- 02 8月, 2014 2 次提交
-
-
由 Jussi Kivilinna 提交于
This patch adds ARM NEON assembly implementation of SHA-512 and SHA-384 algorithms. tcrypt benchmark results on Cortex-A8, sha512-generic vs sha512-neon-asm: block-size bytes/update old-vs-new 16 16 2.99x 64 16 2.67x 64 64 3.00x 256 16 2.64x 256 64 3.06x 256 256 3.33x 1024 16 2.53x 1024 256 3.39x 1024 1024 3.52x 2048 16 2.50x 2048 256 3.41x 2048 1024 3.54x 2048 2048 3.57x 4096 16 2.49x 4096 256 3.42x 4096 1024 3.56x 4096 4096 3.59x 8192 16 2.48x 8192 256 3.42x 8192 1024 3.56x 8192 4096 3.60x 8192 8192 3.60x Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NJussi Kivilinna <jussi.kivilinna@iki.fi> Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
由 Jussi Kivilinna 提交于
This patch adds ARM NEON assembly implementation of SHA-1 algorithm. tcrypt benchmark results on Cortex-A8, sha1-arm-asm vs sha1-neon-asm: block-size bytes/update old-vs-new 16 16 1.04x 64 16 1.02x 64 64 1.05x 256 16 1.03x 256 64 1.04x 256 256 1.30x 1024 16 1.03x 1024 256 1.36x 1024 1024 1.52x 2048 16 1.03x 2048 256 1.39x 2048 1024 1.55x 2048 2048 1.59x 4096 16 1.03x 4096 256 1.40x 4096 1024 1.57x 4096 4096 1.62x 8192 16 1.03x 8192 256 1.40x 8192 1024 1.58x 8192 4096 1.63x 8192 8192 1.63x Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NJussi Kivilinna <jussi.kivilinna@iki.fi> Signed-off-by: NRussell King <rmk+kernel@arm.linux.org.uk>
-
- 05 10月, 2013 1 次提交
-
-
由 Ard Biesheuvel 提交于
Bit sliced AES gives around 45% speedup on Cortex-A15 for encryption and around 25% for decryption. This implementation of the AES algorithm does not rely on any lookup tables so it is believed to be invulnerable to cache timing attacks. This algorithm processes up to 8 blocks in parallel in constant time. This means that it is not usable by chaining modes that are strictly sequential in nature, such as CBC encryption. CBC decryption, however, can benefit from this implementation and runs about 25% faster. The other chaining modes implemented in this module, XTS and CTR, can execute fully in parallel in both directions. The core code has been adopted from the OpenSSL project (in collaboration with the original author, on cc). For ease of maintenance, this version is identical to the upstream OpenSSL code, i.e., all modifications that were required to make it suitable for inclusion into the kernel have been made upstream. The original can be found here: http://git.openssl.org/gitweb/?p=openssl.git;a=commit;h=6f6a6130 Note to integrators: While this implementation is significantly faster than the existing table based ones (generic or ARM asm), especially in CTR mode, the effects on power efficiency are unclear as of yet. This code does fundamentally more work, by calculating values that the table based code obtains by a simple lookup; only by doing all of that work in a SIMD fashion, it manages to perform better. Cc: Andy Polyakov <appro@openssl.org> Acked-by: NNicolas Pitre <nico@linaro.org> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
-
- 07 9月, 2012 1 次提交
-
-
由 David McCullough 提交于
Add assembler versions of AES and SHA1 for ARM platforms. This has provided up to a 50% improvement in IPsec/TCP throughout for tunnels using AES128/SHA1. Platform CPU SPeed Endian Before (bps) After (bps) Improvement IXP425 533 MHz big 11217042 15566294 ~38% KS8695 166 MHz little 3828549 5795373 ~51% Signed-off-by: NDavid McCullough <ucdevel@gmail.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-