- 17 3月, 2012 1 次提交
-
-
由 Jiri Olsa 提交于
Adding sysfs group 'format' attribute for pmu device that contains a syntax description on how to construct raw events. The event configuration is described in following struct pefr_event_attr attributes: config config1 config2 Each sysfs attribute within the format attribute group, describes mapping of name and bitfield definition within one of above attributes. eg: "/sys/...<dev>/format/event" contains "config:0-7" "/sys/...<dev>/format/umask" contains "config:8-15" "/sys/...<dev>/format/usr" contains "config:16" the attribute value syntax is: line: config ':' bits config: 'config' | 'config1' | 'config2" bits: bits ',' bit_term | bit_term bit_term: VALUE '-' VALUE | VALUE Adding format attribute definitions for x86 cpu pmus. Acked-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NJiri Olsa <jolsa@redhat.com> Link: http://lkml.kernel.org/n/tip-vhdk5y2hyype9j63prymty36@git.kernel.orgSigned-off-by: NArnaldo Carvalho de Melo <acme@redhat.com>
-
- 09 3月, 2012 1 次提交
-
-
由 Stephane Eranian 提交于
This patch adds reference sizes for revision 1 and 2 of the perf_event ABI, i.e., the size of the perf_event_attr struct. With Rev1: config2 was added = +8 bytes With Rev2: branch_sample_type was added = +8 bytes Adds the definition for Rev1, Rev2. This is useful for tools trying to decode the revision numbers based on the size of the struct. Signed-off-by: NStephane Eranian <eranian@google.com> Cc: peterz@infradead.org Cc: acme@redhat.com Cc: robert.richter@amd.com Cc: ming.m.lin@intel.com Cc: andi@firstfloor.org Cc: asharma@fb.com Cc: ravitillo@lbl.gov Cc: vweaver1@eecs.utk.edu Cc: khandual@linux.vnet.ibm.com Cc: dsahern@gmail.com Link: http://lkml.kernel.org/r/1328826068-11713-16-git-send-email-eranian@google.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 05 3月, 2012 2 次提交
-
-
由 Stephane Eranian 提交于
With branch stack sampling, it is possible to filter by priv levels. In system-wide mode, that means it is possible to capture only user level branches. The builtin SW LBR filter needs to disassemble code based on LBR captured addresses. For that, it needs to know the task the addresses are associated with. Because of context switches, the content of the branch stack buffer may contain addresses from different tasks. We need a callback on context switch to either flush the branch stack or save it. This patch adds a new callback in struct pmu which is called during context switches. The callback is called only when necessary. That is when a system-wide context has, at least, one event which uses PERF_SAMPLE_BRANCH_STACK. The callback is never called for per-thread context. In this version, the Intel x86 code simply flushes (resets) the LBR on context switches (fills it with zeroes). Those zeroed branches are then filtered out by the SW filter. Signed-off-by: NStephane Eranian <eranian@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1328826068-11713-11-git-send-email-eranian@google.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Stephane Eranian 提交于
This patch adds the ability to sample taken branches to the perf_event interface. The ability to capture taken branches is very useful for all sorts of analysis. For instance, basic block profiling, call counts, statistical call graph. This new capability requires hardware assist and as such may not be available on all HW platforms. On Intel x86 it is implemented on top of the Last Branch Record (LBR) facility. To enable taken branches sampling, the PERF_SAMPLE_BRANCH_STACK bit must be set in attr->sample_type. Sampled taken branches may be filtered by type and/or priv levels. The patch adds a new field, called branch_sample_type, to the perf_event_attr structure. It contains a bitmask of filters to apply to the sampled taken branches. Filters may be implemented in HW. If the HW filter does not exist or is not good enough, some arch may also implement a SW filter. The following generic filters are currently defined: - PERF_SAMPLE_USER only branches whose targets are at the user level - PERF_SAMPLE_KERNEL only branches whose targets are at the kernel level - PERF_SAMPLE_HV only branches whose targets are at the hypervisor level - PERF_SAMPLE_ANY any type of branches (subject to priv levels filters) - PERF_SAMPLE_ANY_CALL any call branches (may incl. syscall on some arch) - PERF_SAMPLE_ANY_RET any return branches (may incl. syscall returns on some arch) - PERF_SAMPLE_IND_CALL indirect call branches Obviously filter may be combined. The priv level bits are optional. If not provided, the priv level of the associated event are used. It is possible to collect branches at a priv level different from the associated event. Use of kernel, hv priv levels is subject to permissions and availability (hv). The number of taken branch records present in each sample may vary based on HW, the type of sampled branches, the executed code. Therefore each sample contains the number of taken branches it contains. Signed-off-by: NStephane Eranian <eranian@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1328826068-11713-2-git-send-email-eranian@google.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 24 2月, 2012 1 次提交
-
-
由 Ingo Molnar 提交于
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: NIngo Molnar <mingo@elte.hu> Acked-by: NJason Baron <jbaron@redhat.com> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.huSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 22 2月, 2012 1 次提交
-
-
由 Jiri Olsa 提交于
Adding perf registration support for the ftrace function event, so it is now possible to register it via perf interface. The perf_event struct statically contains ftrace_ops as a handle for function tracer. The function tracer is registered/unregistered in open/close actions. To be efficient, we enable/disable ftrace_ops each time the traced process is scheduled in/out (via TRACE_REG_PERF_(ADD|DELL) handlers). This way tracing is enabled only when the process is running. Intentionally using this way instead of the event's hw state PERF_HES_STOPPED, which would not disable the ftrace_ops. It is now possible to use function trace within perf commands like: perf record -e ftrace:function ls perf stat -e ftrace:function ls Allowed only for root. Link: http://lkml.kernel.org/r/1329317514-8131-6-git-send-email-jolsa@redhat.comAcked-by: NFrederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NJiri Olsa <jolsa@redhat.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 27 1月, 2012 1 次提交
-
-
由 Stephane Eranian 提交于
This patch fixes the sampling interrupt throttling mechanism. It was broken in v3.2. Events were not being unthrottled. The unthrottling mechanism required that events be checked at each timer tick. This patch solves this problem and also separates: - unthrottling - multiplexing - frequency-mode period adjustments Not all of them need to be executed at each timer tick. This third version of the patch is based on my original patch + PeterZ proposal (https://lkml.org/lkml/2012/1/7/87). At each timer tick, for each context: - if the current CPU has throttled events, we unthrottle events - if context has frequency-based events, we adjust sampling periods - if we have reached the jiffies interval, we multiplex (rotate) We decoupled rotation (multiplexing) from frequency-mode sampling period adjustments. They should not necessarily happen at the same rate. Multiplexing is subject to jiffies_interval (currently at 1 but could be higher once the tunable is exposed via sysfs). We have grouped frequency-mode adjustment and unthrottling into the same routine to minimize code duplication. When throttled while in frequency mode, we scan the events only once. We have fixed the threshold enforcement code in __perf_event_overflow(). There was a bug whereby it would allow more than the authorized rate because an increment of hwc->interrupts was not executed at the right place. The patch was tested with low sampling limit (2000) and fixed periods, frequency mode, overcommitted PMU. On a 2.1GHz AMD CPU: $ cat /proc/sys/kernel/perf_event_max_sample_rate 2000 We set a rate of 3000 samples/sec (2.1GHz/3000 = 700000): $ perf record -e cycles,cycles -c 700000 noploop 10 $ perf report -D | tail -21 Aggregated stats: TOTAL events: 80086 MMAP events: 88 COMM events: 2 EXIT events: 4 THROTTLE events: 19996 UNTHROTTLE events: 19996 SAMPLE events: 40000 cycles stats: TOTAL events: 40006 MMAP events: 5 COMM events: 1 EXIT events: 4 THROTTLE events: 9998 UNTHROTTLE events: 9998 SAMPLE events: 20000 cycles stats: TOTAL events: 39996 THROTTLE events: 9998 UNTHROTTLE events: 9998 SAMPLE events: 20000 For 10s, the cap is 2x2000x10 = 40000 samples. We get exactly that: 20000 samples/event. Signed-off-by: NStephane Eranian <eranian@google.com> Cc: <stable@kernel.org> # v3.2+ Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120126160319.GA5655@quadSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 21 12月, 2011 4 次提交
-
-
由 Peter Zijlstra 提交于
Extend the mmap control page with fields so that userspace can compute time deltas relative to the provided time fields. Currently only implemented for x86 with constant and nonstop TSC. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Stephane Eranian <eranian@google.com> Cc: Arun Sharma <asharma@fb.com> Link: http://lkml.kernel.org/n/tip-3u1jucza77j3wuvs0x2bic0f@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Allow the disabling of RDPMC via a pmu specific attribute: echo 0 > /sys/bus/event_source/devices/cpu/rdpmc Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Stephane Eranian <eranian@google.com> Cc: Arun Sharma <asharma@fb.com> Link: http://lkml.kernel.org/n/tip-pqeog465zo5hsimtkfz73f27@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Put the logic to compute the event index into a per pmu method. This is required because the x86 rules are weird and wonderful and don't match the capabilities of the current scheme. AFAIK only powerpc actually has a usable userspace read of the PMCs but I'm not at all sure anybody actually used that. ARM is restored to the default since it currently does not support userspace access at all. And all software events are provided with a method that reports their index as 0 (disabled). Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Michael Cree <mcree@orcon.net.nz> Cc: Will Deacon <will.deacon@arm.com> Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com> Cc: Anton Blanchard <anton@samba.org> Cc: Eric B Munson <emunson@mgebm.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: David S. Miller <davem@davemloft.net> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Stephane Eranian <eranian@google.com> Cc: Arun Sharma <asharma@fb.com> Link: http://lkml.kernel.org/n/tip-dfydxodki16lylkt3gl2j7cw@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Stephane Eranian 提交于
This event counts the number of reference core cpu cycles. Reference means that the event increments at a constant rate which is not subject to core CPU frequency adjustments. The event may not count when the processor is in halted (low power) state. As such, it may not be equivalent to wall clock time. However, when the processor is not halted state, the event keeps a constant correlation with wall clock time. Signed-off-by: NStephane Eranian <eranian@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1323559734-3488-3-git-send-email-eranian@google.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 06 12月, 2011 2 次提交
-
-
由 Gleb Natapov 提交于
jump_lable patching is very expensive operation that involves pausing all cpus. The patching of perf_sched_events jump_label is easily controllable from userspace by unprivileged user. When te user runs a loop like this: "while true; do perf stat -e cycles true; done" ... the performance of my test application that just increments a counter for one second drops by 4%. This is on a 16 cpu box with my test application using only one of them. An impact on a real server doing real work will be worse. Performance of KVM PMU drops nearly 50% due to jump_lable for "perf record" since KVM PMU implementation creates and destroys perf event frequently. This patch introduces a way to rate limit jump_label patching and uses it to fix the above problem. I believe that as jump_label use will spread the problem will become more common and thus solving it in a generic code is appropriate. Also fixing it in the perf code would result in moving jump_label accounting logic to perf code with all the ifdefs in case of JUMP_LABEL=n kernel. With this patch all details are nicely hidden inside jump_label code. Signed-off-by: NGleb Natapov <gleb@redhat.com> Acked-by: NJason Baron <jbaron@redhat.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20111127155909.GO2557@redhat.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Gleb writes: > Currently pmu is disabled and re-enabled on each timer interrupt even > when no rotation or frequency adjustment is needed. On Intel CPU this > results in two writes into PERF_GLOBAL_CTRL MSR per tick. On bare metal > it does not cause significant slowdown, but when running perf in a virtual > machine it leads to 20% slowdown on my machine. Cure this by keeping a perf_event_context::nr_freq counter that counts the number of active events that require frequency adjustments and use this in a similar fashion to the already existing nr_events != nr_active test in perf_rotate_context(). By being able to exclude both rotation and frequency adjustments a-priory for the common case we can avoid the otherwise superfluous PMU disable. Suggested-by: NGleb Natapov <gleb@redhat.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/n/tip-515yhoatehd3gza7we9fapaa@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 05 12月, 2011 1 次提交
-
-
由 Peter Zijlstra 提交于
When you do: $ perf record -e cycles,cycles,cycles noploop 10 You expect about 10,000 samples for each event, i.e., 10s at 1000samples/sec. However, this is not what's happening. You get much fewer samples, maybe 3700 samples/event: $ perf report -D | tail -15 Aggregated stats: TOTAL events: 10998 MMAP events: 66 COMM events: 2 SAMPLE events: 10930 cycles stats: TOTAL events: 3644 SAMPLE events: 3644 cycles stats: TOTAL events: 3642 SAMPLE events: 3642 cycles stats: TOTAL events: 3644 SAMPLE events: 3644 On a Intel Nehalem or even AMD64, there are 4 counters capable of measuring cycles, so there is plenty of space to measure those events without multiplexing (even with the NMI watchdog active). And even with multiplexing, we'd expect roughly the same number of samples per event. The root of the problem was that when the event that caused the buffer to become full was not the first event passed on the cmdline, the user notification would get lost. The notification was sent to the file descriptor of the overflowed event but the perf tool was not polling on it. The perf tool aggregates all samples into a single buffer, i.e., the buffer of the first event. Consequently, it assumes notifications for any event will come via that descriptor. The seemingly straight forward solution of moving the waitq into the ringbuffer object doesn't work because of life-time issues. One could perf_event_set_output() on a fd that you're also blocking on and cause the old rb object to be freed while its waitq would still be referenced by the blocked thread -> FAIL. Therefore link all events to the ringbuffer and broadcast the wakeup from the ringbuffer object to all possible events that could be waited upon. This is rather ugly, and we're open to better solutions but it works for now. Reported-by: NStephane Eranian <eranian@google.com> Finished-by: NStephane Eranian <eranian@google.com> Reviewed-by: NStephane Eranian <eranian@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20111126014731.GA7030@quadSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 06 10月, 2011 1 次提交
-
-
由 Joerg Roedel 提交于
The two new attributes exclude_guest and exclude_host can bes used by user-space to tell the kernel to setup performance counter to either only count while the CPU is in guest or in host mode. An additional check is also introduced to make sure user-space does not try to exclude guest and host mode from counting. Signed-off-by: NJoerg Roedel <joerg.roedel@amd.com> Signed-off-by: NGleb Natapov <gleb@redhat.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317816084-18026-2-git-send-email-gleb@redhat.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 29 8月, 2011 1 次提交
-
-
由 Stephane Eranian 提交于
The current cgroup context switch code was incorrect leading to bogus counts. Furthermore, as soon as there was an active cgroup event on a CPU, the context switch cost on that CPU would increase by a significant amount as demonstrated by a simple ping/pong example: $ ./pong Both processes pinned to CPU1, running for 10s 10684.51 ctxsw/s Now start a cgroup perf stat: $ perf stat -e cycles,cycles -A -a -G test -C 1 -- sleep 100 $ ./pong Both processes pinned to CPU1, running for 10s 6674.61 ctxsw/s That's a 37% penalty. Note that pong is not even in the monitored cgroup. The results shown by perf stat are bogus: $ perf stat -e cycles,cycles -A -a -G test -C 1 -- sleep 100 Performance counter stats for 'sleep 100': CPU1 <not counted> cycles test CPU1 16,984,189,138 cycles # 0.000 GHz The second 'cycles' event should report a count @ CPU clock (here 2.4GHz) as it is counting across all cgroups. The patch below fixes the bogus accounting and bypasses any cgroup switches in case the outgoing and incoming tasks are in the same cgroup. With this patch the same test now yields: $ ./pong Both processes pinned to CPU1, running for 10s 10775.30 ctxsw/s Start perf stat with cgroup: $ perf stat -e cycles,cycles -A -a -G test -C 1 -- sleep 10 Run pong outside the cgroup: $ /pong Both processes pinned to CPU1, running for 10s 10687.80 ctxsw/s The penalty is now less than 2%. And the results for perf stat are correct: $ perf stat -e cycles,cycles -A -a -G test -C 1 -- sleep 10 Performance counter stats for 'sleep 10': CPU1 <not counted> cycles test # 0.000 GHz CPU1 23,933,981,448 cycles # 0.000 GHz Now perf stat reports the correct counts for for the non cgroup event. If we run pong inside the cgroup, then we also get the correct counts: $ perf stat -e cycles,cycles -A -a -G test -C 1 -- sleep 10 Performance counter stats for 'sleep 10': CPU1 22,297,726,205 cycles test # 0.000 GHz CPU1 23,933,981,448 cycles # 0.000 GHz 10.001457237 seconds time elapsed Signed-off-by: NStephane Eranian <eranian@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110825135803.GA4697@quadSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 27 7月, 2011 1 次提交
-
-
由 Arun Sharma 提交于
This allows us to move duplicated code in <asm/atomic.h> (atomic_inc_not_zero() for now) to <linux/atomic.h> Signed-off-by: NArun Sharma <asharma@fb.com> Reviewed-by: NEric Dumazet <eric.dumazet@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: David Miller <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Acked-by: NMike Frysinger <vapier@gentoo.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 7月, 2011 7 次提交
-
-
由 Avi Kivity 提交于
KVM needs one-shot samples, since a PMC programmed to -X will fire after X events and then again after 2^40 events (i.e. variable period). Signed-off-by: NAvi Kivity <avi@redhat.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1309362157-6596-4-git-send-email-avi@redhat.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Avi Kivity 提交于
The perf_event overflow handler does not receive any caller-derived argument, so many callers need to resort to looking up the perf_event in their local data structure. This is ugly and doesn't scale if a single callback services many perf_events. Fix by adding a context parameter to perf_event_create_kernel_counter() (and derived hardware breakpoints APIs) and storing it in the perf_event. The field can be accessed from the callback as event->overflow_handler_context. All callers are updated. Signed-off-by: NAvi Kivity <avi@redhat.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1309362157-6596-2-git-send-email-avi@redhat.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Add a NODE level to the generic cache events which is used to measure local vs remote memory accesses. Like all other cache events, an ACCESS is HIT+MISS, if there is no way to distinguish between reads and writes do reads only etc.. The below needs filling out for !x86 (which I filled out with unsupported events). I'm fairly sure ARM can leave it like that since it doesn't strike me as an architecture that even has NUMA support. SH might have something since it does appear to have some NUMA bits. Sparc64, PowerPC and MIPS certainly want a good look there since they clearly are NUMA capable. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: David Miller <davem@davemloft.net> Cc: Anton Blanchard <anton@samba.org> Cc: David Daney <ddaney@caviumnetworks.com> Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Robert Richter <robert.richter@amd.com> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1303508226.4865.8.camel@laptopSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Stephane Eranian 提交于
This patch improves the code managing the extra shared registers used for offcore_response events on Intel Nehalem/Westmere. The idea is to use static allocation instead of dynamic allocation. This simplifies greatly the get and put constraint routines for those events. The patch also renames per_core to shared_regs because the same data structure gets used whether or not HT is on. When HT is off, those events still need to coordination because they use a extra MSR that has to be shared within an event group. Signed-off-by: NStephane Eranian <eranian@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110606145703.GA7258@quadSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Since only samples call perf_output_sample() its much saner (and more correct) to put the sample logic in there than in the perf_output_begin()/perf_output_end() pair. Saves a useless argument, reduces conditionals and shrinks struct perf_output_handle, win! Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/n/tip-2crpvsx3cqu67q3zqjbnlpsc@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
The nmi parameter indicated if we could do wakeups from the current context, if not, we would set some state and self-IPI and let the resulting interrupt do the wakeup. For the various event classes: - hardware: nmi=0; PMI is in fact an NMI or we run irq_work_run from the PMI-tail (ARM etc.) - tracepoint: nmi=0; since tracepoint could be from NMI context. - software: nmi=[0,1]; some, like the schedule thing cannot perform wakeups, and hence need 0. As one can see, there is very little nmi=1 usage, and the down-side of not using it is that on some platforms some software events can have a jiffy delay in wakeup (when arch_irq_work_raise isn't implemented). The up-side however is that we can remove the nmi parameter and save a bunch of conditionals in fast paths. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Michael Cree <mcree@orcon.net.nz> Cc: Will Deacon <will.deacon@arm.com> Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com> Cc: Anton Blanchard <anton@samba.org> Cc: Eric B Munson <emunson@mgebm.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: David S. Miller <davem@davemloft.net> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jason Wessel <jason.wessel@windriver.com> Cc: Don Zickus <dzickus@redhat.com> Link: http://lkml.kernel.org/n/tip-agjev8eu666tvknpb3iaj0fg@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Richard Kennedy 提交于
Reorder perf_event_context to remove 8 bytes of 64 bit alignment padding shrinking its size to 192 bytes, allowing it to fit into a smaller slab and use one fewer cache lines. Signed-off-by: NRichard Kennedy <richard@rsk.demon.co.uk> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1307460819.1950.5.camel@castor.rskSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 09 6月, 2011 1 次提交
-
-
由 Frederic Weisbecker 提交于
And create the internal perf events header. v2: Keep an internal inlined perf_output_copy() Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Borislav Petkov <bp@alien8.de> Cc: Stephane Eranian <eranian@google.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/1305827704-5607-1-git-send-email-fweisbec@gmail.com [ v3: use clearer 'ring_buffer' and 'rb' naming ] Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 04 6月, 2011 1 次提交
-
-
由 Vince Weaver 提交于
Fix include/linux/perf_event.h comments to be consistent with the actual #define names. This is trivial, but it can be a bit confusing when first reading through the file. Signed-off-by: NVince Weaver <vweaver1@eecs.utk.edu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: paulus@samba.org Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.00.1106031757090.29381@cl320.eecs.utk.eduSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 04 5月, 2011 1 次提交
-
-
由 Ingo Molnar 提交于
Fix a few inconsistent style bits that were added over the past few months. Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/n/tip-yv4hwf9yhnzoada8pcpb3a97@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 29 4月, 2011 1 次提交
-
-
由 Ingo Molnar 提交于
Add two generic hardware events: front-end and back-end stalled cycles. These events measure conditions when the CPU is executing code but its capabilities are not fully utilized. Understanding such situations and analyzing them is an important sub-task of code optimization workflows. Both events limit performance: most front end stalls tend to be caused by branch misprediction or instruction fetch cachemisses, backend stalls can be caused by various resource shortages or inefficient instruction scheduling. Front-end stalls are the more important ones: code cannot run fast if the instruction stream is not being kept up. An over-utilized back-end can cause front-end stalls and thus has to be kept an eye on as well. The exact composition is very program logic and instruction mix dependent. We use the terms 'stall', 'front-end' and 'back-end' loosely and try to use the best available events from specific CPUs that approximate these concepts. Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Link: http://lkml.kernel.org/n/tip-7y40wib8n000io7hjpn1dsrm@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 27 4月, 2011 1 次提交
-
-
由 Ingo Molnar 提交于
The new PERF_COUNT_HW_STALLED_CYCLES event tries to approximate cycles the CPU does nothing useful, because it is stalled on a cache-miss or some other condition. Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NArnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Link: http://lkml.kernel.org/n/tip-fue11vymwqsoo5to72jxxjyl@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 05 4月, 2011 1 次提交
-
-
由 Jason Baron 提交于
Introduce: static __always_inline bool static_branch(struct jump_label_key *key); instead of the old JUMP_LABEL(key, label) macro. In this way, jump labels become really easy to use: Define: struct jump_label_key jump_key; Can be used as: if (static_branch(&jump_key)) do unlikely code enable/disale via: jump_label_inc(&jump_key); jump_label_dec(&jump_key); that's it! For the jump labels disabled case, the static_branch() becomes an atomic_read(), and jump_label_inc()/dec() are simply atomic_inc(), atomic_dec() operations. We show testing results for this change below. Thanks to H. Peter Anvin for suggesting the 'static_branch()' construct. Since we now require a 'struct jump_label_key *key', we can store a pointer into the jump table addresses. In this way, we can enable/disable jump labels, in basically constant time. This change allows us to completely remove the previous hashtable scheme. Thanks to Peter Zijlstra for this re-write. Testing: I ran a series of 'tbench 20' runs 5 times (with reboots) for 3 configurations, where tracepoints were disabled. jump label configured in avg: 815.6 jump label *not* configured in (using atomic reads) avg: 800.1 jump label *not* configured in (regular reads) avg: 803.4 Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20110316212947.GA8792@redhat.com> Signed-off-by: NJason Baron <jbaron@redhat.com> Suggested-by: NH. Peter Anvin <hpa@linux.intel.com> Tested-by: NDavid Daney <ddaney@caviumnetworks.com> Acked-by: NRalf Baechle <ralf@linux-mips.org> Acked-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 31 3月, 2011 2 次提交
-
-
由 Lucas De Marchi 提交于
Fixes generated by 'codespell' and manually reviewed. Signed-off-by: NLucas De Marchi <lucas.demarchi@profusion.mobi>
-
由 Peter Zijlstra 提交于
Jiri reported: | | - once an event is created by sys_perf_event_open, task context | is created and it stays even if the event is closed, until the | task is finished ... thats what I see in code and I assume it's | correct | | - when the task opens event, perf_sched_events jump label is | incremented and following callbacks are started from scheduler | | __perf_event_task_sched_in | __perf_event_task_sched_out | | These callback *in/out set/unset cpuctx->task_ctx value to the | task context. | | - close is called on event on CPU 0: | - the task is scheduled on CPU 0 | - __perf_event_task_sched_in is called | - cpuctx->task_ctx is set | - perf_sched_events jump label is decremented and == 0 | - __perf_event_task_sched_out is not called | - cpuctx->task_ctx on CPU 0 stays set | | - exit is called on CPU 1: | - the task is scheduled on CPU 1 | - perf_event_exit_task is called | - task_ctx_sched_out unsets cpuctx->task_ctx on CPU 1 | - put_ctx destroys the context | | - another call of perf_rotate_context on CPU 0 will use invalid | task_ctx pointer, and eventualy panic. | Cure this the simplest possibly way by partially reverting the jump_label optimization for the sched_out case. Reported-and-tested-by: NJiri Olsa <jolsa@redhat.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Oleg Nesterov <oleg@redhat.com> Cc: <stable@kernel.org> # .37+ LKML-Reference: <1301520405.4859.213.camel@twins> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 23 3月, 2011 1 次提交
-
-
由 Stephane Eranian 提交于
This patch solves a stale pointer problem in update_cgrp_time_from_cpuctx(). The cpuctx->cgrp was not cleared on all possible event exit paths, including: close() perf_release() perf_release_kernel() list_del_event() This patch fixes list_del_event() to clear cpuctx->cgrp when there are no cgroup events left in the context. [ This second version makes the code compile when CONFIG_CGROUP_PERF is not enabled. We unconditionally define perf_cpu_context->cgrp. ] Signed-off-by: NStephane Eranian <eranian@google.com> Cc: peterz@infradead.org Cc: perfmon2-devel@lists.sf.net Cc: paulus@samba.org Cc: davem@davemloft.net LKML-Reference: <20110323150306.GA1580@quad> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 16 3月, 2011 1 次提交
-
-
由 Richard Kennedy 提交于
Remove 8 bytes of alignment padding from perf_event_context on 64 bit builds which shrinks its size to 192 bytes allowing it to fit into one fewer cache lines and into a smaller slab. Signed-off-by: NRichard Kennedy <richard@rsk.demon.co.uk> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299512819.2039.5.camel@castor.rsk> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 04 3月, 2011 1 次提交
-
-
由 Andi Kleen 提交于
Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: NAndi Kleen <ak@linux.intel.com> Signed-off-by: NLin Ming <ming.m.lin@intel.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 16 2月, 2011 2 次提交
-
-
由 Peter Zijlstra 提交于
By pre-computing the maximum number of samples per tick we can avoid a multiplication and a conditional since MAX_INTERRUPTS > max_samples_per_tick. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <new-submission> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Stephane Eranian 提交于
This kernel patch adds the ability to filter monitoring based on container groups (cgroups). This is for use in per-cpu mode only. The cgroup to monitor is passed as a file descriptor in the pid argument to the syscall. The file descriptor must be opened to the cgroup name in the cgroup filesystem. For instance, if the cgroup name is foo and cgroupfs is mounted in /cgroup, then the file descriptor is opened to /cgroup/foo. Cgroup mode is activated by passing PERF_FLAG_PID_CGROUP in the flags argument to the syscall. For instance to measure in cgroup foo on CPU1 assuming cgroupfs is mounted under /cgroup: struct perf_event_attr attr; int cgroup_fd, fd; cgroup_fd = open("/cgroup/foo", O_RDONLY); fd = perf_event_open(&attr, cgroup_fd, 1, -1, PERF_FLAG_PID_CGROUP); close(cgroup_fd); Signed-off-by: NStephane Eranian <eranian@google.com> [ added perf_cgroup_{exit,attach} ] Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <4d590250.114ddf0a.689e.4482@mx.google.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 16 12月, 2010 2 次提交
-
-
由 Peter Zijlstra 提交于
Simple sysfs emumeration of the PMUs. Use a "event_source" bus, and add PMU devices using their name. Each PMU device has a type attribute which contrains the value needed for perf_event_attr::type to identify this PMU. This is the minimal stub needed to start using this interface, we'll consider extending the sysfs usage later. Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg KH <gregkh@suse.de> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20101117222056.316982569@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Extend the perf_pmu_register() interface to allow for named and dynamic pmu types. Because we need to support the existing static types we cannot use dynamic types for everything, hence provide a type argument. If we want to enumerate the PMUs they need a name, provide one. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20101117222056.259707703@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 09 12月, 2010 1 次提交
-
-
由 Peter Zijlstra 提交于
Because the multi-pmu bits can share contexts between struct pmu instances we could get duplicate events by iterating the pmu list. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> LKML-Reference: <new-submission> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-