1. 20 10月, 2011 11 次提交
    • J
      Btrfs: inline checksums into the disk free space cache · 5b0e95bf
      Josef Bacik 提交于
      Yeah yeah I know this is how we used to do it and then I changed it, but damnit
      I'm changing it back.  The fact is that writing out checksums will modify
      metadata, which could cause us to dirty a block group we've already written out,
      so we have to truncate it and all of it's checksums and re-write it which will
      write new checksums which could dirty a blockg roup that has already been
      written and you see where I'm going with this?  This can cause unmount or really
      anything that depends on a transaction to commit to take it's sweet damned time
      to happen.  So go back to the way it was, only this time we're specifically
      setting NODATACOW because we can't go through the COW pathway anyway and we're
      doing our own built-in cow'ing by truncating the free space cache.  The other
      new thing is once we truncate the old cache and preallocate the new space, we
      don't need to do that song and dance at all for the rest of the transaction, we
      can just overwrite the existing space with the new cache if the block group
      changes for whatever reason, and the NODATACOW will let us do this fine.  So
      keep track of which transaction we last cleared our cache in and if we cleared
      it in this transaction just say we're all setup and carry on.  This survives
      xfstests and stress.sh.
      
      The inode cache will continue to use the normal csum infrastructure since it
      only gets written once and there will be no more modifications to the fs tree in
      a transaction commit.
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      5b0e95bf
    • J
      Btrfs: allow us to overcommit our enospc reservations · 2bf64758
      Josef Bacik 提交于
      One of the things that kills us is the fact that our ENOSPC reservations are
      horribly over the top in most normal cases.  There isn't too much that can be
      done about this because when we are completely full we really need them to work
      like this so we don't under reserve.  However if there is plenty of unallocated
      chunks on the disk we can use that to gauge how much we can overcommit.  So this
      patch adds chunk free space accounting so we always know how much unallocated
      space we have.  Then if we fail to make a reservation within our allocated
      space, check to see if we can overcommit.  In the normal flushing case (like
      with delalloc metadata reservations) we'll take the free space and divide it by
      2 if our metadata profile is setup for DUP or any of those, and then divide it
      by 8 to make sure we don't overcommit too much.  Then if we're in a non-flushing
      case (we really need this reservation now!) we only limit ourselves to half of
      the free space.  This makes this fio test
      
      [torrent]
      filename=torrent-test
      rw=randwrite
      size=4g
      ioengine=sync
      directory=/mnt/btrfs-test
      
      go from taking around 45 minutes to 10 seconds on my freshly formatted 3 TiB
      file system.  This doesn't seem to break my other enospc tests, but could really
      use some more testing as this is a super scary change.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      2bf64758
    • J
      Btrfs: use the inode's mapping mask for allocating pages · 3b16a4e3
      Josef Bacik 提交于
      Johannes pointed out we were allocating only kernel pages for doing writes,
      which is kind of a big deal if you are on 32bit and have more than a gig of ram.
      So fix our allocations to use the mapping's gfp but still clear __GFP_FS so we
      don't re-enter.  Thanks,
      Reported-by: NJohannes Weiner <jweiner@redhat.com>
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      3b16a4e3
    • J
      Btrfs: stop passing a trans handle all around the reservation code · 4a92b1b8
      Josef Bacik 提交于
      The only thing that we need to have a trans handle for is in
      reserve_metadata_bytes and thats to know how much flushing we can do.  So
      instead of passing it around, just check current->journal_info for a
      trans_handle so we know if we can commit a transaction to try and free up space
      or not.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      4a92b1b8
    • J
      Btrfs: allow callers to specify if flushing can occur for btrfs_block_rsv_check · 482e6dc5
      Josef Bacik 提交于
      If you run xfstest 224 it you will get lots of messages about not being able to
      delete inodes and that they will be cleaned up next mount.  This is because
      btrfs_block_rsv_check was not calling reserve_metadata_bytes with the ability to
      flush, so if there was not enough space, it simply failed.  But in truncate and
      evict case we could easily flush space to try and get enough space to do our
      work, so make btrfs_block_rsv_check take a flush argument to pass down to
      reserve_metadata_bytes.  Now xfstests 224 runs fine without all those
      complaints.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      482e6dc5
    • J
      Btrfs: reduce the amount of space needed for truncates · 07127184
      Josef Bacik 提交于
      With btrfs_truncate_inode_items we always return if we have to go to another
      leaf, which makes us do our reservation again.  This means we will only ever
      modify one leaf at a time, so we only need 1 items worth of slack space.  Also,
      since we are deleting we will not be creating nodes as we go down, if anything
      we'll be free'ing them as we merge them together, so make a different
      calculation for truncate which will only have the worst case useage of COW'ing
      the entire path down to the leaf.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      07127184
    • J
      Btrfs: kill btrfs_truncate_reserve_metadata · 5e962c78
      Josef Bacik 提交于
      Since we've optimized the truncate path, we no longer require this function.
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      5e962c78
    • J
      Btrfs: kill unused parts of block_rsv · dabdb640
      Josef Bacik 提交于
      The priority and refill_used flags are not used anymore, and neither is the
      usage counter, so just remove them from btrfs_block_rsv.
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      dabdb640
    • J
      Btrfs: kill the durable block rsv stuff · 37be25bc
      Josef Bacik 提交于
      This is confusing code and isn't used by anything anymore, so delete it.
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      37be25bc
    • J
      Btrfs: kill the orphan space calculation for snapshots · dba68306
      Josef Bacik 提交于
      This patch kills off the calculation for the amount of space needed for the
      orphan operations during a snapshot.  The thing is we only do snapshots on
      commit, so any space that is in the block_rsv->freed[] isn't going to be in the
      new snapshot anyway, so there isn't any reason to require that space to be
      reserved for the snapshot to occur.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      dba68306
    • J
      Btrfs: use bytes_may_use for all ENOSPC reservations · fb25e914
      Josef Bacik 提交于
      We have been using bytes_reserved for metadata reservations, which is wrong
      since we use that to keep track of outstanding reservations from the allocator.
      This resulted in us doing a lot of silly things to make sure we don't allocate a
      bunch of metadata chunks since we never had a real view of how much space was
      actually in use by metadata.
      
      This passes Arne's enospc test and xfstests as well as my own enospc tests.
      Hopefully this will get us moving in the right direction.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      fb25e914
  2. 17 8月, 2011 2 次提交
  3. 02 8月, 2011 3 次提交
  4. 28 7月, 2011 3 次提交
    • C
      Btrfs: switch the btrfs tree locks to reader/writer · bd681513
      Chris Mason 提交于
      The btrfs metadata btree is the source of significant
      lock contention, especially in the root node.   This
      commit changes our locking to use a reader/writer
      lock.
      
      The lock is built on top of rw spinlocks, and it
      extends the lock tracking to remember if we have a
      read lock or a write lock when we go to blocking.  Atomics
      count the number of blocking readers or writers at any
      given time.
      
      It removes all of the adaptive spinning from the old code
      and uses only the spinning/blocking hints inside of btrfs
      to decide when it should continue spinning.
      
      In read heavy workloads this is dramatically faster.  In write
      heavy workloads we're still faster because of less contention
      on the root node lock.
      
      We suffer slightly in dbench because we schedule more often
      during write locks, but all other benchmarks so far are improved.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      bd681513
    • J
      Btrfs: fix enospc problems with delalloc · 9e0baf60
      Josef Bacik 提交于
      So I had this brilliant idea to use atomic counters for outstanding and reserved
      extents, but this turned out to be a bad idea.  Consider this where we have 1
      outstanding extent and 1 reserved extent
      
      Reserver				Releaser
      					atomic_dec(outstanding) now 0
      atomic_read(outstanding)+1 get 1
      atomic_read(reserved) get 1
      don't actually reserve anything because
      they are the same
      					atomic_cmpxchg(reserved, 1, 0)
      atomic_inc(outstanding)
      atomic_add(0, reserved)
      					free reserved space for 1 extent
      
      Then the reserver now has no actual space reserved for it, and when it goes to
      finish the ordered IO it won't have enough space to do it's allocation and you
      get those lovely warnings.
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      9e0baf60
    • J
      Btrfs: use a worker thread to do caching · bab39bf9
      Josef Bacik 提交于
      A user reported a deadlock when copying a bunch of files.  This is because they
      were low on memory and kthreadd got hung up trying to migrate pages for an
      allocation when starting the caching kthread.  The page was locked by the person
      starting the caching kthread.  To fix this we just need to use the async thread
      stuff so that the threads are already created and we don't have to worry about
      deadlocks.  Thanks,
      Reported-by: NRoman Mamedov <rm@romanrm.ru>
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      bab39bf9
  5. 26 7月, 2011 1 次提交
  6. 21 7月, 2011 2 次提交
    • J
      fs: push i_mutex and filemap_write_and_wait down into ->fsync() handlers · 02c24a82
      Josef Bacik 提交于
      Btrfs needs to be able to control how filemap_write_and_wait_range() is called
      in fsync to make it less of a painful operation, so push down taking i_mutex and
      the calling of filemap_write_and_wait() down into the ->fsync() handlers.  Some
      file systems can drop taking the i_mutex altogether it seems, like ext3 and
      ocfs2.  For correctness sake I just pushed everything down in all cases to make
      sure that we keep the current behavior the same for everybody, and then each
      individual fs maintainer can make up their mind about what to do from there.
      Thanks,
      Acked-by: NJan Kara <jack@suse.cz>
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      02c24a82
    • J
      Btrfs: implement our own ->llseek · b2675157
      Josef Bacik 提交于
      In order to handle SEEK_HOLE/SEEK_DATA we need to implement our own llseek.
      Basically for the normal SEEK_*'s we will just defer to the generic helper, and
      for SEEK_HOLE/SEEK_DATA we will use our fiemap helper to figure out the nearest
      hole or data.  Currently this helper doesn't check for delalloc bytes for
      prealloc space, so for now treat prealloc as data until that is fixed.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      b2675157
  7. 20 7月, 2011 2 次提交
  8. 11 7月, 2011 2 次提交
    • J
      Btrfs: serialize flushers in reserve_metadata_bytes · fdb5effd
      Josef Bacik 提交于
      We keep having problems with early enospc, and that's because our method of
      making space is inherently racy.  The problem is we can have one guy trying to
      make space for himself, and in the meantime people come in and steal his
      reservation.  In order to stop this we make a waitqueue and put anybody who
      comes into reserve_metadata_bytes on that waitqueue if somebody is trying to
      make more space.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      fdb5effd
    • J
      Btrfs: do transaction space reservation before joining the transaction · b5009945
      Josef Bacik 提交于
      We have to do weird things when handling enospc in the transaction joining code.
      Because we've already joined the transaction we cannot commit the transaction
      within the reservation code since it will deadlock, so we have to return EAGAIN
      and then make sure we don't retry too many times.  Instead of doing this, just
      do the reservation the normal way before we join the transaction, that way we
      can do whatever we want to try and reclaim space, and then if it fails we know
      for sure we are out of space and we can return ENOSPC.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      b5009945
  9. 07 7月, 2011 1 次提交
  10. 24 6月, 2011 1 次提交
  11. 18 6月, 2011 2 次提交
    • M
      btrfs: Remove unused sysfs code · 9fe6a50f
      Maarten Lankhorst 提交于
      Removes code no longer used. The sysfs file itself is kept, because the
      btrfs developers expressed interest in putting new entries to sysfs.
      Signed-off-by: NMaarten Lankhorst <m.b.lankhorst@gmail.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      9fe6a50f
    • C
      Btrfs: fix relocation races · 7585717f
      Chris Mason 提交于
      The recent commit to get rid of our trans_mutex introduced
      some races with block group relocation.  The problem is that relocation
      needs to do some record keeping about each root, and it was relying
      on the transaction mutex to coordinate things in subtle ways.
      
      This fix adds a mutex just for the relocation code and makes sure
      it doesn't have a big impact on normal operations.  The race is
      really fixed in btrfs_record_root_in_trans, which is where we
      step back and wait for the relocation code to finish accounting
      setup.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      7585717f
  12. 04 6月, 2011 2 次提交
  13. 27 5月, 2011 2 次提交
    • C
      fs: pass exact type of data dirties to ->dirty_inode · aa385729
      Christoph Hellwig 提交于
      Tell the filesystem if we just updated timestamp (I_DIRTY_SYNC) or
      anything else, so that the filesystem can track internally if it
      needs to push out a transaction for fdatasync or not.
      
      This is just the prototype change with no user for it yet.  I plan
      to push large XFS changes for the next merge window, and getting
      this trivial infrastructure in this window would help a lot to avoid
      tree interdependencies.
      
      Also remove incorrect comments that ->dirty_inode can't block.  That
      has been changed a long time ago, and many implementations rely on it.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      aa385729
    • C
      Btrfs: add mount -o auto_defrag · 4cb5300b
      Chris Mason 提交于
      This will detect small random writes into files and
      queue the up for an auto defrag process.  It isn't well suited to
      database workloads yet, but works for smaller files such as rpm, sqlite
      or bdb databases.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      4cb5300b
  14. 24 5月, 2011 4 次提交
    • A
      BTRFS: Remove unused node_lock · 0956c798
      Andi Kleen 提交于
      240f62c8 replaced the node_lock with rcu_read_lock, but forgot
      to remove the actual lock in the data structure. Remove it here.
      Signed-off-by: NAndi Kleen <ak@linux.intel.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      0956c798
    • J
      Btrfs: kill BTRFS_I(inode)->block_group · d82a6f1d
      Josef Bacik 提交于
      Originally this was going to be used as a way to give hints to the allocator,
      but frankly we can get much better hints elsewhere and it's not even used at all
      for anything usefull.  In addition to be completely useless, when we initialize
      an inode we try and find a freeish block group to set as the inodes block group,
      and with a completely full 40gb fs this takes _forever_, so I imagine with say
      1tb fs this is just unbearable.  So just axe the thing altoghether, we don't
      need it and it saves us 8 bytes in the inode and saves us 500 microseconds per
      inode lookup in my testcase.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      d82a6f1d
    • J
      Btrfs: fix how we do space reservation for truncate · fcb80c2a
      Josef Bacik 提交于
      The ceph guys keep running into problems where we have space reserved in our
      orphan block rsv when freeing it up.  This is because they tend to do snapshots
      alot, so their truncates tend to use a bunch of space, so when we go to do
      things like update the inode we have to steal reservation space in order to make
      the reservation happen.  This happens because truncate can use as much space as
      it freaking feels like, but we still have to hold space for removing the orphan
      item and updating the inode, which will definitely always happen.  So in order
      to fix this we need to split all of the reservation stuf up.  So with this patch
      we have
      
      1) The orphan block reserve which only holds the space for deleting our orphan
      item when everything is over.
      
      2) The truncate block reserve which gets allocated and used specifically for the
      space that the truncate will use on a per truncate basis.
      
      3) The transaction will always have 1 item's worth of data reserved so we can
      update the inode normally.
      
      Hopefully this will make the ceph problem go away.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      fcb80c2a
    • J
      Btrfs: kill trans_mutex · a4abeea4
      Josef Bacik 提交于
      We use trans_mutex for lots of things, here's a basic list
      
      1) To serialize trans_handles joining the currently running transaction
      2) To make sure that no new trans handles are started while we are committing
      3) To protect the dead_roots list and the transaction lists
      
      Really the serializing trans_handles joining is not too hard, and can really get
      bogged down in acquiring a reference to the transaction.  So replace the
      trans_mutex with a trans_lock spinlock and use it to do the following
      
      1) Protect fs_info->running_transaction.  All trans handles have to do is check
      this, and then take a reference of the transaction and keep on going.
      2) Protect the fs_info->trans_list.  This doesn't get used too much, basically
      it just holds the current transactions, which will usually just be the currently
      committing transaction and the currently running transaction at most.
      3) Protect the dead roots list.  This is only ever processed by splicing the
      list so this is relatively simple.
      4) Protect the fs_info->reloc_ctl stuff.  This is very lightweight and was using
      the trans_mutex before, so this is a pretty straightforward change.
      5) Protect fs_info->no_trans_join.  Because we don't hold the trans_lock over
      the entirety of the commit we need to have a way to block new people from
      creating a new transaction while we're doing our work.  So we set no_trans_join
      and in join_transaction we test to see if that is set, and if it is we do a
      wait_on_commit.
      6) Make the transaction use count atomic so we don't need to take locks to
      modify it when we're dropping references.
      7) Add a commit_lock to the transaction to make sure multiple people trying to
      commit the same transaction don't race and commit at the same time.
      8) Make open_ioctl_trans an atomic so we don't have to take any locks for ioctl
      trans.
      
      I have tested this with xfstests, but obviously it is a pretty hairy change so
      lots of testing is greatly appreciated.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      a4abeea4
  15. 21 5月, 2011 1 次提交
    • M
      btrfs: implement delayed inode items operation · 16cdcec7
      Miao Xie 提交于
      Changelog V5 -> V6:
      - Fix oom when the memory load is high, by storing the delayed nodes into the
        root's radix tree, and letting btrfs inodes go.
      
      Changelog V4 -> V5:
      - Fix the race on adding the delayed node to the inode, which is spotted by
        Chris Mason.
      - Merge Chris Mason's incremental patch into this patch.
      - Fix deadlock between readdir() and memory fault, which is reported by
        Itaru Kitayama.
      
      Changelog V3 -> V4:
      - Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
        inode in time.
      
      Changelog V2 -> V3:
      - Fix the race between the delayed worker and the task which does delayed items
        balance, which is reported by Tsutomu Itoh.
      - Modify the patch address David Sterba's comment.
      - Fix the bug of the cpu recursion spinlock, reported by Chris Mason
      
      Changelog V1 -> V2:
      - break up the global rb-tree, use a list to manage the delayed nodes,
        which is created for every directory and file, and used to manage the
        delayed directory name index items and the delayed inode item.
      - introduce a worker to deal with the delayed nodes.
      
      Compare with Ext3/4, the performance of file creation and deletion on btrfs
      is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
      such as inode item, directory name item, directory name index and so on.
      
      If we can do some delayed b+ tree insertion or deletion, we can improve the
      performance, so we made this patch which implemented delayed directory name
      index insertion/deletion and delayed inode update.
      
      Implementation:
      - introduce a delayed root object into the filesystem, that use two lists to
        manage the delayed nodes which are created for every file/directory.
        One is used to manage all the delayed nodes that have delayed items. And the
        other is used to manage the delayed nodes which is waiting to be dealt with
        by the work thread.
      - Every delayed node has two rb-tree, one is used to manage the directory name
        index which is going to be inserted into b+ tree, and the other is used to
        manage the directory name index which is going to be deleted from b+ tree.
      - introduce a worker to deal with the delayed operation. This worker is used
        to deal with the works of the delayed directory name index items insertion
        and deletion and the delayed inode update.
        When the delayed items is beyond the lower limit, we create works for some
        delayed nodes and insert them into the work queue of the worker, and then
        go back.
        When the delayed items is beyond the upper bound, we create works for all
        the delayed nodes that haven't been dealt with, and insert them into the work
        queue of the worker, and then wait for that the untreated items is below some
        threshold value.
      - When we want to insert a directory name index into b+ tree, we just add the
        information into the delayed inserting rb-tree.
        And then we check the number of the delayed items and do delayed items
        balance. (The balance policy is above.)
      - When we want to delete a directory name index from the b+ tree, we search it
        in the inserting rb-tree at first. If we look it up, just drop it. If not,
        add the key of it into the delayed deleting rb-tree.
        Similar to the delayed inserting rb-tree, we also check the number of the
        delayed items and do delayed items balance.
        (The same to inserting manipulation)
      - When we want to update the metadata of some inode, we cached the data of the
        inode into the delayed node. the worker will flush it into the b+ tree after
        dealing with the delayed insertion and deletion.
      - We will move the delayed node to the tail of the list after we access the
        delayed node, By this way, we can cache more delayed items and merge more
        inode updates.
      - If we want to commit transaction, we will deal with all the delayed node.
      - the delayed node will be freed when we free the btrfs inode.
      - Before we log the inode items, we commit all the directory name index items
        and the delayed inode update.
      
      I did a quick test by the benchmark tool[1] and found we can improve the
      performance of file creation by ~15%, and file deletion by ~20%.
      
      Before applying this patch:
      Create files:
              Total files: 50000
              Total time: 1.096108
              Average time: 0.000022
      Delete files:
              Total files: 50000
              Total time: 1.510403
              Average time: 0.000030
      
      After applying this patch:
      Create files:
              Total files: 50000
              Total time: 0.932899
              Average time: 0.000019
      Delete files:
              Total files: 50000
              Total time: 1.215732
              Average time: 0.000024
      
      [1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
      
      Many thanks for Kitayama-san's help!
      Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com>
      Reviewed-by: NDavid Sterba <dave@jikos.cz>
      Tested-by: NTsutomu Itoh <t-itoh@jp.fujitsu.com>
      Tested-by: NItaru Kitayama <kitayama@cl.bb4u.ne.jp>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      16cdcec7
  16. 13 5月, 2011 1 次提交