- 01 2月, 2021 2 次提交
-
-
由 Kan Liang 提交于
Add perf core PMU support for the Intel Sapphire Rapids server, which is the successor of the Intel Ice Lake server. The enabling code is based on Ice Lake, but there are several new features introduced. The event encoding is changed and simplified, e.g., the event codes which are below 0x90 are restricted to counters 0-3. The event codes which above 0x90 are likely to have no restrictions. The event constraints, extra_regs(), and hardware cache events table are changed accordingly. A new Precise Distribution (PDist) facility is introduced, which further minimizes the skid when a precise event is programmed on the GP counter 0. Enable the Precise Distribution (PDist) facility with :ppp event. For this facility to work, the period must be initialized with a value larger than 127. Add spr_limit_period() to apply the limit for :ppp event. Two new data source fields, data block & address block, are added in the PEBS Memory Info Record for the load latency event. To enable the feature, - An auxiliary event has to be enabled together with the load latency event on Sapphire Rapids. A new flag PMU_FL_MEM_LOADS_AUX is introduced to indicate the case. A new event, mem-loads-aux, is exposed to sysfs for the user tool. Add a check in hw_config(). If the auxiliary event is not detected, return an unique error -ENODATA. - The union perf_mem_data_src is extended to support the new fields. - Ice Lake and earlier models do not support block information, but the fields may be set by HW on some machines. Add pebs_no_block to explicitly indicate the previous platforms which don't support the new block fields. Accessing the new block fields are ignored on those platforms. A new store Latency facility is introduced, which leverages the PEBS facility where it can provide additional information about sampled stores. The additional information includes the data address, memory auxiliary info (e.g. Data Source, STLB miss) and the latency of the store access. To enable the facility, the new event (0x02cd) has to be programed on the GP counter 0. A new flag PERF_X86_EVENT_PEBS_STLAT is introduced to indicate the event. The store_latency_data() is introduced to parse the memory auxiliary info. The layout of access latency field of PEBS Memory Info Record has been changed. Two latency, instruction latency (bit 15:0) and cache access latency (bit 47:32) are recorded. - The cache access latency is similar to previous memory access latency. For loads, the latency starts by the actual cache access until the data is returned by the memory subsystem. For stores, the latency starts when the demand write accesses the L1 data cache and lasts until the cacheline write is completed in the memory subsystem. The cache access latency is stored in low 32bits of the sample type PERF_SAMPLE_WEIGHT_STRUCT. - The instruction latency starts by the dispatch of the load operation for execution and lasts until completion of the instruction it belongs to. Add a new flag PMU_FL_INSTR_LATENCY to indicate the instruction latency support. The instruction latency is stored in the bit 47:32 of the sample type PERF_SAMPLE_WEIGHT_STRUCT. Extends the PERF_METRICS MSR to feature TMA method level 2 metrics. The lower half of the register is the TMA level 1 metrics (legacy). The upper half is also divided into four 8-bit fields for the new level 2 metrics. Expose all eight Topdown metrics events to user space. The full description for the SPR features can be found at Intel Architecture Instruction Set Extensions and Future Features Programming Reference, 319433-041. Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/1611873611-156687-5-git-send-email-kan.liang@linux.intel.com
-
由 Kan Liang 提交于
Current PERF_SAMPLE_WEIGHT sample type is very useful to expresses the cost of an action represented by the sample. This allows the profiler to scale the samples to be more informative to the programmer. It could also help to locate a hotspot, e.g., when profiling by memory latencies, the expensive load appear higher up in the histograms. But current PERF_SAMPLE_WEIGHT sample type is solely determined by one factor. This could be a problem, if users want two or more factors to contribute to the weight. For example, Golden Cove core PMU can provide both the instruction latency and the cache Latency information as factors for the memory profiling. For current X86 platforms, although meminfo::latency is defined as a u64, only the lower 32 bits include the valid data in practice (No memory access could last than 4G cycles). The higher 32 bits can be used to store new factors. Add a new sample type, PERF_SAMPLE_WEIGHT_STRUCT, to indicate the new sample weight structure. It shares the same space as the PERF_SAMPLE_WEIGHT sample type. Users can apply either the PERF_SAMPLE_WEIGHT sample type or the PERF_SAMPLE_WEIGHT_STRUCT sample type to retrieve the sample weight, but they cannot apply both sample types simultaneously. Currently, only X86 and PowerPC use the PERF_SAMPLE_WEIGHT sample type. - For PowerPC, there is nothing changed for the PERF_SAMPLE_WEIGHT sample type. There is no effect for the new PERF_SAMPLE_WEIGHT_STRUCT sample type. PowerPC can re-struct the weight field similarly later. - For X86, the same value will be dumped for the PERF_SAMPLE_WEIGHT sample type or the PERF_SAMPLE_WEIGHT_STRUCT sample type for now. The following patches will apply the new factors for the PERF_SAMPLE_WEIGHT_STRUCT sample type. The field in the union perf_sample_weight should be shared among different architectures. A generic name is required, but it's hard to abstract a name that applies to all architectures. For example, on X86, the fields are to store all kinds of latency. While on PowerPC, it stores MMCRA[TECX/TECM], which should not be latency. So a general name prefix 'var$NUM' is used here. Suggested-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/1611873611-156687-2-git-send-email-kan.liang@linux.intel.com
-
- 03 12月, 2020 2 次提交
-
-
由 Stephane Eranian 提交于
The kernel cannot disambiguate when 2+ PEBS counters overflow at the same time. This is what the comment for this code suggests. However, I see the comparison is done with the unfiltered p->status which is a copy of IA32_PERF_GLOBAL_STATUS at the time of the sample. This register contains more than the PEBS counter overflow bits. It also includes many other bits which could also be set. Signed-off-by: NNamhyung Kim <namhyung@kernel.org> Signed-off-by: NStephane Eranian <eranian@google.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20201126110922.317681-2-namhyung@kernel.org
-
由 Namhyung Kim 提交于
The commit 3966c3fe ("x86/perf/amd: Remove need to check "running" bit in NMI handler") introduced this. It seems x86_pmu_stop can be called recursively (like when it losts some samples) like below: x86_pmu_stop intel_pmu_disable_event (x86_pmu_disable) intel_pmu_pebs_disable intel_pmu_drain_pebs_nhm (x86_pmu_drain_pebs_buffer) x86_pmu_stop While commit 35d1ce6b ("perf/x86/intel/ds: Fix x86_pmu_stop warning for large PEBS") fixed it for the normal cases, there's another path to call x86_pmu_stop() recursively when a PEBS error was detected (like two or more counters overflowed at the same time). Like in the Kan's previous fix, we can skip the interrupt accounting for large PEBS, so check the iregs which is set for PMI only. Fixes: 3966c3fe ("x86/perf/amd: Remove need to check "running" bit in NMI handler") Reported-by: NJohn Sperbeck <jsperbeck@google.com> Suggested-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NNamhyung Kim <namhyung@kernel.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20201126110922.317681-1-namhyung@kernel.org
-
- 10 11月, 2020 3 次提交
-
-
由 Peter Zijlstra 提交于
Having pt_regs on-stack is unfortunate, it's 168 bytes. Since it isn't actually used, make it a static variable. This both gets if off the stack and ensures it gets 0 initialized, just in case someone does look at it. Reported-by: NSteven Rostedt <rostedt@goodmis.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20201030151955.324273677@infradead.org
-
由 Peter Zijlstra 提交于
intel_pmu_drain_pebs_*() is typically called from handle_pmi_common(), both have an on-stack struct perf_sample_data, which is *big*. Rewire things so that drain_pebs() can use the one handle_pmi_common() has. Reported-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20201030151955.054099690@infradead.org
-
由 Peter Zijlstra 提交于
__perf_output_begin() has an on-stack struct perf_sample_data in the unlikely case it needs to generate a LOST record. However, every call to perf_output_begin() must already have a perf_sample_data on-stack. Reported-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20201030151954.985416146@infradead.org
-
- 29 10月, 2020 1 次提交
-
-
由 Kan Liang 提交于
The new sample type, PERF_SAMPLE_DATA_PAGE_SIZE, requires the virtual address. Update the data->addr if the sample type is set. The large PEBS is disabled with the sample type, because perf doesn't support munmap tracking yet. The PEBS buffer for large PEBS cannot be flushed for each munmap. Wrong page size may be calculated. The large PEBS can be enabled later separately when munmap tracking is supported. Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20201001135749.2804-3-kan.liang@linux.intel.com
-
- 26 10月, 2020 1 次提交
-
-
由 Gabriel Krisman Bertazi 提交于
In preparation to remove TIF_IA32, stop using it in perf events code. Tested by running perf on 32-bit, 64-bit and x32 applications. Suggested-by: NAndy Lutomirski <luto@kernel.org> Signed-off-by: NGabriel Krisman Bertazi <krisman@collabora.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20201004032536.1229030-2-krisman@collabora.com
-
- 10 9月, 2020 1 次提交
-
-
由 Kan Liang 提交于
A warning as below may be triggered when sampling with large PEBS. [ 410.411250] perf: interrupt took too long (72145 > 71975), lowering kernel.perf_event_max_sample_rate to 2000 [ 410.724923] ------------[ cut here ]------------ [ 410.729822] WARNING: CPU: 0 PID: 16397 at arch/x86/events/core.c:1422 x86_pmu_stop+0x95/0xa0 [ 410.933811] x86_pmu_del+0x50/0x150 [ 410.937304] event_sched_out.isra.0+0xbc/0x210 [ 410.941751] group_sched_out.part.0+0x53/0xd0 [ 410.946111] ctx_sched_out+0x193/0x270 [ 410.949862] __perf_event_task_sched_out+0x32c/0x890 [ 410.954827] ? set_next_entity+0x98/0x2d0 [ 410.958841] __schedule+0x592/0x9c0 [ 410.962332] schedule+0x5f/0xd0 [ 410.965477] exit_to_usermode_loop+0x73/0x120 [ 410.969837] prepare_exit_to_usermode+0xcd/0xf0 [ 410.974369] ret_from_intr+0x2a/0x3a [ 410.977946] RIP: 0033:0x40123c [ 411.079661] ---[ end trace bc83adaea7bb664a ]--- In the non-overflow context, e.g., context switch, with large PEBS, perf may stop an event twice. An example is below. //max_samples_per_tick is adjusted to 2 //NMI is triggered intel_pmu_handle_irq() handle_pmi_common() drain_pebs() __intel_pmu_pebs_event() perf_event_overflow() __perf_event_account_interrupt() hwc->interrupts = 1 return 0 //A context switch happens right after the NMI. //In the same tick, the perf_throttled_seq is not changed. perf_event_task_sched_out() perf_pmu_sched_task() intel_pmu_drain_pebs_buffer() __intel_pmu_pebs_event() perf_event_overflow() __perf_event_account_interrupt() ++hwc->interrupts >= max_samples_per_tick return 1 x86_pmu_stop(); # First stop perf_event_context_sched_out() task_ctx_sched_out() ctx_sched_out() event_sched_out() x86_pmu_del() x86_pmu_stop(); # Second stop and trigger the warning Perf should only invoke the perf_event_overflow() in the overflow context. Current drain_pebs() is called from: - handle_pmi_common() -- overflow context - intel_pmu_pebs_sched_task() -- non-overflow context - intel_pmu_pebs_disable() -- non-overflow context - intel_pmu_auto_reload_read() -- possible overflow context With PERF_SAMPLE_READ + PERF_FORMAT_GROUP, the function may be invoked in the NMI handler. But, before calling the function, the PEBS buffer has already been drained. The __intel_pmu_pebs_event() will not be called in the possible overflow context. To fix the issue, an indicator is required to distinguish between the overflow context aka handle_pmi_common() and other cases. The dummy regs pointer can be used as the indicator. In the non-overflow context, perf should treat the last record the same as other PEBS records, and doesn't invoke the generic overflow handler. Fixes: 21509084 ("perf/x86/intel: Handle multiple records in the PEBS buffer") Reported-by: NLike Xu <like.xu@linux.intel.com> Suggested-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Tested-by: NLike Xu <like.xu@linux.intel.com> Link: https://lkml.kernel.org/r/20200902210649.2743-1-kan.liang@linux.intel.com
-
- 08 7月, 2020 1 次提交
-
-
由 Kan Liang 提交于
Current LBR information in the structure x86_perf_task_context is stored in a different format from the PEBS LBR record and Architecture LBR, which prevents the sharing of the common codes. Use the format of the PEBS LBR record as a unified format. Use a generic name lbr_entry to replace pebs_lbr_entry. Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/1593780569-62993-11-git-send-email-kan.liang@linux.intel.com
-
- 11 2月, 2020 1 次提交
-
-
由 Kan Liang 提交于
Perf doesn't take the left period into account when auto-reload is enabled with fixed period sampling mode in context switch. Here is the MSR trace of the perf command as below. (The MSR trace is simplified from a ftrace log.) #perf record -e cycles:p -c 2000000 -- ./triad_loop //The MSR trace of task schedule out //perf disable all counters, disable PEBS, disable GP counter 0, //read GP counter 0, and re-enable all counters. //The counter 0 stops at 0xfffffff82840 write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 0 write_msr: MSR_IA32_PEBS_ENABLE(3f1), value 0 write_msr: MSR_P6_EVNTSEL0(186), value 40003003c rdpmc: 0, value fffffff82840 write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value f000000ff //The MSR trace of the same task schedule in again //perf disable all counters, enable and set GP counter 0, //enable PEBS, and re-enable all counters. //0xffffffe17b80 (-2000000) is written to GP counter 0. write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 0 write_msr: MSR_IA32_PMC0(4c1), value ffffffe17b80 write_msr: MSR_P6_EVNTSEL0(186), value 40043003c write_msr: MSR_IA32_PEBS_ENABLE(3f1), value 1 write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value f000000ff When the same task schedule in again, the counter should starts from previous left. However, it starts from the fixed period -2000000 again. A special variant of intel_pmu_save_and_restart() is used for auto-reload, which doesn't update the hwc->period_left. When the monitored task schedules in again, perf doesn't know the left period. The fixed period is used, which is inaccurate. With auto-reload, the counter always has a negative counter value. So the left period is -value. Update the period_left in intel_pmu_save_and_restart_reload(). With the patch: //The MSR trace of task schedule out write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 0 write_msr: MSR_IA32_PEBS_ENABLE(3f1), value 0 write_msr: MSR_P6_EVNTSEL0(186), value 40003003c rdpmc: 0, value ffffffe25cbc write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value f000000ff //The MSR trace of the same task schedule in again write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 0 write_msr: MSR_IA32_PMC0(4c1), value ffffffe25cbc write_msr: MSR_P6_EVNTSEL0(186), value 40043003c write_msr: MSR_IA32_PEBS_ENABLE(3f1), value 1 write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value f000000ff Fixes: d31fc13f ("perf/x86/intel: Fix event update for auto-reload") Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NIngo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20200121190125.3389-1-kan.liang@linux.intel.com
-
- 10 12月, 2019 1 次提交
-
-
由 Sean Christopherson 提交于
Through a labyrinthian sequence of includes, usage of virt_to_phys() is dependent on the include of asm/io.h in asm/realmode.h via asm/acpi.h. Explicitly include asm/io.h to break the dependency on realmode.h so that a future patch can remove the realmode.h include from acpi.h without breaking the build. Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Link: https://lkml.kernel.org/r/20191126165417.22423-6-sean.j.christopherson@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 28 8月, 2019 1 次提交
-
-
由 Alexander Shishkin 提交于
If PEBS declares ability to output its data to Intel PT stream, use the aux_output attribute bit to enable PEBS data output to PT. This requires a PT event to be present and scheduled in the same context. Unlike the DS area, the kernel does not extract PEBS records from the PT stream to generate corresponding records in the perf stream, because that would require real time in-kernel PT decoding, which is not feasible. The PMI, however, can still be used. The output setting is per-CPU, so all PEBS events must be either writing to PT or to the DS area, therefore, in case of conflict, the conflicting event will fail to schedule, allowing the rotation logic to alternate between the PEBS->PT and PEBS->DS events. Signed-off-by: NAlexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: kan.liang@linux.intel.com Link: https://lkml.kernel.org/r/20190806084606.4021-3-alexander.shishkin@linux.intel.com
-
- 25 7月, 2019 1 次提交
-
-
由 Kan Liang 提交于
Sampling SLOTS event and ref-cycles event in a group on Icelake gives EINVAL. SLOTS event is the event stands for the fixed counter 3, not fixed counter 2. Wrong mask was set to SLOTS event in intel_icl_pebs_event_constraints[]. Reported-by: NAndi Kleen <ak@linux.intel.com> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 60176089 ("perf/x86/intel: Add Icelake support") Link: https://lkml.kernel.org/r/20190723200429.8180-1-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 6月, 2019 3 次提交
-
-
由 Kan Liang 提交于
We don't need pmu->pebs_no_xmm_regs anymore, the capabilities PERF_PMU_CAP_EXTENDED_REGS can be used to check if XMM registers collection is supported. Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: https://lkml.kernel.org/r/1559081314-9714-4-git-send-email-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Kan Liang 提交于
Use generic macro PERF_REG_EXTENDED_MASK to replace PEBS_XMM_REGS to avoid duplication. Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: https://lkml.kernel.org/r/1559081314-9714-3-git-send-email-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Kan Liang 提交于
The perf fuzzer caused Skylake machine to crash: [ 9680.085831] Call Trace: [ 9680.088301] <IRQ> [ 9680.090363] perf_output_sample_regs+0x43/0xa0 [ 9680.094928] perf_output_sample+0x3aa/0x7a0 [ 9680.099181] perf_event_output_forward+0x53/0x80 [ 9680.103917] __perf_event_overflow+0x52/0xf0 [ 9680.108266] ? perf_trace_run_bpf_submit+0xc0/0xc0 [ 9680.113108] perf_swevent_hrtimer+0xe2/0x150 [ 9680.117475] ? check_preempt_wakeup+0x181/0x230 [ 9680.122091] ? check_preempt_curr+0x62/0x90 [ 9680.126361] ? ttwu_do_wakeup+0x19/0x140 [ 9680.130355] ? try_to_wake_up+0x54/0x460 [ 9680.134366] ? reweight_entity+0x15b/0x1a0 [ 9680.138559] ? __queue_work+0x103/0x3f0 [ 9680.142472] ? update_dl_rq_load_avg+0x1cd/0x270 [ 9680.147194] ? timerqueue_del+0x1e/0x40 [ 9680.151092] ? __remove_hrtimer+0x35/0x70 [ 9680.155191] __hrtimer_run_queues+0x100/0x280 [ 9680.159658] hrtimer_interrupt+0x100/0x220 [ 9680.163835] smp_apic_timer_interrupt+0x6a/0x140 [ 9680.168555] apic_timer_interrupt+0xf/0x20 [ 9680.172756] </IRQ> The XMM registers can only be collected by PEBS hardware events on the platforms with PEBS baseline support, e.g. Icelake, not software/probe events. Add capabilities flag PERF_PMU_CAP_EXTENDED_REGS to indicate the PMU which support extended registers. For X86, the extended registers are XMM registers. Add has_extended_regs() to check if extended registers are applied. The generic code define the mask of extended registers as 0 if arch headers haven't overridden it. Originally-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reported-by: NVince Weaver <vincent.weaver@maine.edu> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 878068ea ("perf/x86: Support outputting XMM registers") Link: https://lkml.kernel.org/r/1559081314-9714-1-git-send-email-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 21 5月, 2019 1 次提交
-
-
由 Stephane Eranian 提交于
This patch fixes an bug revealed by the following commit: 6b89d4c1 ("perf/x86/intel: Fix INTEL_FLAGS_EVENT_CONSTRAINT* masking") That patch modified INTEL_FLAGS_EVENT_CONSTRAINT() to only look at the event code when matching a constraint. If code+umask were needed, then the INTEL_FLAGS_UEVENT_CONSTRAINT() macro was needed instead. This broke with some of the constraints for PEBS events. Several of them, including the one used for cycles:p, cycles:pp, cycles:ppp fell in that category and caused the event to be rejected in PEBS mode. In other words, on some platforms a cmdline such as: $ perf top -e cycles:pp would fail with -EINVAL. This patch fixes this bug by properly using INTEL_FLAGS_UEVENT_CONSTRAINT() when needed in the PEBS constraint tables. Reported-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NStephane Eranian <eranian@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/20190521005246.423-1-eranian@google.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 29 4月, 2019 1 次提交
-
-
由 Ingo Molnar 提交于
We currently have 6 (!) separate naming variants to name temporary instruction buffers that are used for code patching: - insnbuf - insnbuff - insn_buff - insn_buffer - ibuf - ibuffer These are used as local variables, percpu fields and function parameters. Standardize all the names to a single variant: 'insn_buff'. Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 16 4月, 2019 6 次提交
-
-
由 Kan Liang 提交于
Add Icelake core PMU perf code, including constraint tables and the main enable code. Icelake expanded the generic counters to always 8 even with HT on, but a range of events cannot be scheduled on the extra 4 counters. Add new constraint ranges to describe this to the scheduler. The number of constraints that need to be checked is larger now than with earlier CPUs. At some point we may need a new data structure to look them up more efficiently than with linear search. So far it still seems to be acceptable however. Icelake added a new fixed counter SLOTS. Full support for it is added later in the patch series. The cache events table is identical to Skylake. Compare to PEBS instruction event on generic counter, fixed counter 0 has less skid. Force instruction:ppp always in fixed counter 0. Originally-by: NAndi Kleen <ak@linux.intel.com> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-9-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Icelake extended the general counters to 8, even when SMT is enabled. However only a (large) subset of the events can be used on all 8 counters. The events that can or cannot be used on all counters are organized in ranges. A lot of scheduler constraints are required to handle all this. To avoid blowing up the tables add event code ranges to the constraint tables, and a new inline function to match them. Originally-by: NAndi Kleen <ak@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> # developer hat on Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> # maintainer hat on Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-8-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Kan Liang 提交于
Adaptive PEBS is a new way to report PEBS sampling information. Instead of a fixed size record for all PEBS events it allows to configure the PEBS record to only include the information needed. Events can then opt in to use such an extended record, or stay with a basic record which only contains the IP. The major new feature is to support LBRs in PEBS record. Besides normal LBR, this allows (much faster) large PEBS, while still supporting callstacks through callstack LBR. So essentially a lot of profiling can now be done without frequent interrupts, dropping the overhead significantly. The main requirement still is to use a period, and not use frequency mode, because frequency mode requires reevaluating the frequency on each overflow. The floating point state (XMM) is also supported, which allows efficient profiling of FP function arguments. Introduce specific drain function to handle variable length records. Use a new callback to parse the new record format, and also handle the STATUS field now being at a different offset. Add code to set up the configuration register. Since there is only a single register, all events either get the full super set of all events, or only the basic record. Originally-by: NAndi Kleen <ak@linux.intel.com> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-6-kan.liang@linux.intel.com [ Renamed GPRS => GP. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Kan Liang 提交于
The drain_pebs() could be called twice in a short period for auto-reload event in pmu::read(). The intel_pmu_save_and_restart_reload() should be called to update the event->count. This case should also be handled on Icelake. Extract the code for later reuse. Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-5-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Andi Kleen 提交于
Extract some code related to memory profiling from the PEBS record parser into separate functions. It can be reused by the upcoming adaptive PEBS parser. No functional changes. Rename intel_hsw_weight to intel_get_tsx_weight, and intel_hsw_transaction to intel_get_tsx_transaction. Because the input is not the hsw pebs format anymore. Signed-off-by: NAndi Kleen <ak@linux.intel.com> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-4-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Kan Liang 提交于
Starting from Icelake, XMM registers can be collected in PEBS record. But current code only output the pt_regs. Add a new struct x86_perf_regs for both pt_regs and xmm_regs. The xmm_regs will be used later to keep a pointer to PEBS record which has XMM information. XMM registers are 128 bit. To simplify the code, they are handled like two different registers, which means setting two bits in the register bitmap. This also allows only sampling the lower 64bit bits in XMM. The index of XMM registers starts from 32. There are 16 XMM registers. So all reserved space for regs are used. Remove REG_RESERVED. Add PERF_REG_X86_XMM_MAX, which stands for the max number of all x86 regs including both GPRs and XMM. Add REG_NOSUPPORT for 32bit to exclude unsupported registers. Previous platforms can not collect XMM information in PEBS record. Adding pebs_no_xmm_regs to indicate the unsupported platforms. The common code still validates the supported registers. However, it cannot check model specific registers, e.g. XMM. Add extra check in x86_pmu_hw_config() to reject invalid config of regs_user and regs_intr. The regs_user never supports XMM collection. The regs_intr only supports XMM collection when sampling PEBS event on icelake and later platforms. Originally-by: NAndi Kleen <ak@linux.intel.com> Suggested-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-3-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 11 2月, 2019 1 次提交
-
-
由 Andi Kleen 提交于
KVM added a workaround for PEBS events leaking into guests with commit: 26a4f3c0 ("perf/x86: disable PEBS on a guest entry.") This uses the VT entry/exit list to add an extra disable of the PEBS_ENABLE MSR. Intel also added a fix for this issue to microcode updates on Haswell/Broadwell/Skylake. It turns out using the MSR entry/exit list makes VM exits significantly slower. The list is only needed for disabling PEBS, because the GLOBAL_CTRL change gets optimized by KVM into changing the VMCS. Check for the microcode updates that have the microcode fix for leaking PEBS, and disable the extra entry/exit list entry for PEBS_ENABLE. In addition we always clear the GLOBAL_CTRL for the PEBS counter while running in the guest, which is enough to make them never fire at the wrong side of the host/guest transition. The overhead for VM exits with the filtering active with the patch is reduced from 8% to 4%. The microcode patch has already been merged into future platforms. This patch is one-off thing. The quirks is used here. For other old platforms which doesn't have microcode patch and quirks, extra disable of the PEBS_ENABLE MSR is still required. Signed-off-by: NAndi Kleen <ak@linux.intel.com> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: bp@alien8.de Link: https://lkml.kernel.org/r/1549319013-4522-2-git-send-email-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 03 12月, 2018 1 次提交
-
-
由 Ingo Molnar 提交于
Go over arch/x86/ and fix common typos in comments, and a typo in an actual function argument name. No change in functionality intended. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 7月, 2018 4 次提交
-
-
由 Kan Liang 提交于
Enable the extended PEBS for Goldmont Plus. There is no specific PEBS constrains for Goldmont Plus. Removing the pebs_constraints for Goldmont Plus. Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Link: http://lkml.kernel.org/r/20180309021542.11374-4-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Kan Liang 提交于
The pebs_drain() need to support fixed counters. The DS Save Area now include "counter reset value" fields for each fixed counters. Extend the related variables (e.g. mask, counters, error) to support fixed counters. There is no extended PEBS in PEBS v2 and earlier PEBS format. Only need to change the code for PEBS v3 and later PEBS format. Extend the pebs_event_reset[] logic to support new "counter reset value" fields. Increase the reserve space for fixed counters. Based-on-code-from: Andi Kleen <ak@linux.intel.com> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Link: http://lkml.kernel.org/r/20180309021542.11374-3-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Kan Liang 提交于
The Extended PEBS feature, introduced in the Goldmont Plus microarchitecture, supports all events as "Extended PEBS". Introduce flag PMU_FL_PEBS_ALL to indicate the platforms which support extended PEBS. To support all events, it needs to support all constraints for PEBS. To avoid duplicating all the constraints in the PEBS table, making the PEBS code search the normal constraints too. Based-on-code-from: Andi Kleen <ak@linux.intel.com> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Link: http://lkml.kernel.org/r/20180309021542.11374-1-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Vince reported the perf_fuzzer giving various unwinder warnings and Josh reported: > Deja vu. Most of these are related to perf PEBS, similar to the > following issue: > > b8000586 ("perf/x86/intel: Cure bogus unwind from PEBS entries") > > This is basically the ORC version of that. setup_pebs_sample_data() is > assembling a franken-pt_regs which ORC isn't happy about. RIP is > inconsistent with some of the other registers (like RSP and RBP). And where the previous unwinder only needed BP,SP ORC also requires IP. But we cannot spoof IP because then the sample will get displaced, entirely negating the point of PEBS. So cure the whole thing differently by doing the unwind early; this does however require a means to communicate we did the unwind early. We (ab)use an unused sample_type bit for this, which we set on events that fill out the data->callchain before the normal perf_prepare_sample(). Debugged-by: NJosh Poimboeuf <jpoimboe@redhat.com> Reported-by: NVince Weaver <vincent.weaver@maine.edu> Tested-by: NJosh Poimboeuf <jpoimboe@redhat.com> Tested-by: NPrashant Bhole <bhole_prashant_q7@lab.ntt.co.jp> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 15 7月, 2018 1 次提交
-
-
由 Hugh Dickins 提交于
Markus reported that BTS is sporadically missing the tail of the trace in the perf_event data buffer: [decode error (1): instruction overflow] shown in GDB; and bisected it to the conversion of debug_store to PTI. A little "optimization" crept into alloc_bts_buffer(), which mistakenly placed bts_interrupt_threshold away from the 24-byte record boundary. Intel SDM Vol 3B 17.4.9 says "This address must point to an offset from the BTS buffer base that is a multiple of the BTS record size." Revert "max" from a byte count to a record count, to calculate the bts_interrupt_threshold correctly: which turns out to fix problem seen. Fixes: c1961a46 ("x86/events/intel/ds: Map debug buffers in cpu_entry_area") Reported-and-tested-by: NMarkus T Metzger <markus.t.metzger@intel.com> Signed-off-by: NHugh Dickins <hughd@google.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Stephane Eranian <eranian@google.com> Cc: stable@vger.kernel.org # v4.14+ Link: https://lkml.kernel.org/r/alpine.LSU.2.11.1807141248290.1614@eggly.anvils
-
- 05 4月, 2018 1 次提交
-
-
由 Stephane Eranian 提交于
This patch removes a redundant store on regs->flags introduced by commit: 71eb9ee9 ("perf/x86/intel: Fix linear IP of PEBS real_ip on Haswell and later CPUs") We were clearing the PERF_EFLAGS_EXACT but it was overwritten by regs->flags = pebs->flags later on. The PERF_EFLAGS_EXACT is a software flag using bit 3 of regs->flags. X86 marks this bit as Reserved. To make sure this bit is zero before we do any IP processing, we clear it explicitly. Patch also removes the following assignment: regs->flags = pebs->flags | (regs->flags & PERF_EFLAGS_VM); Because there is no regs->flags to preserve anymore because set_linear_ip() is not called until later. Signed-off-by: NStephane Eranian <eranian@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1522909791-32498-1-git-send-email-eranian@google.com [ Improve capitalization, punctuation and clarity of comments. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 27 3月, 2018 1 次提交
-
-
由 Stephane Eranian 提交于
this patch fix a bug in how the pebs->real_ip is handled in the PEBS handler. real_ip only exists in Haswell and later processor. It is actually the eventing IP, i.e., where the event occurred. As opposed to the pebs->ip which is the PEBS interrupt IP which is always off by one. The problem is that the real_ip just like the IP needs to be fixed up because PEBS does not record all the machine state registers, and in particular the code segement (cs). This is why we have the set_linear_ip() function. The problem was that set_linear_ip() was only used on the pebs->ip and not the pebs->real_ip. We have profiles which ran into invalid callstacks because of this. Here is an example: ..... 0: ffffffffffffff80 recent entry, marker kernel v ..... 1: 000000000040044d <= user address in kernel space! ..... 2: fffffffffffffe00 marker enter user v ..... 3: 000000000040044d ..... 4: 00000000004004b6 oldest entry Debugging output in get_perf_callchain(): [ 857.769909] CALLCHAIN: CPU8 ip=40044d regs->cs=10 user_mode(regs)=0 The problem is that the kernel entry in 1: points to a user level address. How can that be? The reason is that with PEBS sampling the instruction that caused the event to occur and the instruction where the CPU was when the interrupt was posted may be far apart. And sometime during that time window, the privilege level may change. This happens, for instance, when the PEBS sample is taken close to a kernel entry point. Here PEBS, eventing IP (real_ip) captured a user level instruction. But by the time the PMU interrupt fired, the processor had already entered kernel space. This is why the debug output shows a user address with user_mode() false. The problem comes from PEBS not recording the code segment (cs) register. The register is used in x86_64 to determine if executing in kernel vs user space. This is okay because the kernel has a software workaround called set_linear_ip(). But the issue in setup_pebs_sample_data() is that set_linear_ip() is never called on the real_ip value when it is available (Haswell and later) and precise_ip > 1. This patch fixes this problem and eliminates the callchain discrepancy. The patch restructures the code around set_linear_ip() to minimize the number of times the IP has to be set. Signed-off-by: NStephane Eranian <eranian@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1521788507-10231-1-git-send-email-eranian@google.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 20 3月, 2018 1 次提交
-
-
由 Kan Liang 提交于
The 'freerunning PEBS' and 'large PEBS' are the same thing. Both of these names appear in the code and in the API, which causes confusion. Rename 'freerunning PEBS' to 'large PEBS' to unify the code, which eliminates the confusion. No functional change. Reported-by: NVince Weaver <vincent.weaver@maine.edu> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1520865937-22910-1-git-send-email-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 09 3月, 2018 2 次提交
-
-
由 Kan Liang 提交于
perf/x86/intel/ds: Introduce ->read() function for auto-reload events and flush the PEBS buffer there There is no way to get exact auto-reload times and values which are needed for event updates unless we flush the PEBS buffer. Introduce intel_pmu_auto_reload_read() to drain the PEBS buffer for auto reload event. To prevent races with the hardware, we can only call drain_pebs() when the PMU is disabled. Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Link: http://lkml.kernel.org/r/1518474035-21006-4-git-send-email-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Kan Liang 提交于
There is a bug when reading event->count with large PEBS enabled. Here is an example: # ./read_count 0x71f0 0x122c0 0x1000000001c54 0x100000001257d 0x200000000bdc5 In fixed period mode, the auto-reload mechanism could be enabled for PEBS events, but the calculation of event->count does not take the auto-reload values into account. Anyone who reads event->count will get the wrong result, e.g x86_pmu_read(). This bug was introduced with the auto-reload mechanism enabled since commit: 851559e3 ("perf/x86/intel: Use the PEBS auto reload mechanism when possible") Introduce intel_pmu_save_and_restart_reload() to calculate the event->count only for auto-reload. Since the counter increments a negative counter value and overflows on the sign switch, giving the interval: [-period, 0] the difference between two consequtive reads is: A) value2 - value1; when no overflows have happened in between, B) (0 - value1) + (value2 - (-period)); when one overflow happened in between, C) (0 - value1) + (n - 1) * (period) + (value2 - (-period)); when @n overflows happened in between. Here A) is the obvious difference, B) is the extension to the discrete interval, where the first term is to the top of the interval and the second term is from the bottom of the next interval and C) the extension to multiple intervals, where the middle term is the whole intervals covered. The equation for all cases is: value2 - value1 + n * period Previously the event->count is updated right before the sample output. But for case A, there is no PEBS record ready. It needs to be specially handled. Remove the auto-reload code from x86_perf_event_set_period() since we'll not longer call that function in this case. Based-on-code-from: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Fixes: 851559e3 ("perf/x86/intel: Use the PEBS auto reload mechanism when possible") Link: http://lkml.kernel.org/r/1518474035-21006-2-git-send-email-kan.liang@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 1月, 2018 1 次提交
-
-
由 Peter Zijlstra 提交于
More lockdep gifts, a 5-way lockup race: perf_event_create_kernel_counter() perf_event_alloc() perf_try_init_event() x86_pmu_event_init() __x86_pmu_event_init() x86_reserve_hardware() #0 mutex_lock(&pmc_reserve_mutex); reserve_ds_buffer() #1 get_online_cpus() perf_event_release_kernel() _free_event() hw_perf_event_destroy() x86_release_hardware() #0 mutex_lock(&pmc_reserve_mutex) release_ds_buffer() #1 get_online_cpus() #1 do_cpu_up() perf_event_init_cpu() #2 mutex_lock(&pmus_lock) #3 mutex_lock(&ctx->mutex) sys_perf_event_open() mutex_lock_double() #3 mutex_lock(ctx->mutex) #4 mutex_lock_nested(ctx->mutex, 1); perf_try_init_event() #4 mutex_lock_nested(ctx->mutex, 1) x86_pmu_event_init() intel_pmu_hw_config() x86_add_exclusive() #0 mutex_lock(&pmc_reserve_mutex) Fix it by using ordering constructs instead of locking. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 05 1月, 2018 1 次提交
-
-
由 Peter Zijlstra 提交于
Thomas reported the following warning: BUG: using smp_processor_id() in preemptible [00000000] code: ovsdb-server/4498 caller is native_flush_tlb_single+0x57/0xc0 native_flush_tlb_single+0x57/0xc0 __set_pte_vaddr+0x2d/0x40 set_pte_vaddr+0x2f/0x40 cea_set_pte+0x30/0x40 ds_update_cea.constprop.4+0x4d/0x70 reserve_ds_buffers+0x159/0x410 x86_reserve_hardware+0x150/0x160 x86_pmu_event_init+0x3e/0x1f0 perf_try_init_event+0x69/0x80 perf_event_alloc+0x652/0x740 SyS_perf_event_open+0x3f6/0xd60 do_syscall_64+0x5c/0x190 set_pte_vaddr is used to map the ds buffers into the cpu entry area, but there are two problems with that: 1) The resulting flush is not supposed to be called in preemptible context 2) The cpu entry area is supposed to be per CPU, but the debug store buffers are mapped for all CPUs so these mappings need to be flushed globally. Add the necessary preemption protection across the mapping code and flush TLBs globally. Fixes: c1961a46 ("x86/events/intel/ds: Map debug buffers in cpu_entry_area") Reported-by: NThomas Zeitlhofer <thomas.zeitlhofer+lkml@ze-it.at> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NThomas Zeitlhofer <thomas.zeitlhofer+lkml@ze-it.at> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180104170712.GB3040@hirez.programming.kicks-ass.net
-