- 29 1月, 2021 4 次提交
-
-
由 Ard Biesheuvel 提交于
Salsa20 is not used anywhere in the kernel, is not suitable for disk encryption, and widely considered to have been superseded by ChaCha20. So let's remove it. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Acked-by: NMike Snitzer <snitzer@redhat.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Tiger is never referenced anywhere in the kernel, and unlikely to be depended upon by userspace via AF_ALG. So let's remove it. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
RIPE-MD 256 is never referenced anywhere in the kernel, and unlikely to be depended upon by userspace via AF_ALG. So let's remove it Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
RIPE-MD 128 is never referenced anywhere in the kernel, and unlikely to be depended upon by userspace via AF_ALG. So let's remove it. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
- 25 9月, 2020 1 次提交
-
-
由 Tianjia Zhang 提交于
This new module implement the SM2 public key algorithm. It was published by State Encryption Management Bureau, China. List of specifications for SM2 elliptic curve public key cryptography: * GM/T 0003.1-2012 * GM/T 0003.2-2012 * GM/T 0003.3-2012 * GM/T 0003.4-2012 * GM/T 0003.5-2012 IETF: https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 oscca: http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml scctc: http://www.gmbz.org.cn/main/bzlb.htmlSigned-off-by: NTianjia Zhang <tianjia.zhang@linux.alibaba.com> Tested-by: NXufeng Zhang <yunbo.xufeng@linux.alibaba.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
- 17 11月, 2019 4 次提交
-
-
由 Ard Biesheuvel 提交于
Now that all users of the deprecated ablkcipher interface have been moved to the skcipher interface, ablkcipher is no longer used and can be removed. Reviewed-by: NEric Biggers <ebiggers@kernel.org> Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Expose the generic Curve25519 library via the crypto API KPP interface. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Wire up our newly added Blake2s implementation via the shash API. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Herbert Xu 提交于
If aead is built as a module along with cryptomgr, it creates a dependency loop due to the dependency chain aead => crypto_null => cryptomgr => aead. This is due to the presence of the AEAD geniv code. This code is not really part of the AEAD API but simply support code for IV generators such as seqiv. This patch moves the geniv code into its own module thus breaking the dependency loop. Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
- 01 11月, 2019 3 次提交
-
-
由 Eric Biggers 提交于
Now that the blkcipher algorithm type has been removed in favor of skcipher, rename the crypto_blkcipher kernel module to crypto_skcipher, and rename the config options accordingly: CONFIG_CRYPTO_BLKCIPHER => CONFIG_CRYPTO_SKCIPHER CONFIG_CRYPTO_BLKCIPHER2 => CONFIG_CRYPTO_SKCIPHER2 Signed-off-by: NEric Biggers <ebiggers@google.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Eric Biggers 提交于
Now that all "blkcipher" algorithms have been converted to "skcipher", remove the blkcipher algorithm type. The skcipher (symmetric key cipher) algorithm type was introduced a few years ago to replace both blkcipher and ablkcipher (synchronous and asynchronous block cipher). The advantages of skcipher include: - A much less confusing name, since none of these algorithm types have ever actually been for raw block ciphers, but rather for all length-preserving encryption modes including block cipher modes of operation, stream ciphers, and other length-preserving modes. - It unified blkcipher and ablkcipher into a single algorithm type which supports both synchronous and asynchronous implementations. Note, blkcipher already operated only on scatterlists, so the fact that skcipher does too isn't a regression in functionality. - Better type safety by using struct skcipher_alg, struct crypto_skcipher, etc. instead of crypto_alg, crypto_tfm, etc. - It sometimes simplifies the implementations of algorithms. Also, the blkcipher API was no longer being tested. Signed-off-by: NEric Biggers <ebiggers@google.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 David Sterba 提交于
The patch brings support of several BLAKE2 variants (2b with various digest lengths). The keyed digest is supported, using tfm->setkey call. The in-tree user will be btrfs (for checksumming), we're going to use the BLAKE2b-256 variant. The code is reference implementation taken from the official sources and modified in terms of kernel coding style (whitespace, comments, uintXX_t -> uXX types, removed unused prototypes and #ifdefs, removed testing code, changed secure_zero_memory -> memzero_explicit, used own helpers for unaligned reads/writes and rotations). Further changes removed sanity checks of key length or output size, these values are verified in the crypto API callbacks or hardcoded in shash_alg and not exposed to users. Signed-off-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
- 04 10月, 2019 1 次提交
-
-
由 Ard Biesheuvel 提交于
The next version of Clang will start policing compiler command line options, and will reject combinations of -march and -mfpu that it thinks are incompatible. This results in errors like clang-10: warning: ignoring extension 'crypto' because the 'armv7-a' architecture does not support it [-Winvalid-command-line-argument] /tmp/aegis128-neon-inner-5ee428.s: Assembler messages: /tmp/aegis128-neon-inner-5ee428.s:73: Error: selected processor does not support `aese.8 q2,q14' in ARM mode when buiding the SIMD aegis128 code for 32-bit ARM, given that the 'armv7-a' -march argument is considered to be compatible with the ARM crypto extensions. Instead, we should use armv8-a, which does allow the crypto extensions to be enabled. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
- 04 9月, 2019 1 次提交
-
-
由 Ard Biesheuvel 提交于
Implement a template that wraps a (skcipher,shash) or (aead,shash) tuple so that we can consolidate the ESSIV handling in fscrypt and dm-crypt and move it into the crypto API. This will result in better test coverage, and will allow future changes to make the bare cipher interface internal to the crypto subsystem, in order to increase robustness of the API against misuse. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NHerbert Xu <herbert@gondor.apana.org.au> Tested-by: NMilan Broz <gmazyland@gmail.com> Signed-off-by: NMike Snitzer <snitzer@redhat.com>
-
- 15 8月, 2019 3 次提交
-
-
由 Ard Biesheuvel 提交于
Provide a version of the core AES transform to the aegis128 SIMD code that does not rely on the special AES instructions, but uses plain NEON instructions instead. This allows the SIMD version of the aegis128 driver to be used on arm64 systems that do not implement those instructions (which are not mandatory in the architecture), such as the Raspberry Pi 3. Since GCC makes a mess of this when using the tbl/tbx intrinsics to perform the sbox substitution, preload the Sbox into v16..v31 in this case and use inline asm to emit the tbl/tbx instructions. Clang does not support this approach, nor does it require it, since it does a much better job at code generation, so there we use the intrinsics as usual. Cc: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NNick Desaulniers <ndesaulniers@google.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Provide an accelerated implementation of aegis128 by wiring up the SIMD hooks in the generic driver to an implementation based on NEON intrinsics, which can be compiled to both ARM and arm64 code. This results in a performance of 2.2 cycles per byte on Cortex-A53, which is a performance increase of ~11x compared to the generic code. Reviewed-by: NOndrej Mosnacek <omosnace@redhat.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Add some plumbing to allow the AEGIS128 code to be built with SIMD routines for acceleration. Reviewed-by: NOndrej Mosnacek <omosnace@redhat.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
- 02 8月, 2019 2 次提交
-
-
由 Arnd Bergmann 提交于
Recent clang-9 snapshots double the kernel stack usage when building this file with -O0 -fsanitize=kernel-hwaddress, compared to clang-8 and older snapshots, this changed between commits svn364966 and svn366056: crypto/jitterentropy.c:516:5: error: stack frame size of 2640 bytes in function 'jent_entropy_init' [-Werror,-Wframe-larger-than=] int jent_entropy_init(void) ^ crypto/jitterentropy.c:185:14: error: stack frame size of 2224 bytes in function 'jent_lfsr_time' [-Werror,-Wframe-larger-than=] static __u64 jent_lfsr_time(struct rand_data *ec, __u64 time, __u64 loop_cnt) ^ I prepared a reduced test case in case any clang developers want to take a closer look, but from looking at the earlier output it seems that even with clang-8, something was very wrong here. Turn off any KASAN and UBSAN sanitizing for this file, as that likely clashes with -O0 anyway. Turning off just KASAN avoids the warning already, but I suspect both of these have undesired side-effects for jitterentropy. Link: https://godbolt.org/z/fDcwZ5Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Herbert Xu 提交于
This reverts commit ecc8bc81 ("crypto: aegis128 - provide a SIMD implementation based on NEON intrinsics") and commit 7cdc0ddb ("crypto: aegis128 - add support for SIMD acceleration"). They cause compile errors on platforms other than ARM because the mechanism to selectively compile the SIMD code is broken. Repoted-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Reported-by: NStephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
- 26 7月, 2019 4 次提交
-
-
由 Ard Biesheuvel 提交于
Provide an accelerated implementation of aegis128 by wiring up the SIMD hooks in the generic driver to an implementation based on NEON intrinsics, which can be compiled to both ARM and arm64 code. This results in a performance of 2.2 cycles per byte on Cortex-A53, which is a performance increase of ~11x compared to the generic code. Reviewed-by: NOndrej Mosnacek <omosnace@redhat.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Add some plumbing to allow the AEGIS128 code to be built with SIMD routines for acceleration. Reviewed-by: NOndrej Mosnacek <omosnace@redhat.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
Three variants of AEGIS were proposed for the CAESAR competition, and only one was selected for the final portfolio: AEGIS128. The other variants, AEGIS128L and AEGIS256, are not likely to ever turn up in networking protocols or other places where interoperability between Linux and other systems is a concern, nor are they likely to be subjected to further cryptanalysis. However, uninformed users may think that AEGIS128L (which is faster) is equally fit for use. So let's remove them now, before anyone starts using them and we are forced to support them forever. Note that there are no known flaws in the algorithms or in any of these implementations, but they have simply outlived their usefulness. Reviewed-by: NOndrej Mosnacek <omosnace@redhat.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ard Biesheuvel 提交于
MORUS was not selected as a winner in the CAESAR competition, which is not surprising since it is considered to be cryptographically broken [0]. (Note that this is not an implementation defect, but a flaw in the underlying algorithm). Since it is unlikely to be in use currently, let's remove it before we're stuck with it. [0] https://eprint.iacr.org/2019/172.pdfReviewed-by: NOndrej Mosnacek <omosnace@redhat.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
- 06 6月, 2019 1 次提交
-
-
由 Nikolay Borisov 提交于
xxhash is currently implemented as a self-contained module in /lib. This patch enables that module to be used as part of the generic kernel crypto framework. It adds a simple wrapper to the 64bit version. I've also added test vectors (with help from Nick Terrell). The upstream xxhash code is tested by running hashing operation on random 222 byte data with seed values of 0 and a prime number. The upstream test suite can be found at https://github.com/Cyan4973/xxHash/blob/cf46e0c/xxhsum.c#L664 Essentially hashing is run on data of length 0,1,14,222 with the aforementioned seed values 0 and prime 2654435761. The particular random 222 byte string was provided to me by Nick Terrell by reading /dev/random and the checksums were calculated by the upstream xxsum utility with the following bash script: dd if=/dev/random of=TEST_VECTOR bs=1 count=222 for a in 0 1; do for l in 0 1 14 222; do for s in 0 2654435761; do echo algo $a length $l seed $s; head -c $l TEST_VECTOR | ~/projects/kernel/xxHash/xxhsum -H$a -s$s done done done This produces output as follows: algo 0 length 0 seed 0 02cc5d05 stdin algo 0 length 0 seed 2654435761 02cc5d05 stdin algo 0 length 1 seed 0 25201171 stdin algo 0 length 1 seed 2654435761 25201171 stdin algo 0 length 14 seed 0 c1d95975 stdin algo 0 length 14 seed 2654435761 c1d95975 stdin algo 0 length 222 seed 0 b38662a6 stdin algo 0 length 222 seed 2654435761 b38662a6 stdin algo 1 length 0 seed 0 ef46db3751d8e999 stdin algo 1 length 0 seed 2654435761 ac75fda2929b17ef stdin algo 1 length 1 seed 0 27c3f04c2881203a stdin algo 1 length 1 seed 2654435761 4a15ed26415dfe4d stdin algo 1 length 14 seed 0 3d33dc700231dfad stdin algo 1 length 14 seed 2654435761 ea5f7ddef9a64f80 stdin algo 1 length 222 seed 0 5f3d3c08ec2bef34 stdin algo 1 length 222 seed 2654435761 6a9df59664c7ed62 stdin algo 1 is xx64 variant, algo 0 is the 32 bit variant which is currently not hooked up. Signed-off-by: NNikolay Borisov <nborisov@suse.com> Reviewed-by: NEric Biggers <ebiggers@kernel.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
- 30 5月, 2019 1 次提交
-
-
由 Eric Biggers 提交于
kcrypto_wq is only used by cryptd, so move it into cryptd.c and change the workqueue name from "crypto" to "cryptd". Signed-off-by: NEric Biggers <ebiggers@google.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
- 18 4月, 2019 2 次提交
-
-
由 Vitaly Chikunov 提交于
Add Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, RFC 7091, ISO/IEC 14888-3) is one of the Russian (and since 2018 the CIS countries) cryptographic standard algorithms (called GOST algorithms). Only signature verification is supported, with intent to be used in the IMA. Summary of the changes: * crypto/Kconfig: - EC-RDSA is added into Public-key cryptography section. * crypto/Makefile: - ecrdsa objects are added. * crypto/asymmetric_keys/x509_cert_parser.c: - Recognize EC-RDSA and Streebog OIDs. * include/linux/oid_registry.h: - EC-RDSA OIDs are added to the enum. Also, a two currently not implemented curve OIDs are added for possible extension later (to not change numbering and grouping). * crypto/ecc.c: - Kenneth MacKay copyright date is updated to 2014, because vli_mmod_slow, ecc_point_add, ecc_point_mult_shamir are based on his code from micro-ecc. - Functions needed for ecrdsa are EXPORT_SYMBOL'ed. - New functions: vli_is_negative - helper to determine sign of vli; vli_from_be64 - unpack big-endian array into vli (used for a signature); vli_from_le64 - unpack little-endian array into vli (used for a public key); vli_uadd, vli_usub - add/sub u64 value to/from vli (used for increment/decrement); mul_64_64 - optimized to use __int128 where appropriate, this speeds up point multiplication (and as a consequence signature verification) by the factor of 1.5-2; vli_umult - multiply vli by a small value (speeds up point multiplication by another factor of 1.5-2, depending on vli sizes); vli_mmod_special - module reduction for some form of Pseudo-Mersenne primes (used for the curves A); vli_mmod_special2 - module reduction for another form of Pseudo-Mersenne primes (used for the curves B); vli_mmod_barrett - module reduction using pre-computed value (used for the curve C); vli_mmod_slow - more general module reduction which is much slower (used when the modulus is subgroup order); vli_mod_mult_slow - modular multiplication; ecc_point_add - add two points; ecc_point_mult_shamir - add two points multiplied by scalars in one combined multiplication (this gives speed up by another factor 2 in compare to two separate multiplications). ecc_is_pubkey_valid_partial - additional samity check is added. - Updated vli_mmod_fast with non-strict heuristic to call optimal module reduction function depending on the prime value; - All computations for the previously defined (two NIST) curves should not unaffected. * crypto/ecc.h: - Newly exported functions are documented. * crypto/ecrdsa_defs.h - Five curves are defined. * crypto/ecrdsa.c: - Signature verification is implemented. * crypto/ecrdsa_params.asn1, crypto/ecrdsa_pub_key.asn1: - Templates for BER decoder for EC-RDSA parameters and public key. Cc: linux-integrity@vger.kernel.org Signed-off-by: NVitaly Chikunov <vt@altlinux.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Vitaly Chikunov 提交于
ecc.c have algorithms that could be used togeter by ecdh and ecrdsa. Make it separate module. Add CRYPTO_ECC into Kconfig. EXPORT_SYMBOL and document to what seems appropriate. Move structs ecc_point and ecc_curve from ecc_curve_defs.h into ecc.h. No code changes. Signed-off-by: NVitaly Chikunov <vt@altlinux.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
- 08 3月, 2019 1 次提交
-
-
由 Dave Rodgman 提交于
To prevent any issues with persistent data, separate lzo-rle from lzo so that it is treated as a separate algorithm, and lzo is still available. Link: http://lkml.kernel.org/r/20190205155944.16007-3-dave.rodgman@arm.comSigned-off-by: NDave Rodgman <dave.rodgman@arm.com> Cc: David S. Miller <davem@davemloft.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Markus F.X.J. Oberhumer <markus@oberhumer.com> Cc: Matt Sealey <matt.sealey@arm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <nitingupta910@gmail.com> Cc: Richard Purdie <rpurdie@openedhand.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Sonny Rao <sonnyrao@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 12月, 2018 1 次提交
-
-
由 Corentin Labbe 提交于
Even if CRYPTO_STATS is set to n, some part of CRYPTO_STATS are compiled. This patch made all part of crypto_user_stat uncompiled in that case. Signed-off-by: NCorentin Labbe <clabbe@baylibre.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
- 20 11月, 2018 3 次提交
-
-
由 Eric Biggers 提交于
Add support for the Adiantum encryption mode. Adiantum was designed by Paul Crowley and is specified by our paper: Adiantum: length-preserving encryption for entry-level processors (https://eprint.iacr.org/2018/720.pdf) See our paper for full details; this patch only provides an overview. Adiantum is a tweakable, length-preserving encryption mode designed for fast and secure disk encryption, especially on CPUs without dedicated crypto instructions. Adiantum encrypts each sector using the XChaCha12 stream cipher, two passes of an ε-almost-∆-universal (εA∆U) hash function, and an invocation of the AES-256 block cipher on a single 16-byte block. On CPUs without AES instructions, Adiantum is much faster than AES-XTS; for example, on ARM Cortex-A7, on 4096-byte sectors Adiantum encryption is about 4 times faster than AES-256-XTS encryption, and decryption about 5 times faster. Adiantum is a specialization of the more general HBSH construction. Our earlier proposal, HPolyC, was also a HBSH specialization, but it used a different εA∆U hash function, one based on Poly1305 only. Adiantum's εA∆U hash function, which is based primarily on the "NH" hash function like that used in UMAC (RFC4418), is about twice as fast as HPolyC's; consequently, Adiantum is about 20% faster than HPolyC. This speed comes with no loss of security: Adiantum is provably just as secure as HPolyC, in fact slightly *more* secure. Like HPolyC, Adiantum's security is reducible to that of XChaCha12 and AES-256, subject to a security bound. XChaCha12 itself has a security reduction to ChaCha12. Therefore, one need not "trust" Adiantum; one need only trust ChaCha12 and AES-256. Note that the εA∆U hash function is only used for its proven combinatorical properties so cannot be "broken". Adiantum is also a true wide-block encryption mode, so flipping any plaintext bit in the sector scrambles the entire ciphertext, and vice versa. No other such mode is available in the kernel currently; doing the same with XTS scrambles only 16 bytes. Adiantum also supports arbitrary-length tweaks and naturally supports any length input >= 16 bytes without needing "ciphertext stealing". For the stream cipher, Adiantum uses XChaCha12 rather than XChaCha20 in order to make encryption feasible on the widest range of devices. Although the 20-round variant is quite popular, the best known attacks on ChaCha are on only 7 rounds, so ChaCha12 still has a substantial security margin; in fact, larger than AES-256's. 12-round Salsa20 is also the eSTREAM recommendation. For the block cipher, Adiantum uses AES-256, despite it having a lower security margin than XChaCha12 and needing table lookups, due to AES's extensive adoption and analysis making it the obvious first choice. Nevertheless, for flexibility this patch also permits the "adiantum" template to be instantiated with XChaCha20 and/or with an alternate block cipher. We need Adiantum support in the kernel for use in dm-crypt and fscrypt, where currently the only other suitable options are block cipher modes such as AES-XTS. A big problem with this is that many low-end mobile devices (e.g. Android Go phones sold primarily in developing countries, as well as some smartwatches) still have CPUs that lack AES instructions, e.g. ARM Cortex-A7. Sadly, AES-XTS encryption is much too slow to be viable on these devices. We did find that some "lightweight" block ciphers are fast enough, but these suffer from problems such as not having much cryptanalysis or being too controversial. The ChaCha stream cipher has excellent performance but is insecure to use directly for disk encryption, since each sector's IV is reused each time it is overwritten. Even restricting the threat model to offline attacks only isn't enough, since modern flash storage devices don't guarantee that "overwrites" are really overwrites, due to wear-leveling. Adiantum avoids this problem by constructing a "tweakable super-pseudorandom permutation"; this is the strongest possible security model for length-preserving encryption. Of course, storing random nonces along with the ciphertext would be the ideal solution. But doing that with existing hardware and filesystems runs into major practical problems; in most cases it would require data journaling (like dm-integrity) which severely degrades performance. Thus, for now length-preserving encryption is still needed. Signed-off-by: NEric Biggers <ebiggers@google.com> Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Eric Biggers 提交于
Add a generic implementation of NHPoly1305, an ε-almost-∆-universal hash function used in the Adiantum encryption mode. CONFIG_NHPOLY1305 is not selectable by itself since there won't be any real reason to enable it without also enabling Adiantum support. Signed-off-by: NEric Biggers <ebiggers@google.com> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Eric Biggers 提交于
In preparation for adding XChaCha12 support, rename/refactor chacha20-generic to support different numbers of rounds. The justification for needing XChaCha12 support is explained in more detail in the patch "crypto: chacha - add XChaCha12 support". The only difference between ChaCha{8,12,20} are the number of rounds itself; all other parts of the algorithm are the same. Therefore, remove the "20" from all definitions, structures, functions, files, etc. that will be shared by all ChaCha versions. Also make ->setkey() store the round count in the chacha_ctx (previously chacha20_ctx). The generic code then passes the round count through to chacha_block(). There will be a ->setkey() function for each explicitly allowed round count; the encrypt/decrypt functions will be the same. I decided not to do it the opposite way (same ->setkey() function for all round counts, with different encrypt/decrypt functions) because that would have required more boilerplate code in architecture-specific implementations of ChaCha and XChaCha. Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NMartin Willi <martin@strongswan.org> Signed-off-by: NEric Biggers <ebiggers@google.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
- 16 11月, 2018 1 次提交
-
-
由 Vitaly Chikunov 提交于
Add GOST/IETF Streebog hash function (GOST R 34.11-2012, RFC 6986) generic hash transformation. Cc: linux-integrity@vger.kernel.org Signed-off-by: NVitaly Chikunov <vt@altlinux.org> Reviewed-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
- 28 9月, 2018 2 次提交
-
-
由 Gilad Ben-Yossef 提交于
Add a generic version of output feedback mode. We already have support of several hardware based transformations of this mode and the needed test vectors but we somehow missed adding a generic software one. Fix this now. Signed-off-by: NGilad Ben-Yossef <gilad@benyossef.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Corentin Labbe 提交于
This patch implement a generic way to get statistics about all crypto usages. Signed-off-by: NCorentin Labbe <clabbe@baylibre.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
- 04 9月, 2018 2 次提交
-
-
由 Ard Biesheuvel 提交于
As it turns out, the AVX2 multibuffer SHA routines are currently broken [0], in a way that would have likely been noticed if this code were in wide use. Since the code is too complicated to be maintained by anyone except the original authors, and since the performance benefits for real-world use cases are debatable to begin with, it is better to drop it entirely for the moment. [0] https://marc.info/?l=linux-crypto-vger&m=153476243825350&w=2Suggested-by: NEric Biggers <ebiggers@google.com> Cc: Megha Dey <megha.dey@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Jason A. Donenfeld 提交于
These are unused, undesired, and have never actually been used by anybody. The original authors of this code have changed their mind about its inclusion. While originally proposed for disk encryption on low-end devices, the idea was discarded [1] in favor of something else before that could really get going. Therefore, this patch removes Speck. [1] https://marc.info/?l=linux-crypto-vger&m=153359499015659Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com> Acked-by: NEric Biggers <ebiggers@google.com> Cc: stable@vger.kernel.org Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
- 31 5月, 2018 1 次提交
-
-
由 Ondrej Mosnacek 提交于
Commit 56e8e57f ("crypto: morus - Add common SIMD glue code for MORUS") accidetally consiedered the glue code to be usable by different architectures, but it seems to be only usable on x86. This patch moves it under arch/x86/crypto and adds 'depends on X86' to the Kconfig options and also removes the prompt to hide these internal options from the user. Reported-by: Nkbuild test robot <lkp@intel.com> Signed-off-by: NOndrej Mosnacek <omosnacek@gmail.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
- 19 5月, 2018 2 次提交
-
-
由 Ondrej Mosnacek 提交于
This patch adds a common glue code for optimized implementations of MORUS AEAD algorithms. Signed-off-by: NOndrej Mosnacek <omosnacek@gmail.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
由 Ondrej Mosnacek 提交于
This patch adds the generic implementation of the MORUS family of AEAD algorithms (MORUS-640 and MORUS-1280). The original authors of MORUS are Hongjun Wu and Tao Huang. At the time of writing, MORUS is one of the finalists in CAESAR, an open competition intended to select a portfolio of alternatives to the problematic AES-GCM: https://competitions.cr.yp.to/caesar-submissions.html https://competitions.cr.yp.to/round3/morusv2.pdfSigned-off-by: NOndrej Mosnacek <omosnacek@gmail.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-