead in sctp_wake_up_waiters · 1e1cdf8a
      Daniel Borkmann 提交于
      In function sctp_wake_up_waiters(), we need to involve a test
      if the association is declared dead. If so, we don't have any
      reference to a possible sibling association anymore and need
      to invoke sctp_write_space() instead, and normally walk the
      socket's associations and notify them of new wmem space. The
      reason for special casing is that otherwise, we could run
      into the following issue when a sctp_primitive_SEND() call
      from sctp_sendmsg() fails, and tries to flush an association's
      outq, i.e. in the following way:
      
      sctp_association_free()
      `-> list_del(&asoc->asocs)         <-- poisons list pointer
          asoc->base.dead = true
          sctp_outq_free(&asoc->outqueue)
          `-> __sctp_outq_teardown()
           `-> sctp_chunk_free()
            `-> consume_skb()
             `-> sctp_wfree()
              `-> sctp_wake_up_waiters() <-- dereferences poisoned pointers
                                             if asoc->ep->sndbuf_policy=0
      
      Therefore, only walk the list in an 'optimized' way if we find
      that the current association is still active. We could also use
      list_del_init() in addition when we call sctp_association_free(),
      but as Vlad suggests, we want to trap such bugs and thus leave
      it poisoned as is.
      
      Why is it safe to resolve the issue by testing for asoc->base.dead?
      Parallel calls to sctp_sendmsg() are protected under socket lock,
      that is lock_sock()/release_sock(). Only within that path under
      lock held, we're setting skb/chunk owner via sctp_set_owner_w().
      Eventually, chunks are freed directly by an association still
      under that lock. So when traversing association list on destruction
      time from sctp_wake_up_waiters() via sctp_wfree(), a different
      CPU can't be running sctp_wfree() while another one calls
      sctp_association_free() as both happens under the same lock.
      Therefore, this can also not race with setting/testing against
      asoc->base.dead as we are guaranteed for this to happen in order,
      under lock. Further, Vlad says: the times we check asoc->base.dead
      is when we've cached an association pointer for later processing.
      In between cache and processing, the association may have been
      freed and is simply still around due to reference counts. We check
      asoc->base.dead under a lock, so it should always be safe to check
      and not race against sctp_association_free(). Stress-testing seems
      fine now, too.
      
      Fixes: cd253f9f357d ("net: sctp: wake up all assocs if sndbuf policy is per socket")
      Signed-off-by: NDaniel Borkmann <dborkman@redhat.com>
      Cc: Vlad Yasevich <vyasevic@redhat.com>
      Acked-by: NNeil Horman <nhorman@tuxdriver.com>
      Acked-by: NVlad Yasevich <vyasevic@redhat.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      1e1cdf8a
  3. 09 4月, 2014 1 次提交
    • D
      net: sctp: wake up all assocs if sndbuf policy is per socket · 52c35bef
      Daniel Borkmann 提交于
      SCTP charges chunks for wmem accounting via skb->truesize in
      sctp_set_owner_w(), and sctp_wfree() respectively as the
      reverse operation. If a sender runs out of wmem, it needs to
      wait via sctp_wait_for_sndbuf(), and gets woken up by a call
      to __sctp_write_space() mostly via sctp_wfree().
      
      __sctp_write_space() is being called per association. Although
      we assign sk->sk_write_space() to sctp_write_space(), which
      is then being done per socket, it is only used if send space
      is increased per socket option (SO_SNDBUF), as SOCK_USE_WRITE_QUEUE
      is set and therefore not invoked in sock_wfree().
      
      Commit 4c3a5bda ("sctp: Don't charge for data in sndbuf
      again when transmitting packet") fixed an issue where in case
      sctp_packet_transmit() manages to queue up more than sndbuf
      bytes, sctp_wait_for_sndbuf() will never be woken up again
      unless it is interrupted by a signal. However, a still
      remaining issue is that if net.sctp.sndbuf_policy=0, that is
      accounting per socket, and one-to-many sockets are in use,
      the reclaimed write space from sctp_wfree() is 'unfairly'
      handed back on the server to the association that is the lucky
      one to be woken up again via __sctp_write_space(), while
      the remaining associations are never be woken up again
      (unless by a signal).
      
      The effect disappears with net.sctp.sndbuf_policy=1, that
      is wmem accounting per association, as it guarantees a fair
      share of wmem among associations.
      
      Therefore, if we have reclaimed memory in case of per socket
      accounting, wake all related associations to a socket in a
      fair manner, that is, traverse the socket association list
      starting from the current neighbour of the association and
      issue a __sctp_write_space() to everyone until we end up
      waking ourselves. This guarantees that no association is
      preferred over another and even if more associations are
      taken into the one-to-many session, all receivers will get
      messages from the server and are not stalled forever on
      high load. This setting still leaves the advantage of per
      socket accounting in touch as an association can still use
      up global limits if unused by others.
      
      Fixes: 4eb701df ("[SCTP] Fix SCTP sendbuffer accouting.")
      Signed-off-by: NDaniel Borkmann <dborkman@redhat.com>
      Cc: Thomas Graf <tgraf@suug.ch>
      Cc: Neil Horman <nhorman@tuxdriver.com>
      Cc: Vlad Yasevich <vyasevic@redhat.com>
      Acked-by: NVlad Yasevich <vyasevic@redhat.com>
      Acked-by: NNeil Horman <nhorman@tuxdriver.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      52c35bef
  4. 14 3月, 2014 1 次提交
    • D
      net: sctp: remove NULL check in sctp_assoc_update_retran_path · 433131ba
      Daniel Borkmann 提交于
      This is basically just to let Coverity et al shut up. Remove an
      unneeded NULL check in sctp_assoc_update_retran_path().
      
      It is safe to remove it, because in sctp_assoc_update_retran_path()
      we iterate over the list of transports, our own transport which is
      asoc->peer.retran_path included. In the iteration, we skip the
      list head element and transports in state SCTP_UNCONFIRMED.
      
      Such transports came from peer addresses received in INIT/INIT-ACK
      address parameters. They are not yet confirmed by a heartbeat and
      not available for data transfers.
      
      We know however that in the list of transports, even if it contains
      such elements, it at least contains our asoc->peer.retran_path as
      well, so even if next to that element, we only encounter
      SCTP_UNCONFIRMED transports, we are always going to fall back to
      asoc->peer.retran_path through sctp_trans_elect_best(), as that is
      for sure not SCTP_UNCONFIRMED as per fbdf501c ("sctp: Do no
      select unconfirmed transports for retransmissions").
      
      Whenever we call sctp_trans_elect_best() it will give us a non-NULL
      element back, and therefore when we break out of the loop, we are
      guaranteed to have a non-NULL transport pointer, and can remove
      the NULL check.
      Reported-by: NDan Carpenter <dan.carpenter@oracle.com>
      Reported-by: NDave Jones <davej@redhat.com>
      Signed-off-by: NDaniel Borkmann <dborkman@redhat.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      433131ba
  5. 06 3月, 2014 1 次提交
    • D
      net: sctp: fix skb leakage in COOKIE ECHO path of chunk->auth_chunk · c485658b
      Daniel Borkmann 提交于
      While working on ec0223ec ("net: sctp: fix sctp_sf_do_5_1D_ce to
      verify if we/peer is AUTH capable"), we noticed that there's a skb
      memory leakage in the error path.
      
      Running the same reproducer as in ec0223ec and by unconditionally
      jumping to the error label (to simulate an error condition) in
      sctp_sf_do_5_1D_ce() receive path lets kmemleak detector bark about
      the unfreed chunk->auth_chunk skb clone:
      
      Unreferenced object 0xffff8800b8f3a000 (size 256):
        comm "softirq", pid 0, jiffies 4294769856 (age 110.757s)
        hex dump (first 32 bytes):
          00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
          89 ab 75 5e d4 01 58 13 00 00 00 00 00 00 00 00  ..u^..X.........
        backtrace:
          [<ffffffff816660be>] kmemleak_alloc+0x4e/0xb0
          [<ffffffff8119f328>] kmem_cache_alloc+0xc8/0x210
          [<ffffffff81566929>] skb_clone+0x49/0xb0
          [<ffffffffa0467459>] sctp_endpoint_bh_rcv+0x1d9/0x230 [sctp]
          [<ffffffffa046fdbc>] sctp_inq_push+0x4c/0x70 [sctp]
          [<ffffffffa047e8de>] sctp_rcv+0x82e/0x9a0 [sctp]
          [<ffffffff815abd38>] ip_local_deliver_finish+0xa8/0x210
          [<ffffffff815a64af>] nf_reinject+0xbf/0x180
          [<ffffffffa04b4762>] nfqnl_recv_verdict+0x1d2/0x2b0 [nfnetlink_queue]
          [<ffffffffa04aa40b>] nfnetlink_rcv_msg+0x14b/0x250 [nfnetlink]
          [<ffffffff815a3269>] netlink_rcv_skb+0xa9/0xc0
          [<ffffffffa04aa7cf>] nfnetlink_rcv+0x23f/0x408 [nfnetlink]
          [<ffffffff815a2bd8>] netlink_unicast+0x168/0x250
          [<ffffffff815a2fa1>] netlink_sendmsg+0x2e1/0x3f0
          [<ffffffff8155cc6b>] sock_sendmsg+0x8b/0xc0
          [<ffffffff8155d449>] ___sys_sendmsg+0x369/0x380
      
      What happens is that commit bbd0d598 clones the skb containing
      the AUTH chunk in sctp_endpoint_bh_rcv() when having the edge case
      that an endpoint requires COOKIE-ECHO chunks to be authenticated:
      
        ---------- INIT[RANDOM; CHUNKS; HMAC-ALGO] ---------->
        <------- INIT-ACK[RANDOM; CHUNKS; HMAC-ALGO] ---------
        ------------------ AUTH; COOKIE-ECHO ---------------->
        <-------------------- COOKIE-ACK ---------------------
      
      When we enter sctp_sf_do_5_1D_ce() and before we actually get to
      the point where we process (and subsequently free) a non-NULL
      chunk->auth_chunk, we could hit the "goto nomem_init" path from
      an error condition and thus leave the cloned skb around w/o
      freeing it.
      
      The fix is to centrally free such clones in sctp_chunk_destroy()
      handler that is invoked from sctp_chunk_free() after all refs have
      dropped; and also move both kfree_skb(chunk->auth_chunk) there,
      so that chunk->auth_chunk is either NULL (since sctp_chunkify()
      allocs new chunks through kmem_cache_zalloc()) or non-NULL with
      a valid skb pointer. chunk->skb and chunk->auth_chunk are the
      only skbs in the sctp_chunk structure that need to be handeled.
      
      While at it, we should use consume_skb() for both. It is the same
      as dev_kfree_skb() but more appropriately named as we are not
      a device but a protocol. Also, this effectively replaces the
      kfree_skb() from both invocations into consume_skb(). Functions
      are the same only that kfree_skb() assumes that the frame was
      being dropped after a failure (e.g. for tools like drop monitor),
      usage of consume_skb() seems more appropriate in function
      sctp_chunk_destroy() though.
      
      Fixes: bbd0d598 ("[SCTP]: Implement the receive and verification of AUTH chunk")
      Signed-off-by: NDaniel Borkmann <dborkman@redhat.com>
      Cc: Vlad Yasevich <yasevich@gmail.com>
      Cc: Neil Horman <nhorman@tuxdriver.com>
      Acked-by: NVlad Yasevich <vyasevich@gmail.com>
      Acked-by: NNeil Horman <nhorman@tuxdriver.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      c485658b
  6. 04 3月, 2014 1 次提交
    • D
      net: sctp: fix sctp_sf_do_5_1D_ce to verify if we/peer is AUTH capable · ec0223ec
      Daniel Borkmann 提交于
      RFC4895 introduced AUTH chunks for SCTP; during the SCTP
      handshake RANDOM; CHUNKS; HMAC-ALGO are negotiated (CHUNKS
      being optional though):
      
        ---------- INIT[RANDOM; CHUNKS; HMAC-ALGO] ---------->
        <------- INIT-ACK[RANDOM; CHUNKS; HMAC-ALGO] ---------
        -------------------- COOKIE-ECHO -------------------->
        <-------------------- COOKIE-ACK ---------------------
      
      A special case is when an endpoint requires COOKIE-ECHO
      chunks to be authenticated:
      
        ---------- INIT[RANDOM; CHUNKS; HMAC-ALGO] ---------->
        <------- INIT-ACK[RANDOM; CHUNKS; HMAC-ALGO] ---------
        ------------------ AUTH; COOKIE-ECHO ---------------->
        <-------------------- COOKIE-ACK ---------------------
      
      RFC4895, section 6.3. Receiving Authenticated Chunks says:
      
        The receiver MUST use the HMAC algorithm indicated in
        the HMAC Identifier field. If this algorithm was not
        specified by the receiver in the HMAC-ALGO parameter in
        the INIT or INIT-ACK chunk during association setup, the
        AUTH chunk and all the chunks after it MUST be discarded
        and an ERROR chunk SHOULD be sent with the error cause
        defined in Section 4.1. [...] If no endpoint pair shared
        key has been configured for that Shared Key Identifier,
        all authenticated chunks MUST be silently discarded. [...]
      
        When an endpoint requires COOKIE-ECHO chunks to be
        authenticated, some special procedures have to be followed
        because the reception of a COOKIE-ECHO chunk might result
        in the creation of an SCTP association. If a packet arrives
        containing an AUTH chunk as a first chunk, a COOKIE-ECHO
        chunk as the second chunk, and possibly more chunks after
        them, and the receiver does not have an STCB for that
        packet, then authentication is based on the contents of
        the COOKIE-ECHO chunk. In this situation, the receiver MUST
        authenticate the chunks in the packet by using the RANDOM
        parameters, CHUNKS parameters and HMAC_ALGO parameters
        obtained from the COOKIE-ECHO chunk, and possibly a local
        shared secret as inputs to the authentication procedure
        specified in Section 6.3. If authentication fails, then
        the packet is discarded. If the authentication is successful,
        the COOKIE-ECHO and all the chunks after the COOKIE-ECHO
        MUST be processed. If the receiver has an STCB, it MUST
        process the AUTH chunk as described above using the STCB
        from the existing association to authenticate the
        COOKIE-ECHO chunk and all the chunks after it. [...]
      
      Commit bbd0d598 introduced the possibility to receive
      and verification of AUTH chunk, including the edge case for
      authenticated COOKIE-ECHO. On reception of COOKIE-ECHO,
      the function sctp_sf_do_5_1D_ce() handles processing,
      unpacks and creates a new association if it passed sanity
      checks and also tests for authentication chunks being
      present. After a new association has been processed, it
      invokes sctp_process_init() on the new association and
      walks through the parameter list it received from the INIT
      chunk. It checks SCTP_PARAM_RANDOM, SCTP_PARAM_HMAC_ALGO
      and SCTP_PARAM_CHUNKS, and copies them into asoc->peer
      meta data (peer_random, peer_hmacs, peer_chunks) in case
      sysctl -w net.sctp.auth_enable=1 is set. If in INIT's
      SCTP_PARAM_SUPPORTED_EXT parameter SCTP_CID_AUTH is set,
      peer_random != NULL and peer_hmacs != NULL the peer is to be
      assumed asoc->peer.auth_capable=1, in any other case
      asoc->peer.auth_capable=0.
      
      Now, if in sctp_sf_do_5_1D_ce() chunk->auth_chunk is
      available, we set up a fake auth chunk and pass that on to
      sctp_sf_authenticate(), which at latest in
      sctp_auth_calculate_hmac() reliably dereferences a NULL pointer
      at position 0..0008 when setting up the crypto key in
      crypto_hash_setkey() by using asoc->asoc_shared_key that is
      NULL as condition key_id == asoc->active_key_id is true if
      the AUTH chunk was injected correctly from remote. This
      happens no matter what net.sctp.auth_enable sysctl says.
      
      The fix is to check for net->sctp.auth_enable and for
      asoc->peer.auth_capable before doing any operations like
      sctp_sf_authenticate() as no key is activated in
      sctp_auth_asoc_init_active_key() for each case.
      
      Now as RFC4895 section 6.3 states that if the used HMAC-ALGO
      passed from the INIT chunk was not used in the AUTH chunk, we
      SHOULD send an error; however in this case it would be better
      to just silently discard such a maliciously prepared handshake
      as we didn't even receive a parameter at all. Also, as our
      endpoint has no shared key configured, section 6.3 says that
      MUST silently discard, which we are doing from now onwards.
      
      Before calling sctp_sf_pdiscard(), we need not only to free
      the association, but also the chunk->auth_chunk skb, as
      commit bbd0d598 created a skb clone in that case.
      
      I have tested this locally by using netfilter's nfqueue and
      re-injecting packets into the local stack after maliciously
      modifying the INIT chunk (removing RANDOM; HMAC-ALGO param)
      and the SCTP packet containing the COOKIE_ECHO (injecting
      AUTH chunk before COOKIE_ECHO). Fixed with this patch applied.
      
      Fixes: bbd0d598 ("[SCTP]: Implement the receive and verification of AUTH chunk")
      Signed-off-by: NDaniel Borkmann <dborkman@redhat.com>
      Cc: Vlad Yasevich <yasevich@gmail.com>
      Cc: Neil Horman <nhorman@tuxdriver.com>
      Acked-by: NVlad Yasevich <vyasevich@gmail.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      ec0223ec
  7. 22 2月, 2014 1 次提交
    • D
      net: sctp: rework multihoming retransmission path selection to rfc4960 · 4c47af4d
      Daniel Borkmann 提交于
      Problem statement: 1) both paths (primary path1 and alternate
      path2) are up after the association has been established i.e.,
      HB packets are normally exchanged, 2) path2 gets inactive after
      path_max_retrans * max_rto timed out (i.e. path2 is down completely),
      3) now, if a transmission times out on the only surviving/active
      path1 (any ~1sec network service impact could cause this like
      a channel bonding failover), then the retransmitted packets are
      sent over the inactive path2; this happens with partial failover
      and without it.
      
      Besides not being optimal in the above scenario, a small failure
      or timeout in the only existing path has the potential to cause
      long delays in the retransmission (depending on RTO_MAX) until
      the still active path is reselected. Further, when the T3-timeout
      occurs, we have active_patch == retrans_path, and even though the
      timeout occurred on the initial transmission of data, not a
      retransmit, we end up updating retransmit path.
      
      RFC4960, section 6.4. "Multi-Homed SCTP Endpoints" states under
      6.4.1. "Failover from an Inactive Destination Address" the
      following:
      
        Some of the transport addresses of a multi-homed SCTP endpoint
        may become inactive due to either the occurrence of certain
        error conditions (see Section 8.2) or adjustments from the
        SCTP user.
      
        When there is outbound data to send and the primary path
        becomes inactive (e.g., due to failures), or where the SCTP
        user explicitly requests to send data to an inactive
        destination transport address, before reporting an error to
        its ULP, the SCTP endpoint should try to send the data to an
        alternate __active__ destination transport address if one
        exists.
      
        When retransmitting data that timed out, if the endpoint is
        multihomed, it should consider each source-destination address
        pair in its retransmission selection policy. When retransmitting
        timed-out data, the endpoint should attempt to pick the most
        divergent source-destination pair from the original
        source-destination pair to which the packet was transmitted.
      
        Note: Rules for picking the most divergent source-destination
        pair are an implementation decision and are not specified
        within this document.
      
      So, we should first reconsider to take the current active
      retransmission transport if we cannot find an alternative
      active one. If all of that fails, we can still round robin
      through unkown, partial failover, and inactive ones in the
      hope to find something still suitable.
      
      Commit 4141ddc0 ("sctp: retran_path update bug fix") broke
      that behaviour by selecting the next inactive transport when
      no other active transport was found besides the current assoc's
      peer.retran_path. Before commit 4141ddc0, we would have
      traversed through the list until we reach our peer.retran_path
      again, and in case that is still in state SCTP_ACTIVE, we would
      take it and return. Only if that is not the case either, we
      take the next inactive transport.
      
      Besides all that, another issue is that transports in state
      SCTP_UNKNOWN could be preferred over transports in state
      SCTP_ACTIVE in case a SCTP_ACTIVE transport appears after
      SCTP_UNKNOWN in the transport list yielding a weaker transport
      state to be used in retransmission.
      
      This patch mostly reverts 4141ddc0, but also rewrites
      this function to introduce more clarity and strictness into
      the code. A strict priority of transport states is enforced
      in this patch, hence selection is active > unkown > partial
      failover > inactive.
      
      Fixes: 4141ddc0 ("sctp: retran_path update bug fix")
      Signed-off-by: NDaniel Borkmann <dborkman@redhat.com>
      Cc: Gui Jianfeng <guijianfeng@cn.fujitsu.com>
      Acked-by: NVlad Yasevich <yasevich@gmail.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      4c47af4d
  8. 21 2月, 2014 1 次提交
    • M
      net: sctp: Potentially-Failed state should not be reached from unconfirmed state · 7cce3b75
      Matija Glavinic Pecotic 提交于
      In current implementation it is possible to reach PF state from unconfirmed.
      We can interpret sctp-failover-02 in a way that PF state is meant to be reached
      only from active state, in the end, this is when entering PF state makes sense.
      Here are few quotes from sctp-failover-02, but regardless of these, same
      understanding can be reached from whole section 5:
      
      Section 5.1, quickfailover guide:
          "The PF state is an intermediate state between Active and Failed states."
      
          "Each time the T3-rtx timer expires on an active or idle
          destination, the error counter of that destination address will
          be incremented.  When the value in the error counter exceeds
          PFMR, the endpoint should mark the destination transport address as PF."
      
      There are several concrete reasons for such interpretation. For start, rfc4960
      does not take into concern quickfailover algorithm. Therefore, quickfailover
      must comply to 4960. Point where this compliance can be argued is following
      behavior:
      When PF is entered, association overall error counter is incremented for each
      missed HB. This is contradictory to rfc4960, as address, while in unconfirmed
      state, is subjected to probing, and while it is probed, it should not increment
      association overall error counter. This has as a consequence that we might end
      up in situation in which we drop association due path failure on unconfirmed
      address, in case we have wrong configuration in a way:
      Association.Max.Retrans == Path.Max.Retrans.
      
      Another reason is that entering PF from unconfirmed will cause a loss of address
      confirmed event when address is once (if) confirmed. This is fine from failover
      guide point of view, but it is not consistent with behavior preceding failover
      implementation and recommendation from 4960:
      
      5.4.  Path Verification
         Whenever a path is confirmed, an indication MAY be given to the upper
         layer.
      Signed-off-by: NMatija Glavinic Pecotic <matija.glavinic-pecotic.ext@nsn.com>
      Acked-by: NVlad Yasevich <vyasevich@gmail.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      7cce3b75
  9. 19 2月, 2014 1 次提交
    • D
      net: sctp: fix sctp_connectx abi for ia32 emulation/compat mode · ffd59393
      Daniel Borkmann 提交于
      SCTP's sctp_connectx() abi breaks for 64bit kernels compiled with 32bit
      emulation (e.g. ia32 emulation or x86_x32). Due to internal usage of
      'struct sctp_getaddrs_old' which includes a struct sockaddr pointer,
      sizeof(param) check will always fail in kernel as the structure in
      64bit kernel space is 4bytes larger than for user binaries compiled
      in 32bit mode. Thus, applications making use of sctp_connectx() won't
      be able to run under such circumstances.
      
      Introduce a compat interface in the kernel to deal with such
      situations by using a 'struct compat_sctp_getaddrs_old' structure
      where user data is copied into it, and then sucessively transformed
      into a 'struct sctp_getaddrs_old' structure with the help of
      compat_ptr(). That fixes sctp_connectx() abi without any changes
      needed in user space, and lets the SCTP test suite pass when compiled
      in 32bit and run on 64bit kernels.
      
      Fixes: f9c67811 ("sctp: Fix regression introduced by new sctp_connectx api")
      Signed-off-by: NDaniel Borkmann <dborkman@redhat.com>
      Acked-by: NNeil Horman <nhorman@tuxdriver.com>
      Acked-by: NVlad Yasevich <vyasevich@gmail.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      ffd59393
  10. 17 2月, 2014 1 次提交
    • M
      net: sctp: Fix a_rwnd/rwnd management to reflect real state of the receiver's buffer · ef2820a7
      Matija Glavinic Pecotic 提交于
      Implementation of (a)rwnd calculation might lead to severe performance issues
      and associations completely stalling. These problems are described and solution
      is proposed which improves lksctp's robustness in congestion state.
      
      1) Sudden drop of a_rwnd and incomplete window recovery afterwards
      
      Data accounted in sctp_assoc_rwnd_decrease takes only payload size (sctp data),
      but size of sk_buff, which is blamed against receiver buffer, is not accounted
      in rwnd. Theoretically, this should not be the problem as actual size of buffer
      is double the amount requested on the socket (SO_RECVBUF). Problem here is
      that this will have bad scaling for data which is less then sizeof sk_buff.
      E.g. in 4G (LTE) networks, link interfacing radio side will have a large portion
      of traffic of this size (less then 100B).
      
      An example of sudden drop and incomplete window recovery is given below. Node B
      exhibits problematic behavior. Node A initiates association and B is configured
      to advertise rwnd of 10000. A sends messages of size 43B (size of typical sctp
      message in 4G (LTE) network). On B data is left in buffer by not reading socket
      in userspace.
      
      Lets examine when we will hit pressure state and declare rwnd to be 0 for
      scenario with above stated parameters (rwnd == 10000, chunk size == 43, each
      chunk is sent in separate sctp packet)
      
      Logic is implemented in sctp_assoc_rwnd_decrease:
      
      socket_buffer (see below) is maximum size which can be held in socket buffer
      (sk_rcvbuf). current_alloced is amount of data currently allocated (rx_count)
      
      A simple expression is given for which it will be examined after how many
      packets for above stated parameters we enter pressure state:
      
      We start by condition which has to be met in order to enter pressure state:
      
      	socket_buffer < currently_alloced;
      
      currently_alloced is represented as size of sctp packets received so far and not
      yet delivered to userspace. x is the number of chunks/packets (since there is no
      bundling, and each chunk is delivered in separate packet, we can observe each
      chunk also as sctp packet, and what is important here, having its own sk_buff):
      
      	socket_buffer < x*each_sctp_packet;
      
      each_sctp_packet is sctp chunk size + sizeof(struct sk_buff). socket_buffer is
      twice the amount of initially requested size of socket buffer, which is in case
      of sctp, twice the a_rwnd requested:
      
      	2*rwnd < x*(payload+sizeof(struc sk_buff));
      
      sizeof(struct sk_buff) is 190 (3.13.0-rc4+). Above is stated that rwnd is 10000
      and each payload size is 43
      
      	20000 < x(43+190);
      
      	x > 20000/233;
      
      	x ~> 84;
      
      After ~84 messages, pressure state is entered and 0 rwnd is advertised while
      received 84*43B ~= 3612B sctp data. This is why external observer notices sudden
      drop from 6474 to 0, as it will be now shown in example:
      
      IP A.34340 > B.12345: sctp (1) [INIT] [init tag: 1875509148] [rwnd: 81920] [OS: 10] [MIS: 65535] [init TSN: 1096057017]
      IP B.12345 > A.34340: sctp (1) [INIT ACK] [init tag: 3198966556] [rwnd: 10000] [OS: 10] [MIS: 10] [init TSN: 902132839]
      IP A.34340 > B.12345: sctp (1) [COOKIE ECHO]
      IP B.12345 > A.34340: sctp (1) [COOKIE ACK]
      IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057017] [SID: 0] [SSEQ 0] [PPID 0x18]
      IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057017] [a_rwnd 9957] [#gap acks 0] [#dup tsns 0]
      IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057018] [SID: 0] [SSEQ 1] [PPID 0x18]
      IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057018] [a_rwnd 9957] [#gap acks 0] [#dup tsns 0]
      IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057019] [SID: 0] [SSEQ 2] [PPID 0x18]
      IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057019] [a_rwnd 9914] [#gap acks 0] [#dup tsns 0]
      <...>
      IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057098] [SID: 0] [SSEQ 81] [PPID 0x18]
      IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057098] [a_rwnd 6517] [#gap acks 0] [#dup tsns 0]
      IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057099] [SID: 0] [SSEQ 82] [PPID 0x18]
      IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057099] [a_rwnd 6474] [#gap acks 0] [#dup tsns 0]
      IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057100] [SID: 0] [SSEQ 83] [PPID 0x18]
      
      --> Sudden drop
      
      IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057100] [a_rwnd 0] [#gap acks 0] [#dup tsns 0]
      
      At this point, rwnd_press stores current rwnd value so it can be later restored
      in sctp_assoc_rwnd_increase. This however doesn't happen as condition to start
      slowly increasing rwnd until rwnd_press is returned to rwnd is never met. This
      condition is not met since rwnd, after it hit 0, must first reach rwnd_press by
      adding amount which is read from userspace. Let us observe values in above
      example. Initial a_rwnd is 10000, pressure was hit when rwnd was ~6500 and the
      amount of actual sctp data currently waiting to be delivered to userspace
      is ~3500. When userspace starts to read, sctp_assoc_rwnd_increase will be blamed
      only for sctp data, which is ~3500. Condition is never met, and when userspace
      reads all data, rwnd stays on 3569.
      
      IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057100] [a_rwnd 1505] [#gap acks 0] [#dup tsns 0]
      IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057100] [a_rwnd 3010] [#gap acks 0] [#dup tsns 0]
      IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057101] [SID: 0] [SSEQ 84] [PPID 0x18]
      IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057101] [a_rwnd 3569] [#gap acks 0] [#dup tsns 0]
      
      --> At this point userspace read everything, rwnd recovered only to 3569
      
      IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057102] [SID: 0] [SSEQ 85] [PPID 0x18]
      IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057102] [a_rwnd 3569] [#gap acks 0] [#dup tsns 0]
      
      Reproduction is straight forward, it is enough for sender to send packets of
      size less then sizeof(struct sk_buff) and receiver keeping them in its buffers.
      
      2) Minute size window for associations sharing the same socket buffer
      
      In case multiple associations share the same socket, and same socket buffer
      (sctp.rcvbuf_policy == 0), different scenarios exist in which congestion on one
      of the associations can permanently drop rwnd of other association(s).
      
      Situation will be typically observed as one association suddenly having rwnd
      dropped to size of last packet received and never recovering beyond that point.
      Different scenarios will lead to it, but all have in common that one of the
      associations (let it be association from 1)) nearly depleted socket buffer, and
      the other association blames socket buffer just for the amount enough to start
      the pressure. This association will enter pressure state, set rwnd_press and
      announce 0 rwnd.
      When data is read by userspace, similar situation as in 1) will occur, rwnd will
      increase just for the size read by userspace but rwnd_press will be high enough
      so that association doesn't have enough credit to reach rwnd_press and restore
      to previous state. This case is special case of 1), being worse as there is, in
      the worst case, only one packet in buffer for which size rwnd will be increased.
      Consequence is association which has very low maximum rwnd ('minute size', in
      our case down to 43B - size of packet which caused pressure) and as such
      unusable.
      
      Scenario happened in the field and labs frequently after congestion state (link
      breaks, different probabilities of packet drop, packet reordering) and with
      scenario 1) preceding. Here is given a deterministic scenario for reproduction:
      
      >From node A establish two associations on the same socket, with rcvbuf_policy
      being set to share one common buffer (sctp.rcvbuf_policy == 0). On association 1
      repeat scenario from 1), that is, bring it down to 0 and restore up. Observe
      scenario 1). Use small payload size (here we use 43). Once rwnd is 'recovered',
      bring it down close to 0, as in just one more packet would close it. This has as
      a consequence that association number 2 is able to receive (at least) one more
      packet which will bring it in pressure state. E.g. if association 2 had rwnd of
      10000, packet received was 43, and we enter at this point into pressure,
      rwnd_press will have 9957. Once payload is delivered to userspace, rwnd will
      increase for 43, but conditions to restore rwnd to original state, just as in
      1), will never be satisfied.
      
      --> Association 1, between A.y and B.12345
      
      IP A.55915 > B.12345: sctp (1) [INIT] [init tag: 836880897] [rwnd: 10000] [OS: 10] [MIS: 65535] [init TSN: 4032536569]
      IP B.12345 > A.55915: sctp (1) [INIT ACK] [init tag: 2873310749] [rwnd: 81920] [OS: 10] [MIS: 10] [init TSN: 3799315613]
      IP A.55915 > B.12345: sctp (1) [COOKIE ECHO]
      IP B.12345 > A.55915: sctp (1) [COOKIE ACK]
      
      --> Association 2, between A.z and B.12346
      
      IP A.55915 > B.12346: sctp (1) [INIT] [init tag: 534798321] [rwnd: 10000] [OS: 10] [MIS: 65535] [init TSN: 2099285173]
      IP B.12346 > A.55915: sctp (1) [INIT ACK] [init tag: 516668823] [rwnd: 81920] [OS: 10] [MIS: 10] [init TSN: 3676403240]
      IP A.55915 > B.12346: sctp (1) [COOKIE ECHO]
      IP B.12346 > A.55915: sctp (1) [COOKIE ACK]
      
      --> Deplete socket buffer by sending messages of size 43B over association 1
      
      IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315613] [SID: 0] [SSEQ 0] [PPID 0x18]
      IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315613] [a_rwnd 9957] [#gap acks 0] [#dup tsns 0]
      
      <...>
      
      IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315696] [a_rwnd 6388] [#gap acks 0] [#dup tsns 0]
      IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315697] [SID: 0] [SSEQ 84] [PPID 0x18]
      IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315697] [a_rwnd 6345] [#gap acks 0] [#dup tsns 0]
      
      --> Sudden drop on 1
      
      IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315698] [SID: 0] [SSEQ 85] [PPID 0x18]
      IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315698] [a_rwnd 0] [#gap acks 0] [#dup tsns 0]
      
      --> Here userspace read, rwnd 'recovered' to 3698, now deplete again using
          association 1 so there is place in buffer for only one more packet
      
      IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315799] [SID: 0] [SSEQ 186] [PPID 0x18]
      IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315799] [a_rwnd 86] [#gap acks 0] [#dup tsns 0]
      IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315800] [SID: 0] [SSEQ 187] [PPID 0x18]
      IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315800] [a_rwnd 43] [#gap acks 0] [#dup tsns 0]
      
      --> Socket buffer is almost depleted, but there is space for one more packet,
          send them over association 2, size 43B
      
      IP B.12346 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3676403240] [SID: 0] [SSEQ 0] [PPID 0x18]
      IP A.55915 > B.12346: sctp (1) [SACK] [cum ack 3676403240] [a_rwnd 0] [#gap acks 0] [#dup tsns 0]
      
      --> Immediate drop
      
      IP A.60995 > B.12346: sctp (1) [SACK] [cum ack 387491510] [a_rwnd 0] [#gap acks 0] [#dup tsns 0]
      
      --> Read everything from the socket, both association recover up to maximum rwnd
          they are capable of reaching, note that association 1 recovered up to 3698,
          and association 2 recovered only to 43
      
      IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315800] [a_rwnd 1548] [#gap acks 0] [#dup tsns 0]
      IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315800] [a_rwnd 3053] [#gap acks 0] [#dup tsns 0]
      IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315801] [SID: 0] [SSEQ 188] [PPID 0x18]
      IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315801] [a_rwnd 3698] [#gap acks 0] [#dup tsns 0]
      IP B.12346 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3676403241] [SID: 0] [SSEQ 1] [PPID 0x18]
      IP A.55915 > B.12346: sctp (1) [SACK] [cum ack 3676403241] [a_rwnd 43] [#gap acks 0] [#dup tsns 0]
      
      A careful reader might wonder why it is necessary to reproduce 1) prior
      reproduction of 2). It is simply easier to observe when to send packet over
      association 2 which will push association into the pressure state.
      
      Proposed solution:
      
      Both problems share the same root cause, and that is improper scaling of socket
      buffer with rwnd. Solution in which sizeof(sk_buff) is taken into concern while
      calculating rwnd is not possible due to fact that there is no linear
      relationship between amount of data blamed in increase/decrease with IP packet
      in which payload arrived. Even in case such solution would be followed,
      complexity of the code would increase. Due to nature of current rwnd handling,
      slow increase (in sctp_assoc_rwnd_increase) of rwnd after pressure state is
      entered is rationale, but it gives false representation to the sender of current
      buffer space. Furthermore, it implements additional congestion control mechanism
      which is defined on implementation, and not on standard basis.
      
      Proposed solution simplifies whole algorithm having on mind definition from rfc:
      
      o  Receiver Window (rwnd): This gives the sender an indication of the space
         available in the receiver's inbound buffer.
      
      Core of the proposed solution is given with these lines:
      
      sctp_assoc_rwnd_update:
      	if ((asoc->base.sk->sk_rcvbuf - rx_count) > 0)
      		asoc->rwnd = (asoc->base.sk->sk_rcvbuf - rx_count) >> 1;
      	else
      		asoc->rwnd = 0;
      
      We advertise to sender (half of) actual space we have. Half is in the braces
      depending whether you would like to observe size of socket buffer as SO_RECVBUF
      or twice the amount, i.e. size is the one visible from userspace, that is,
      from kernelspace.
      In this way sender is given with good approximation of our buffer space,
      regardless of the buffer policy - we always advertise what we have. Proposed
      solution fixes described problems and removes necessity for rwnd restoration
      algorithm. Finally, as proposed solution is simplification, some lines of code,
      along with some bytes in struct sctp_association are saved.
      
      Version 2 of the patch addressed comments from Vlad. Name of the function is set
      to be more descriptive, and two parts of code are changed, in one removing the
      superfluous call to sctp_assoc_rwnd_update since call would not result in update
      of rwnd, and the other being reordering of the code in a way that call to
      sctp_assoc_rwnd_update updates rwnd. Version 3 corrected change introduced in v2
      in a way that existing function is not reordered/copied in line, but it is
      correctly called. Thanks Vlad for suggesting.
      Signed-off-by: NMatija Glavinic Pecotic <matija.glavinic-pecotic.ext@nsn.com>
      Reviewed-by: NAlexander Sverdlin <alexander.sverdlin@nsn.com>
      Acked-by: NVlad Yasevich <vyasevich@gmail.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      ef2820a7
  11. 14 2月, 2014 3 次提交
  12. 07 2月, 2014 1 次提交
  13. 22 1月, 2014 5 次提交
  14. 17 1月, 2014 1 次提交
  15. 16 1月, 2014 1 次提交
  16. 15 1月, 2014 2 次提交
  17. 14 1月, 2014 2 次提交
  18. 04 1月, 2014 1 次提交
    • N
      sctp: Add process name and pid to deprecation warnings · f916ec96
      Neil Horman 提交于
      Recently I updated the sctp socket option deprecation warnings to be both a bit
      more clear and ratelimited to prevent user processes from spamming the log file.
      Ben Hutchings suggested that I add the process name and pid to these warnings so
      that users can tell who is responsible for using the deprecated apis.  This
      patch accomplishes that.
      Signed-off-by: NNeil Horman <nhorman@tuxdriver.com>
      CC: Vlad Yasevich <vyasevich@gmail.com>
      CC: Ben Hutchings <bhutchings@solarflare.com>
      CC: "David S. Miller" <davem@davemloft.net>
      CC: netdev@vger.kernel.org
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      f916ec96
  19. 03 1月, 2014 1 次提交
    • V
      sctp: Remove outqueue empty state · 619a60ee
      Vlad Yasevich 提交于
      The SCTP outqueue structure maintains a data chunks
      that are pending transmission, the list of chunks that
      are pending a retransmission and a length of data in
      flight.  It also tries to keep the emtpy state so that
      it can performe shutdown sequence or notify user.
      
      The problem is that the empy state is inconsistently
      tracked.  It is possible to completely drain the queue
      without sending anything when using PR-SCTP.  In this
      case, the empty state will not be correctly state as
      report by Jamal Hadi Salim <jhs@mojatatu.com>.  This
      can cause an association to be perminantly stuck in the
      SHUTDOWN_PENDING state.
      
      Additionally, SCTP is incredibly inefficient when setting
      the empty state.  Even though all the data is availaible
      in the outqueue structure, we ignore it and walk a list
      of trasnports.
      
      In the end, we can completely remove the extra empty
      state and figure out if the queue is empty by looking
      at 3 things:  length of pending data, length of in-flight
      data, and exisiting of retransmit data.  All of these
      are already in the strucutre.
      Reported-by: NJamal Hadi Salim <jhs@mojatatu.com>
      Signed-off-by: NVlad Yasevich <vyasevich@gmail.com>
      Acked-by: NNeil Horman <nhorman@tuxdriver.com>
      Tested-by: NJamal Hadi Salim <jhs@mojatatu.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      619a60ee
  20. 01 1月, 2014 2 次提交
  21. 27 12月, 2013 5 次提交
  22. 23 12月, 2013 2 次提交
  23. 22 12月, 2013 2 次提交
  24. 21 12月, 2013 1 次提交
  25. 19 12月, 2013 1 次提交