- 02 10月, 2014 9 次提交
-
-
由 Dave Chinner 提交于
xfs_buf_read_uncached() has two failure modes. If can either return NULL or bp->b_error != 0 depending on the type of failure, and not all callers check for both. Fix it so that xfs_buf_read_uncached() always returns the error status, and the buffer is returned as a function parameter. The buffer will only be returned on success. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
There is a lot of cookie-cutter code that looks like: if (shutdown) handle buffer error xfs_buf_iorequest(bp) error = xfs_buf_iowait(bp) if (error) handle buffer error spread through XFS. There's significant complexity now in xfs_buf_iorequest() to specifically handle this sort of synchronous IO pattern, but there's all sorts of nasty surprises in different error handling code dependent on who owns the buffer references and the locks. Pull this pattern into a single helper, where we can hide all the synchronous IO warts and hence make the error handling for all the callers much saner. This removes the need for a special extra reference to protect IO completion processing, as we can now hold a single reference across dispatch and waiting, simplifying the sync IO smeantics and error handling. In doing this, also rename xfs_buf_iorequest to xfs_buf_submit and make it explicitly handle on asynchronous IO. This forces all users to be switched specifically to one interface or the other and removes any ambiguity between how the interfaces are to be used. It also means that xfs_buf_iowait() goes away. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
There is only one caller now - xfs_trans_read_buf_map() - and it has very well defined call semantics - read, synchronous, and b_iodone is NULL. Hence it's pretty clear what error handling is necessary for this case. The bigger problem of untangling xfs_trans_read_buf_map error handling is left to a future patch. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
Internal buffer write error handling is a mess due to the unnatural split between xfs_bioerror and xfs_bioerror_relse(). xfs_bwrite() only does sync IO and determines the handler to call based on b_iodone, so for this caller the only difference between xfs_bioerror() and xfs_bioerror_release() is the XBF_DONE flag. We don't care what the XBF_DONE flag state is because we stale the buffer in both paths - the next buffer lookup will clear XBF_DONE because XBF_STALE is set. Hence we can use common error handling for xfs_bwrite(). __xfs_buf_delwri_submit() is a similar - it's only ever called on writes - all sync or async - and again there's no reason to handle them any differently at all. Clean up the nasty error handling and remove xfs_bioerror(). Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
Only has two callers, and is just a shutdown check and error handler around xfs_buf_iorequest. However, the error handling is a mess of read and write semantics, and both internal callers only call it for writes. Hence kill the wrapper, and follow up with a patch to sanitise the error handling. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
Currently the report of a bio error from completion immediately marks the buffer with an error. The issue is that this is racy w.r.t. synchronous IO - the submitter can see b_error being set before the IO is complete, and hence we cannot differentiate between submission failures and completion failures. Add an internal b_io_error field protected by the b_lock to catch IO completion errors, and only propagate that to the buffer during final IO completion handling. Hence we can tell in xfs_buf_iorequest if we've had a submission failure bey checking bp->b_error before dropping our b_io_remaining reference - that reference will prevent b_io_error values from being propagated to b_error in the event that completion races with submission. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
We do some work in xfs_buf_ioend, and some work in xfs_buf_iodone_work, but much of that functionality is the same. This work can all be done in a single function, leaving xfs_buf_iodone just a wrapper to determine if we should execute it by workqueue or directly. hence rename xfs_buf_iodone_work to xfs_buf_ioend(), and add a new xfs_buf_ioend_async() for places that need async processing. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
When synchronous IO runs IO completion work, it does so without an IO reference or a hold reference on the buffer. The IO "hold reference" is owned by the submitter, and released when the submission is complete. The IO reference is released when both the submitter and the bio end_io processing is run, and so if the io completion work is run from IO completion context, it is run without an IO reference. Hence we can get the situation where the submitter can submit the IO, see an error on the buffer and unlock and free the buffer while there is still IO in progress. This leads to use-after-free and memory corruption. Fix this by taking a "sync IO hold" reference that is owned by the IO and not released until after the buffer completion calls are run to wake up synchronous waiters. This means that the buffer will not be freed in any circumstance until all IO processing is completed. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
For the special case of delwri buffer submission and waiting, we don't need to issue IO synchronously at all. The second pass to call xfs_buf_iowait() can be replaced with blocking on xfs_buf_lock() - the buffer will be unlocked when the async IO is complete. This formalises a sane the method of waiting for async IO - take an extra reference, submit the IO, call xfs_buf_lock() when you want to wait for IO completion. i.e.: bp = xfs_buf_find(); xfs_buf_hold(bp); bp->b_flags |= XBF_ASYNC; xfs_buf_iosubmit(bp); xfs_buf_lock(bp) error = bp->b_error; .... xfs_buf_relse(bp); While this is somewhat racy for gathering IO errors, none of the code that calls xfs_buf_delwri_submit() will race against other users of the buffers being submitted. Even if they do, we don't really care if the error is detected by the delwri code or the user we raced against. Either way, the error will be detected and handled. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 09 9月, 2014 2 次提交
-
-
由 Brian Foster 提交于
Workqueues must be explicitly set as freezable to ensure they are frozen in the assocated part of the hibernation/suspend sequence. Freezing of workqueues and kernel threads is important to ensure that modifications are not made on-disk after the hibernation image has been created. Otherwise, the in-memory state can become inconsistent with what is on disk and eventually lead to filesystem corruption. We have reports of free space btree corruptions that occur immediately after restore from hibernate that suggest the xfs-eofblocks workqueue could be causing such problems if it races with hibernation. Mark all of the internal XFS workqueues as freezable to ensure nothing changes on-disk once the freezer infrastructure freezes kernel threads and creates the hibernation image. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reported-by: NCarlos E. R. <carlos.e.r@opensuse.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Tejun Heo 提交于
bdev_get_queue() returns the request_queue associated with the specified block_device. blk_get_backing_dev_info() makes use of bdev_get_queue() to determine the associated bdi given a block_device. All the callers of bdev_get_queue() including blk_get_backing_dev_info() assume that bdev_get_queue() may return NULL and implement NULL handling; however, bdev_get_queue() requires the passed in block_device is opened and attached to its gendisk. Because an active gendisk always has a valid request_queue associated with it, bdev_get_queue() can never return NULL and neither can blk_get_backing_dev_info(). Make it clear that neither of the two functions can return NULL and remove NULL handling from all the callers. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Chris Mason <clm@fb.com> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 04 8月, 2014 1 次提交
-
-
由 Dave Chinner 提交于
We recently had a bug where buffers were slipping through log recovery without any verifier attached to them. This was resulting in on-disk CRC mismatches for valid data. Add some warning code to catch this occurrence so that we catch such bugs during development rather than not being aware they exist. Note that we cannot do this verification unconditionally as non-CRC filesystems don't always attach verifiers to the buffers being written. e.g. during log recovery we cannot identify all the different types of buffers correctly on non-CRC filesystems, so we can't attach the correct verifiers in all cases and so we don't attach any. Hence we don't want on non-CRC filesystems to avoid spamming the logs with false indications. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 25 6月, 2014 1 次提交
-
-
由 Dave Chinner 提交于
Convert all the errors the core XFs code to negative error signs like the rest of the kernel and remove all the sign conversion we do in the interface layers. Errors for conversion (and comparison) found via searches like: $ git grep " E" fs/xfs $ git grep "return E" fs/xfs $ git grep " E[A-Z].*;$" fs/xfs Negation points found via searches like: $ git grep "= -[a-z,A-Z]" fs/xfs $ git grep "return -[a-z,A-D,F-Z]" fs/xfs $ git grep " -[a-z].*;" fs/xfs [ with some bits I missed from Brian Foster ] Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 17 4月, 2014 1 次提交
-
-
由 Eric Sandeen 提交于
When testing exhaustion of dm snapshots, the following appeared with CONFIG_DEBUG_OBJECTS_FREE enabled: ODEBUG: free active (active state 0) object type: work_struct hint: xfs_buf_iodone_work+0x0/0x1d0 [xfs] indicating that we'd freed a buffer which still had a pending reference, down this path: [ 190.867975] [<ffffffff8133e6fb>] debug_check_no_obj_freed+0x22b/0x270 [ 190.880820] [<ffffffff811da1d0>] kmem_cache_free+0xd0/0x370 [ 190.892615] [<ffffffffa02c5924>] xfs_buf_free+0xe4/0x210 [xfs] [ 190.905629] [<ffffffffa02c6167>] xfs_buf_rele+0xe7/0x270 [xfs] [ 190.911770] [<ffffffffa034c826>] xfs_trans_read_buf_map+0x7b6/0xac0 [xfs] At issue is the fact that if IO fails in xfs_buf_iorequest, we'll queue completion unconditionally, and then call xfs_buf_rele; but if IO failed, there are no IOs remaining, and xfs_buf_rele will free the bp while work is still queued. Fix this by not scheduling completion if the buffer has an error on it; run it immediately. The rest is only comment changes. Thanks to dchinner for spotting the root cause. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 14 4月, 2014 3 次提交
-
-
由 Eric Sandeen 提交于
Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Eric Sandeen 提交于
Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Eric Sandeen 提交于
Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 07 3月, 2014 1 次提交
-
-
由 Dave Chinner 提交于
When we map pages in the buffer cache, we can do so in GFP_NOFS contexts. However, the vmap interfaces do not provide any method of communicating this information to memory reclaim, and hence we get lockdep complaining about it regularly and occassionally see hangs that may be vmap related reclaim deadlocks. We can also see these same problems from anywhere where we use vmalloc for a large buffer (e.g. attribute code) inside a transaction context. A typical lockdep report shows up as a reclaim state warning like so: [14046.101458] ================================= [14046.102850] [ INFO: inconsistent lock state ] [14046.102850] 3.14.0-rc4+ #2 Not tainted [14046.102850] --------------------------------- [14046.102850] inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-W} usage. [14046.102850] kswapd0/14 [HC0[0]:SC0[0]:HE1:SE1] takes: [14046.102850] (&xfs_dir_ilock_class){++++?+}, at: [<791a04bb>] xfs_ilock+0xff/0x16a [14046.102850] {RECLAIM_FS-ON-W} state was registered at: [14046.102850] [<7904cdb1>] mark_held_locks+0x81/0xe7 [14046.102850] [<7904d390>] lockdep_trace_alloc+0x5c/0xb4 [14046.102850] [<790c2c28>] kmem_cache_alloc_trace+0x2b/0x11e [14046.102850] [<790ba7f4>] vm_map_ram+0x119/0x3e6 [14046.102850] [<7914e124>] _xfs_buf_map_pages+0x5b/0xcf [14046.102850] [<7914ed74>] xfs_buf_get_map+0x67/0x13f [14046.102850] [<7917506f>] xfs_attr_rmtval_set+0x396/0x4d5 [14046.102850] [<7916e8bb>] xfs_attr_leaf_addname+0x18f/0x37d [14046.102850] [<7916ed9e>] xfs_attr_set_int+0x2f5/0x3e8 [14046.102850] [<7916eefc>] xfs_attr_set+0x6b/0x74 [14046.102850] [<79168355>] xfs_xattr_set+0x61/0x81 [14046.102850] [<790e5b10>] generic_setxattr+0x59/0x68 [14046.102850] [<790e4c06>] __vfs_setxattr_noperm+0x58/0xce [14046.102850] [<790e4d0a>] vfs_setxattr+0x8e/0x92 [14046.102850] [<790e4ddd>] setxattr+0xcf/0x159 [14046.102850] [<790e5423>] SyS_lsetxattr+0x88/0xbb [14046.102850] [<79268438>] sysenter_do_call+0x12/0x36 Now, we can't completely remove these traces - mainly because vm_map_ram() will do GFP_KERNEL allocation and that generates the above warning before we get into the reclaim code, but we can turn them all into false positive warnings. To do that, use the method that DM and other IO context code uses to avoid this problem: there is a process flag to tell memory reclaim not to do IO that we can set appropriately. That prevents GFP_KERNEL context reclaim being done from deep inside the vmalloc code in places we can't directly pass a GFP_NOFS context to. That interface has a pair of wrapper functions: memalloc_noio_save() and memalloc_noio_restore(). Adding them around vm_map_ram and the vzalloc call in kmem_alloc_large() will prevent deadlocks and most lockdep reports for this issue. Also, convert the vzalloc() call in kmem_alloc_large() to use __vmalloc() so that we can pass the correct gfp context to the data page allocation routine inside __vmalloc() so that it is clear that GFP_NOFS context is important to this vmalloc call. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 25 1月, 2014 3 次提交
-
-
由 Eric Sandeen 提交于
Some time ago, mkfs.xfs started picking the storage physical sector size as the default filesystem "sector size" in order to avoid RMW costs incurred by doing IOs at logical sector size alignments. However, this means that for a filesystem made with i.e. a 4k sector size on an "advanced format" 4k/512 disk, 512-byte direct IOs are no longer allowed. This means that XFS has essentially turned this AF drive into a hard 4K device, from the filesystem on up. XFS's mkfs-specified "sector size" is really just controlling the minimum size & alignment of filesystem metadata. There is no real need to tightly couple XFS's minimal metadata size to the minimum allowed direct IO size; XFS can continue doing metadata in optimal sizes, but still allow smaller DIOs for apps which issue them, for whatever reason. This patch adds a new field to the xfs_buftarg, so that we now track 2 sizes: 1) The metadata sector size, which is the minimum unit and alignment of IO which will be performed by metadata operations. 2) The device logical sector size The first is used internally by the file system for metadata alignment and IOs. The second is used for the minimum allowed direct IO alignment. This has passed xfstests on filesystems made with 4k sectors, including when run under the patch I sent to ignore XFS_IOC_DIOINFO, and issue 512 DIOs anyway. I also directly tested end of block behavior on preallocated, sparse, and existing files when we do a 512 IO into a 4k file on a 4k-sector filesystem, to be sure there were no unexpected behaviors. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Eric Sandeen 提交于
In preparation for adding new members to the structure, give these old ones more descriptive names: bt_ssize -> bt_meta_sectorsize bt_smask -> bt_meta_sectormask Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Eric Sandeen 提交于
Clean up the xfs_buftarg structure a bit: - remove bt_bsize which is never used - replace bt_sshift with bt_ssize; we only ever shift it back Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 17 12月, 2013 2 次提交
-
-
由 Dave Chinner 提交于
If we are doing aysnc writeback of metadata, we can get write errors but have nobody to report them to. At the moment, we simply attempt to reissue the write from io completion in the hope that it's a transient error. When it's not a transient error, the buffer is stuck forever in this loop, and we cannot break out of it. Eventually, unmount will hang because the AIL cannot be emptied and everything goes downhill from them. To solve this problem, only retry the write IO once before aborting it. We don't throw the buffer away because some transient errors can last minutes (e.g. FC path failover) or even hours (thin provisioned devices that have run out of backing space) before they go away. Hence we really want to keep trying until we can't try any more. Because the buffer was not cleaned, however, it does not get removed from the AIL and hence the next pass across the AIL will start IO on it again. As such, we still get the "retry forever" semantics that we currently have, but we allow other access to the buffer in the mean time. Meanwhile the filesystem can continue to modify the buffer and relog it, so the IO errors won't hang the log or the filesystem. Now when we are pushing the AIL, we can see all these "permanent IO error" buffers and we can issue a warning about failures before we retry the IO. We can also catch these buffers when unmounting an issue a corruption warning, too. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Christoph Hellwig 提交于
The xfsbdstrat helper is a small but useless wrapper for xfs_buf_iorequest that handles the case of a shut down filesystem. Most of the users have private, uncached buffers that can just be freed in this case, but the complex error handling in xfs_bioerror_relse messes up the case when it's called without a locked buffer. Remove xfsbdstrat and opencode the error handling in the callers. All but one can simply return an error and don't need to deal with buffer state, and the one caller that cares about the buffer state could do with a major cleanup as well, but we'll defer that to later. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 05 12月, 2013 1 次提交
-
-
由 Eric Sandeen 提交于
The "verbose" argument to xfs_setsize_buftarg_flags() has been unused since: ffe37436 xfs: stop using the page cache to back the buffer cache Remove it, and fold the function into xfs_setsize_buftarg() now that there's no need for different types of callers. Fix inconsistent comment spacing while we're at it. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 24 11月, 2013 1 次提交
-
-
由 Kent Overstreet 提交于
Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: NKent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
-
- 24 10月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
xfs_trans.h has a dependency on xfs_log.h for a couple of structures. Most code that does transactions doesn't need to know anything about the log, but this dependency means that they have to include xfs_log.h. Decouple the xfs_trans.h and xfs_log.h header files and clean up the includes to be in dependency order. In doing this, remove the direct include of xfs_trans_reserve.h from xfs_trans.h so that we remove the dependency between xfs_trans.h and xfs_mount.h. Hence the xfs_trans.h include can be moved to the indicate the actual dependencies other header files have on it. Note that these are kernel only header files, so this does not translate to any userspace changes at all. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 18 10月, 2013 1 次提交
-
-
由 Eric Sandeen 提交于
__xfs_printk adds its own "\n". Having it in the original string leads to unintentional blank lines from these messages. Most format strings have no newline, but a few do, leading to i.e.: [ 7347.119911] XFS (sdb2): Access to block zero in inode 132 start_block: 0 start_off: 0 blkcnt: 0 extent-state: 0 lastx: 1a05 [ 7347.119911] [ 7347.119919] XFS (sdb2): Access to block zero in inode 132 start_block: 0 start_off: 0 blkcnt: 0 extent-state: 0 lastx: 1a05 [ 7347.119919] Fix them all. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 11 9月, 2013 5 次提交
-
-
由 Glauber Costa 提交于
This patch adds the missing call to list_lru_destroy (spotted by Li Zhong) and moves the deletion to after the shrinker is unregistered, as correctly spotted by Dave Signed-off-by: NGlauber Costa <glommer@openvz.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Dave Chinner <dchinner@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Glauber Costa 提交于
We currently use a compile-time constant to size the node array for the list_lru structure. Due to this, we don't need to allocate any memory at initialization time. But as a consequence, the structures that contain embedded list_lru lists can become way too big (the superblock for instance contains two of them). This patch aims at ameliorating this situation by dynamically allocating the node arrays with the firmware provided nr_node_ids. Signed-off-by: NGlauber Costa <glommer@openvz.org> Cc: Dave Chinner <dchinner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Dave Chinner 提交于
In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NGlauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Andrew Morton 提交于
fix warnings Cc: Dave Chinner <dchinner@redhat.com> Cc: Glauber Costa <glommer@openvz.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Dave Chinner 提交于
Convert the buftarg LRU to use the new generic LRU list and take advantage of the functionality it supplies to make the buffer cache shrinker node aware. Signed-off-by: NGlauber Costa <glommer@openvz.org> Signed-off-by: NDave Chinner <dchinner@redhat.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 21 8月, 2013 2 次提交
-
-
由 Zhi Yong Wu 提交于
Signed-off-by: NZhi Yong Wu <wuzhy@linux.vnet.ibm.com> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
由 Zhi Yong Wu 提交于
Signed-off-by: NZhi Yong Wu <wuzhy@linux.vnet.ibm.com> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 13 8月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
The transaction reservation size calculations is used by both kernel and userspace, but most of the transaction code in xfs_trans.c is kernel specific. Split all the transaction reservation code out into it's own files to make sharing with userspace simpler. This just leaves kernel-only definitions in xfs_trans.h, so it doesn't need to be shared with userspace anymore, either. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 31 5月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
Note: this changes the on-disk remote attribute format. I assert that this is OK to do as CRCs are marked experimental and the first kernel it is included in has not yet reached release yet. Further, the userspace utilities are still evolving and so anyone using this stuff right now is a developer or tester using volatile filesystems for testing this feature. Hence changing the format right now to save longer term pain is the right thing to do. The fundamental change is to move from a header per extent in the attribute to a header per filesytem block in the attribute. This means there are more header blocks and the parsing of the attribute data is slightly more complex, but it has the advantage that we always know the size of the attribute on disk based on the length of the data it contains. This is where the header-per-extent method has problems. We don't know the size of the attribute on disk without first knowing how many extents are used to hold it. And we can't tell from a mapping lookup, either, because remote attributes can be allocated contiguously with other attribute blocks and so there is no obvious way of determining the actual size of the atribute on disk short of walking and mapping buffers. The problem with this approach is that if we map a buffer incorrectly (e.g. we make the last buffer for the attribute data too long), we then get buffer cache lookup failure when we map it correctly. i.e. we get a size mismatch on lookup. This is not necessarily fatal, but it's a cache coherency problem that can lead to returning the wrong data to userspace or writing the wrong data to disk. And debug kernels will assert fail if this occurs. I found lots of niggly little problems trying to fix this issue on a 4k block size filesystem, finally getting it to pass with lots of fixes. The thing is, 1024 byte filesystems still failed, and it was getting really complex handling all the corner cases that were showing up. And there were clearly more that I hadn't found yet. It is complex, fragile code, and if we don't fix it now, it will be complex, fragile code forever more. Hence the simple fix is to add a header to each filesystem block. This gives us the same relationship between the attribute data length and the number of blocks on disk as we have without CRCs - it's a linear mapping and doesn't require us to guess anything. It is simple to implement, too - the remote block count calculated at lookup time can be used by the remote attribute set/get/remove code without modification for both CRC and non-CRC filesystems. The world becomes sane again. Because the copy-in and copy-out now need to iterate over each filesystem block, I moved them into helper functions so we separate the block mapping and buffer manupulations from the attribute data and CRC header manipulations. The code becomes much clearer as a result, and it is a lot easier to understand and debug. It also appears to be much more robust - once it worked on 4k block size filesystems, it has worked without failure on 1k block size filesystems, too. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit ad1858d7)
-
- 25 5月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
There are several places where we use KM_SLEEP allocation contexts and use the fact that they are called from transaction context to add KM_NOFS where appropriate. Unfortunately, there are several places where the code makes this assumption but can be called from outside transaction context but with filesystem locks held. These places need explicit KM_NOFS annotations to avoid lockdep complaining about reclaim contexts. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit ac14876c)
-
- 24 5月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
Note: this changes the on-disk remote attribute format. I assert that this is OK to do as CRCs are marked experimental and the first kernel it is included in has not yet reached release yet. Further, the userspace utilities are still evolving and so anyone using this stuff right now is a developer or tester using volatile filesystems for testing this feature. Hence changing the format right now to save longer term pain is the right thing to do. The fundamental change is to move from a header per extent in the attribute to a header per filesytem block in the attribute. This means there are more header blocks and the parsing of the attribute data is slightly more complex, but it has the advantage that we always know the size of the attribute on disk based on the length of the data it contains. This is where the header-per-extent method has problems. We don't know the size of the attribute on disk without first knowing how many extents are used to hold it. And we can't tell from a mapping lookup, either, because remote attributes can be allocated contiguously with other attribute blocks and so there is no obvious way of determining the actual size of the atribute on disk short of walking and mapping buffers. The problem with this approach is that if we map a buffer incorrectly (e.g. we make the last buffer for the attribute data too long), we then get buffer cache lookup failure when we map it correctly. i.e. we get a size mismatch on lookup. This is not necessarily fatal, but it's a cache coherency problem that can lead to returning the wrong data to userspace or writing the wrong data to disk. And debug kernels will assert fail if this occurs. I found lots of niggly little problems trying to fix this issue on a 4k block size filesystem, finally getting it to pass with lots of fixes. The thing is, 1024 byte filesystems still failed, and it was getting really complex handling all the corner cases that were showing up. And there were clearly more that I hadn't found yet. It is complex, fragile code, and if we don't fix it now, it will be complex, fragile code forever more. Hence the simple fix is to add a header to each filesystem block. This gives us the same relationship between the attribute data length and the number of blocks on disk as we have without CRCs - it's a linear mapping and doesn't require us to guess anything. It is simple to implement, too - the remote block count calculated at lookup time can be used by the remote attribute set/get/remove code without modification for both CRC and non-CRC filesystems. The world becomes sane again. Because the copy-in and copy-out now need to iterate over each filesystem block, I moved them into helper functions so we separate the block mapping and buffer manupulations from the attribute data and CRC header manipulations. The code becomes much clearer as a result, and it is a lot easier to understand and debug. It also appears to be much more robust - once it worked on 4k block size filesystems, it has worked without failure on 1k block size filesystems, too. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 21 5月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
There are several places where we use KM_SLEEP allocation contexts and use the fact that they are called from transaction context to add KM_NOFS where appropriate. Unfortunately, there are several places where the code makes this assumption but can be called from outside transaction context but with filesystem locks held. These places need explicit KM_NOFS annotations to avoid lockdep complaining about reclaim contexts. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBen Myers <bpm@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com>
-
- 19 3月, 2013 1 次提交
-
-
由 Dave Chinner 提交于
Failed buffer readahead can leave the buffer in the cache marked with an error. Most callers that then issue a subsequent read on the buffer do not zero the b_error field out, and so we may incorectly detect an error during IO completion due to the stale error value left on the buffer. Avoid this problem by zeroing the error before IO submission. This ensures that the only IO errors that are detected those captured from are those captured from bio submission or completion. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NMark Tinguely <tinguely@sgi.com> Signed-off-by: NBen Myers <bpm@sgi.com> (cherry picked from commit c163f9a1)
-