1. 22 7月, 2021 2 次提交
    • V
      net: bridge: move the switchdev object replay helpers to "push" mode · 4e51bf44
      Vladimir Oltean 提交于
      Starting with commit 4f2673b3 ("net: bridge: add helper to replay
      port and host-joined mdb entries"), DSA has introduced some bridge
      helpers that replay switchdev events (FDB/MDB/VLAN additions and
      deletions) that can be lost by the switchdev drivers in a variety of
      circumstances:
      
      - an IP multicast group was host-joined on the bridge itself before any
        switchdev port joined the bridge, leading to the host MDB entries
        missing in the hardware database.
      - during the bridge creation process, the MAC address of the bridge was
        added to the FDB as an entry pointing towards the bridge device
        itself, but with no switchdev ports being part of the bridge yet, this
        local FDB entry would remain unknown to the switchdev hardware
        database.
      - a VLAN/FDB/MDB was added to a bridge port that is a LAG interface,
        before any switchdev port joined that LAG, leading to the hardware
        database missing those entries.
      - a switchdev port left a LAG that is a bridge port, while the LAG
        remained part of the bridge, and all FDB/MDB/VLAN entries remained
        installed in the hardware database of the switchdev port.
      
      Also, since commit 0d2cfbd4 ("net: bridge: ignore switchdev events
      for LAG ports which didn't request replay"), DSA introduced a method,
      based on a const void *ctx, to ensure that two switchdev ports under the
      same LAG that is a bridge port do not see the same MDB/VLAN entry being
      replayed twice by the bridge, once for every bridge port that joins the
      LAG.
      
      With so many ordering corner cases being possible, it seems unreasonable
      to expect a switchdev driver writer to get it right from the first try.
      Therefore, now that DSA has experimented with the bridge replay helpers
      for a little bit, we can move the code to the bridge driver where it is
      more readily available to all switchdev drivers.
      
      To convert the switchdev object replay helpers from "pull mode" (where
      the driver asks for them) to a "push mode" (where the bridge offers them
      automatically), the biggest problem is that the bridge needs to be aware
      when a switchdev port joins and leaves, even when the switchdev is only
      indirectly a bridge port (for example when the bridge port is a LAG
      upper of the switchdev).
      
      Luckily, we already have a hook for that, in the form of the newly
      introduced switchdev_bridge_port_offload() and
      switchdev_bridge_port_unoffload() calls. These offer a natural place for
      hooking the object addition and deletion replays.
      
      Extend the above 2 functions with:
      - pointers to the switchdev atomic notifier (for FDB replays) and the
        blocking notifier (for MDB and VLAN replays).
      - the "const void *ctx" argument required for drivers to be able to
        disambiguate between which port is targeted, when multiple ports are
        lowers of the same LAG that is a bridge port. Most of the drivers pass
        NULL to this argument, except the ones that support LAG offload and have
        the proper context check already in place in the switchdev blocking
        notifier handler.
      
      Also unexport the replay helpers, since nobody except the bridge calls
      them directly now.
      
      Note that:
      (a) we abuse the terminology slightly, because FDB entries are not
          "switchdev objects", but we count them as objects nonetheless.
          With no direct way to prove it, I think they are not modeled as
          switchdev objects because those can only be installed by the bridge
          to the hardware (as opposed to FDB entries which can be propagated
          in the other direction too). This is merely an abuse of terms, FDB
          entries are replayed too, despite not being objects.
      (b) the bridge does not attempt to sync port attributes to newly joined
          ports, just the countable stuff (the objects). The reason for this
          is simple: no universal and symmetric way to sync and unsync them is
          known. For example, VLAN filtering: what to do on unsync, disable or
          leave it enabled? Similarly, STP state, ageing timer, etc etc. What
          a switchdev port does when it becomes standalone again is not really
          up to the bridge's competence, and the driver should deal with it.
          On the other hand, replaying deletions of switchdev objects can be
          seen a matter of cleanup and therefore be treated by the bridge,
          hence this patch.
      
      We make the replay helpers opt-in for drivers, because they might not
      bring immediate benefits for them:
      
      - nbp_vlan_init() is called _after_ netdev_master_upper_dev_link(),
        so br_vlan_replay() should not do anything for the new drivers on
        which we call it. The existing drivers where there was even a slight
        possibility for there to exist a VLAN on a bridge port before they
        join it are already guarded against this: mlxsw and prestera deny
        joining LAG interfaces that are members of a bridge.
      
      - br_fdb_replay() should now notify of local FDB entries, but I patched
        all drivers except DSA to ignore these new entries in commit
        2c4eca3e ("net: bridge: switchdev: include local flag in FDB
        notifications"). Driver authors can lift this restriction as they
        wish, and when they do, they can also opt into the FDB replay
        functionality.
      
      - br_mdb_replay() should fix a real issue which is described in commit
        4f2673b3 ("net: bridge: add helper to replay port and host-joined
        mdb entries"). However most drivers do not offload the
        SWITCHDEV_OBJ_ID_HOST_MDB to see this issue: only cpsw and am65_cpsw
        offload this switchdev object, and I don't completely understand the
        way in which they offload this switchdev object anyway. So I'll leave
        it up to these drivers' respective maintainers to opt into
        br_mdb_replay().
      
      So most of the drivers pass NULL notifier blocks for the replay helpers,
      except:
      - dpaa2-switch which was already acked/regression-tested with the
        helpers enabled (and there isn't much of a downside in having them)
      - ocelot which already had replay logic in "pull" mode
      - DSA which already had replay logic in "pull" mode
      
      An important observation is that the drivers which don't currently
      request bridge event replays don't even have the
      switchdev_bridge_port_{offload,unoffload} calls placed in proper places
      right now. This was done to avoid unnecessary rework for drivers which
      might never even add support for this. For driver writers who wish to
      add replay support, this can be used as a tentative placement guide:
      https://patchwork.kernel.org/project/netdevbpf/patch/20210720134655.892334-11-vladimir.oltean@nxp.com/
      
      Cc: Vadym Kochan <vkochan@marvell.com>
      Cc: Taras Chornyi <tchornyi@marvell.com>
      Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
      Cc: Lars Povlsen <lars.povlsen@microchip.com>
      Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
      Cc: UNGLinuxDriver@microchip.com
      Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
      Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
      Cc: Grygorii Strashko <grygorii.strashko@ti.com>
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      4e51bf44
    • V
      net: bridge: switchdev: let drivers inform which bridge ports are offloaded · 2f5dc00f
      Vladimir Oltean 提交于
      On reception of an skb, the bridge checks if it was marked as 'already
      forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it
      is, it assigns the source hardware domain of that skb based on the
      hardware domain of the ingress port. Then during forwarding, it enforces
      that the egress port must have a different hardware domain than the
      ingress one (this is done in nbp_switchdev_allowed_egress).
      
      Non-switchdev drivers don't report any physical switch id (neither
      through devlink nor .ndo_get_port_parent_id), therefore the bridge
      assigns them a hardware domain of 0, and packets coming from them will
      always have skb->offload_fwd_mark = 0. So there aren't any restrictions.
      
      Problems appear due to the fact that DSA would like to perform software
      fallback for bonding and team interfaces that the physical switch cannot
      offload.
      
             +-- br0 ---+
            / /   |      \
           / /    |       \
          /  |    |      bond0
         /   |    |     /    \
       swp0 swp1 swp2 swp3 swp4
      
      There, it is desirable that the presence of swp3 and swp4 under a
      non-offloaded LAG does not preclude us from doing hardware bridging
      beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high
      enough that software bridging between {swp0,swp1,swp2} and bond0 is not
      impractical.
      
      But this creates an impossible paradox given the current way in which
      port hardware domains are assigned. When the driver receives a packet
      from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to
      something.
      
      - If we set it to 0, then the bridge will forward it towards swp1, swp2
        and bond0. But the switch has already forwarded it towards swp1 and
        swp2 (not to bond0, remember, that isn't offloaded, so as far as the
        switch is concerned, ports swp3 and swp4 are not looking up the FDB,
        and the entire bond0 is a destination that is strictly behind the
        CPU). But we don't want duplicated traffic towards swp1 and swp2, so
        it's not ok to set skb->offload_fwd_mark = 0.
      
      - If we set it to 1, then the bridge will not forward the skb towards
        the ports with the same switchdev mark, i.e. not to swp1, swp2 and
        bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should
        have forwarded the skb there.
      
      So the real issue is that bond0 will be assigned the same hardware
      domain as {swp0,swp1,swp2}, because the function that assigns hardware
      domains to bridge ports, nbp_switchdev_add(), recurses through bond0's
      lower interfaces until it finds something that implements devlink (calls
      dev_get_port_parent_id with bool recurse = true). This is a problem
      because the fact that bond0 can be offloaded by swp3 and swp4 in our
      example is merely an assumption.
      
      A solution is to give the bridge explicit hints as to what hardware
      domain it should use for each port.
      
      Currently, the bridging offload is very 'silent': a driver registers a
      netdevice notifier, which is put on the netns's notifier chain, and
      which sniffs around for NETDEV_CHANGEUPPER events where the upper is a
      bridge, and the lower is an interface it knows about (one registered by
      this driver, normally). Then, from within that notifier, it does a bunch
      of stuff behind the bridge's back, without the bridge necessarily
      knowing that there's somebody offloading that port. It looks like this:
      
           ip link set swp0 master br0
                        |
                        v
       br_add_if() calls netdev_master_upper_dev_link()
                        |
                        v
              call_netdevice_notifiers
                        |
                        v
             dsa_slave_netdevice_event
                        |
                        v
              oh, hey! it's for me!
                        |
                        v
                 .port_bridge_join
      
      What we do to solve the conundrum is to be less silent, and change the
      switchdev drivers to present themselves to the bridge. Something like this:
      
           ip link set swp0 master br0
                        |
                        v
       br_add_if() calls netdev_master_upper_dev_link()
                        |
                        v                    bridge: Aye! I'll use this
              call_netdevice_notifiers           ^  ppid as the
                        |                        |  hardware domain for
                        v                        |  this port, and zero
             dsa_slave_netdevice_event           |  if I got nothing.
                        |                        |
                        v                        |
              oh, hey! it's for me!              |
                        |                        |
                        v                        |
                 .port_bridge_join               |
                        |                        |
                        +------------------------+
                   switchdev_bridge_port_offload(swp0, swp0)
      
      Then stacked interfaces (like bond0 on top of swp3/swp4) would be
      treated differently in DSA, depending on whether we can or cannot
      offload them.
      
      The offload case:
      
          ip link set bond0 master br0
                        |
                        v
       br_add_if() calls netdev_master_upper_dev_link()
                        |
                        v                    bridge: Aye! I'll use this
              call_netdevice_notifiers           ^  ppid as the
                        |                        |  switchdev mark for
                        v                        |        bond0.
             dsa_slave_netdevice_event           | Coincidentally (or not),
                        |                        | bond0 and swp0, swp1, swp2
                        v                        | all have the same switchdev
              hmm, it's not quite for me,        | mark now, since the ASIC
               but my driver has already         | is able to forward towards
                 called .port_lag_join           | all these ports in hw.
                for it, because I have           |
            a port with dp->lag_dev == bond0.    |
                        |                        |
                        v                        |
                 .port_bridge_join               |
                 for swp3 and swp4               |
                        |                        |
                        +------------------------+
                  switchdev_bridge_port_offload(bond0, swp3)
                  switchdev_bridge_port_offload(bond0, swp4)
      
      And the non-offload case:
      
          ip link set bond0 master br0
                        |
                        v
       br_add_if() calls netdev_master_upper_dev_link()
                        |
                        v                    bridge waiting:
              call_netdevice_notifiers           ^  huh, switchdev_bridge_port_offload
                        |                        |  wasn't called, okay, I'll use a
                        v                        |  hwdom of zero for this one.
             dsa_slave_netdevice_event           :  Then packets received on swp0 will
                        |                        :  not be software-forwarded towards
                        v                        :  swp1, but they will towards bond0.
               it's not for me, but
             bond0 is an upper of swp3
            and swp4, but their dp->lag_dev
             is NULL because they couldn't
                  offload it.
      
      Basically we can draw the conclusion that the lowers of a bridge port
      can come and go, so depending on the configuration of lowers for a
      bridge port, it can dynamically toggle between offloaded and unoffloaded.
      Therefore, we need an equivalent switchdev_bridge_port_unoffload too.
      
      This patch changes the way any switchdev driver interacts with the
      bridge. From now on, everybody needs to call switchdev_bridge_port_offload
      and switchdev_bridge_port_unoffload, otherwise the bridge will treat the
      port as non-offloaded and allow software flooding to other ports from
      the same ASIC.
      
      Note that these functions lay the ground for a more complex handshake
      between switchdev drivers and the bridge in the future.
      
      For drivers that will request a replay of the switchdev objects when
      they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we
      place the call to switchdev_bridge_port_unoffload() strategically inside
      the NETDEV_PRECHANGEUPPER notifier's code path, and not inside
      NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers
      need the netdev adjacency lists to be valid, and that is only true in
      NETDEV_PRECHANGEUPPER.
      
      Cc: Vadym Kochan <vkochan@marvell.com>
      Cc: Taras Chornyi <tchornyi@marvell.com>
      Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
      Cc: Lars Povlsen <lars.povlsen@microchip.com>
      Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
      Cc: UNGLinuxDriver@microchip.com
      Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
      Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
      Cc: Grygorii Strashko <grygorii.strashko@ti.com>
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression
      Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
      Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      2f5dc00f
  2. 17 7月, 2021 1 次提交
  3. 29 6月, 2021 1 次提交
    • V
      net: switchdev: add a context void pointer to struct switchdev_notifier_info · 69bfac96
      Vladimir Oltean 提交于
      In the case where the driver asks for a replay of a certain type of
      event (port object or attribute) for a bridge port that is a LAG, it may
      do so because this port has just joined the LAG.
      
      But there might already be other switchdev ports in that LAG, and it is
      preferable that those preexisting switchdev ports do not act upon the
      replayed event.
      
      The solution is to add a context to switchdev events, which is NULL most
      of the time (when the bridge layer initiates the call) but which can be
      set to a value controlled by the switchdev driver when a replay is
      requested. The driver can then check the context to figure out if all
      ports within the LAG should act upon the switchdev event, or just the
      ones that match the context.
      
      We have to modify all switchdev_handle_* helper functions as well as the
      prototypes in the drivers that use these helpers too, because these
      helpers hide the underlying struct switchdev_notifier_info from us and
      there is no way to retrieve the context otherwise.
      
      The context structure will be populated and used in later patches.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      69bfac96
  4. 18 5月, 2021 1 次提交
  5. 17 4月, 2021 1 次提交
  6. 18 3月, 2021 2 次提交
    • A
      mlxsw: Allow 802.1d and .1ad VxLAN bridges to coexist on Spectrum>=2 · bf677bd2
      Amit Cohen 提交于
      Currently only one EtherType can be configured for pushing in tunnels
      because EtherType is configured using SPVID.et_vlan for tunnel port.
      
      This behavior is forbidden by comparing mlxsw_sp_nve_config struct for
      each new tunnel, the struct contains 'ethertype' field which means that
      only one EtherType is legal at any given time. Remove 'ethertype' field to
      allow creating VxLAN devices with different bridges.
      
      To allow using several types of VxLAN bridges at the same time, the
      EtherType should be determined at the egress port. This behavior is
      achieved by setting SPVID to decide which EtherType to push at egress and
      for each local_port which is member in 802.1ad bridge, set SPEVET.et_vlan
      to ether_type1 (i.e., 0x88A8).
      
      Use switchdev_ops->init() to set different mlxsw_sp_bridge_ops for
      different ASICs in order to be able to split the behavior when port joins /
      leaves an 802.1ad bridge in different ASICs.
      Signed-off-by: NAmit Cohen <amcohen@nvidia.com>
      Signed-off-by: NIdo Schimmel <idosch@nvidia.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      bf677bd2
    • A
      mlxsw: Add struct mlxsw_sp_switchdev_ops per ASIC · 0f74fa56
      Amit Cohen 提交于
      A subsequent patch will need to implement different set of operations
      when a port joins / leaves an 802.1ad bridge, based on the ASIC type.
      
      Prepare for this change by allowing to initialize the bridge module
      based on the ASIC type via 'struct mlxsw_sp_switchdev_ops'.
      Signed-off-by: NAmit Cohen <amcohen@nvidia.com>
      Signed-off-by: NIdo Schimmel <idosch@nvidia.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      0f74fa56
  7. 13 2月, 2021 2 次提交
  8. 12 1月, 2021 4 次提交
    • V
      mlxsw: spectrum_switchdev: remove transactional logic for VLAN objects · 4b400fea
      Vladimir Oltean 提交于
      As of commit 457e20d6 ("mlxsw: spectrum_switchdev: Avoid returning
      errors in commit phase"), the mlxsw driver performs the VLAN object
      offloading during the prepare phase. So conversion just seems to be a
      matter of removing the code that was running in the commit phase.
      
      Ido Schimmel explains that the reason why mlxsw_sp_span_respin is called
      unconditionally is because the bridge driver will ignore -EOPNOTSUPP and
      actually add the VLAN on the bridge device - see commit 9c86ce2c
      ("net: bridge: Notify about bridge VLANs") and commit ea472175
      ("mlxsw: spectrum_switchdev: Ignore bridge VLAN events"). Since the VLAN
      was successfully added on the bridge device, mlxsw_sp_span_respin_work()
      should be able to resolve the egress port for a packet that is mirrored
      to a gre tap and passes through the bridge device. Therefore keep the
      logic as it is.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Acked-by: NLinus Walleij <linus.walleij@linaro.org>
      Acked-by: NJiri Pirko <jiri@nvidia.com>
      Reviewed-by: NIdo Schimmel <idosch@nvidia.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      4b400fea
    • V
      net: switchdev: remove the transaction structure from port attributes · bae33f2b
      Vladimir Oltean 提交于
      Since the introduction of the switchdev API, port attributes were
      transmitted to drivers for offloading using a two-step transactional
      model, with a prepare phase that was supposed to catch all errors, and a
      commit phase that was supposed to never fail.
      
      Some classes of failures can never be avoided, like hardware access, or
      memory allocation. In the latter case, merely attempting to move the
      memory allocation to the preparation phase makes it impossible to avoid
      memory leaks, since commit 91cf8ece ("switchdev: Remove unused
      transaction item queue") which has removed the unused mechanism of
      passing on the allocated memory between one phase and another.
      
      It is time we admit that separating the preparation from the commit
      phase is something that is best left for the driver to decide, and not
      something that should be baked into the API, especially since there are
      no switchdev callers that depend on this.
      
      This patch removes the struct switchdev_trans member from switchdev port
      attribute notifier structures, and converts drivers to not look at this
      member.
      
      In part, this patch contains a revert of my previous commit 2e554a7a
      ("net: dsa: propagate switchdev vlan_filtering prepare phase to
      drivers").
      
      For the most part, the conversion was trivial except for:
      - Rocker's world implementation based on Broadcom OF-DPA had an odd
        implementation of ofdpa_port_attr_bridge_flags_set. The conversion was
        done mechanically, by pasting the implementation twice, then only
        keeping the code that would get executed during prepare phase on top,
        then only keeping the code that gets executed during the commit phase
        on bottom, then simplifying the resulting code until this was obtained.
      - DSA's offloading of STP state, bridge flags, VLAN filtering and
        multicast router could be converted right away. But the ageing time
        could not, so a shim was introduced and this was left for a further
        commit.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Acked-by: NLinus Walleij <linus.walleij@linaro.org>
      Acked-by: NJiri Pirko <jiri@nvidia.com>
      Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek
      Reviewed-by: Linus Walleij <linus.walleij@linaro.org> # RTL8366RB
      Reviewed-by: NIdo Schimmel <idosch@nvidia.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      bae33f2b
    • V
      net: switchdev: remove the transaction structure from port object notifiers · ffb68fc5
      Vladimir Oltean 提交于
      Since the introduction of the switchdev API, port objects were
      transmitted to drivers for offloading using a two-step transactional
      model, with a prepare phase that was supposed to catch all errors, and a
      commit phase that was supposed to never fail.
      
      Some classes of failures can never be avoided, like hardware access, or
      memory allocation. In the latter case, merely attempting to move the
      memory allocation to the preparation phase makes it impossible to avoid
      memory leaks, since commit 91cf8ece ("switchdev: Remove unused
      transaction item queue") which has removed the unused mechanism of
      passing on the allocated memory between one phase and another.
      
      It is time we admit that separating the preparation from the commit
      phase is something that is best left for the driver to decide, and not
      something that should be baked into the API, especially since there are
      no switchdev callers that depend on this.
      
      This patch removes the struct switchdev_trans member from switchdev port
      object notifier structures, and converts drivers to not look at this
      member.
      
      Where driver conversion is trivial (like in the case of the Marvell
      Prestera driver, NXP DPAA2 switch, TI CPSW, and Rocker drivers), it is
      done in this patch.
      
      Where driver conversion needs more attention (DSA, Mellanox Spectrum),
      the conversion is left for subsequent patches and here we only fake the
      prepare/commit phases at a lower level, just not in the switchdev
      notifier itself.
      
      Where the code has a natural structure that is best left alone as a
      preparation and a commit phase (as in the case of the Ocelot switch),
      that structure is left in place, just made to not depend upon the
      switchdev transactional model.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Acked-by: NLinus Walleij <linus.walleij@linaro.org>
      Acked-by: NJiri Pirko <jiri@nvidia.com>
      Reviewed-by: NIdo Schimmel <idosch@nvidia.com>
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      ffb68fc5
    • V
      net: switchdev: remove vid_begin -> vid_end range from VLAN objects · b7a9e0da
      Vladimir Oltean 提交于
      The call path of a switchdev VLAN addition to the bridge looks something
      like this today:
      
              nbp_vlan_init
              |  __br_vlan_set_default_pvid
              |  |                       |
              |  |    br_afspec          |
              |  |        |              |
              |  |        v              |
              |  | br_process_vlan_info  |
              |  |        |              |
              |  |        v              |
              |  |   br_vlan_info        |
              |  |       / \            /
              |  |      /   \          /
              |  |     /     \        /
              |  |    /       \      /
              v  v   v         v    v
            nbp_vlan_add   br_vlan_add ------+
             |              ^      ^ |       |
             |             /       | |       |
             |            /       /  /       |
             \ br_vlan_get_master/  /        v
              \        ^        /  /  br_vlan_add_existing
               \       |       /  /          |
                \      |      /  /          /
                 \     |     /  /          /
                  \    |    /  /          /
                   \   |   /  /          /
                    v  |   | v          /
                    __vlan_add         /
                       / |            /
                      /  |           /
                     v   |          /
         __vlan_vid_add  |         /
                     \   |        /
                      v  v        v
            br_switchdev_port_vlan_add
      
      The ranges UAPI was introduced to the bridge in commit bdced7ef
      ("bridge: support for multiple vlans and vlan ranges in setlink and
      dellink requests") (Jan 10 2015). But the VLAN ranges (parsed in br_afspec)
      have always been passed one by one, through struct bridge_vlan_info
      tmp_vinfo, to br_vlan_info. So the range never went too far in depth.
      
      Then Scott Feldman introduced the switchdev_port_bridge_setlink function
      in commit 47f8328b ("switchdev: add new switchdev bridge setlink").
      That marked the introduction of the SWITCHDEV_OBJ_PORT_VLAN, which made
      full use of the range. But switchdev_port_bridge_setlink was called like
      this:
      
      br_setlink
      -> br_afspec
      -> switchdev_port_bridge_setlink
      
      Basically, the switchdev and the bridge code were not tightly integrated.
      Then commit 41c498b9 ("bridge: restore br_setlink back to original")
      came, and switchdev drivers were required to implement
      .ndo_bridge_setlink = switchdev_port_bridge_setlink for a while.
      
      In the meantime, commits such as 0944d6b5 ("bridge: try switchdev op
      first in __vlan_vid_add/del") finally made switchdev penetrate the
      br_vlan_info() barrier and start to develop the call path we have today.
      But remember, br_vlan_info() still receives VLANs one by one.
      
      Then Arkadi Sharshevsky refactored the switchdev API in 2017 in commit
      29ab586c ("net: switchdev: Remove bridge bypass support from
      switchdev") so that drivers would not implement .ndo_bridge_setlink any
      longer. The switchdev_port_bridge_setlink also got deleted.
      This refactoring removed the parallel bridge_setlink implementation from
      switchdev, and left the only switchdev VLAN objects to be the ones
      offloaded from __vlan_vid_add (basically RX filtering) and  __vlan_add
      (the latter coming from commit 9c86ce2c ("net: bridge: Notify about
      bridge VLANs")).
      
      That is to say, today the switchdev VLAN object ranges are not used in
      the kernel. Refactoring the above call path is a bit complicated, when
      the bridge VLAN call path is already a bit complicated.
      
      Let's go off and finish the job of commit 29ab586c by deleting the
      bogus iteration through the VLAN ranges from the drivers. Some aspects
      of this feature never made too much sense in the first place. For
      example, what is a range of VLANs all having the BRIDGE_VLAN_INFO_PVID
      flag supposed to mean, when a port can obviously have a single pvid?
      This particular configuration _is_ denied as of commit 6623c60d
      ("bridge: vlan: enforce no pvid flag in vlan ranges"), but from an API
      perspective, the driver still has to play pretend, and only offload the
      vlan->vid_end as pvid. And the addition of a switchdev VLAN object can
      modify the flags of another, completely unrelated, switchdev VLAN
      object! (a VLAN that is PVID will invalidate the PVID flag from whatever
      other VLAN had previously been offloaded with switchdev and had that
      flag. Yet switchdev never notifies about that change, drivers are
      supposed to guess).
      
      Nonetheless, having a VLAN range in the API makes error handling look
      scarier than it really is - unwinding on errors and all of that.
      When in reality, no one really calls this API with more than one VLAN.
      It is all unnecessary complexity.
      
      And despite appearing pretentious (two-phase transactional model and
      all), the switchdev API is really sloppy because the VLAN addition and
      removal operations are not paired with one another (you can add a VLAN
      100 times and delete it just once). The bridge notifies through
      switchdev of a VLAN addition not only when the flags of an existing VLAN
      change, but also when nothing changes. There are switchdev drivers out
      there who don't like adding a VLAN that has already been added, and
      those checks don't really belong at driver level. But the fact that the
      API contains ranges is yet another factor that prevents this from being
      addressed in the future.
      
      Of the existing switchdev pieces of hardware, it appears that only
      Mellanox Spectrum supports offloading more than one VLAN at a time,
      through mlxsw_sp_port_vlan_set. I have kept that code internal to the
      driver, because there is some more bookkeeping that makes use of it, but
      I deleted it from the switchdev API. But since the switchdev support for
      ranges has already been de facto deleted by a Mellanox employee and
      nobody noticed for 4 years, I'm going to assume it's not a biggie.
      Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com>
      Reviewed-by: Ido Schimmel <idosch@nvidia.com> # switchdev and mlxsw
      Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
      Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek
      Signed-off-by: NJakub Kicinski <kuba@kernel.org>
      b7a9e0da
  9. 09 12月, 2020 4 次提交
  10. 02 12月, 2020 4 次提交
  11. 29 9月, 2020 1 次提交
  12. 24 8月, 2020 1 次提交
  13. 27 2月, 2020 1 次提交
  14. 21 2月, 2020 2 次提交
  15. 18 2月, 2020 4 次提交
  16. 05 10月, 2019 1 次提交
  17. 18 7月, 2019 1 次提交
    • I
      mlxsw: spectrum: Do not process learned records with a dummy FID · 577fa14d
      Ido Schimmel 提交于
      The switch periodically sends notifications about learned FDB entries.
      Among other things, the notification includes the FID (Filtering
      Identifier) and the port on which the MAC was learned.
      
      In case the driver does not have the FID defined on the relevant port,
      the following error will be periodically generated:
      
      mlxsw_spectrum2 0000:06:00.0 swp32: Failed to find a matching {Port, VID} following FDB notification
      
      This is not supposed to happen under normal conditions, but can happen
      if an ingress tc filter with a redirect action is installed on a bridged
      port. The redirect action will cause the packet's FID to be changed to
      the dummy FID and a learning notification will be emitted with this FID
      - which is not defined on the bridged port.
      
      Fix this by having the driver ignore learning notifications generated
      with the dummy FID and delete them from the device.
      
      Another option is to chain an ignore action after the redirect action
      which will cause the device to disable learning, but this means that we
      need to consume another action whenever a redirect action is used. In
      addition, the scenario described above is merely a corner case.
      
      Fixes: cedbb8b2 ("mlxsw: spectrum_flower: Set dummy FID before forward action")
      Signed-off-by: NIdo Schimmel <idosch@mellanox.com>
      Reported-by: NAlex Kushnarov <alexanderk@mellanox.com>
      Acked-by: NJiri Pirko <jiri@mellanox.com>
      Tested-by: NAlex Kushnarov <alexanderk@mellanox.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      577fa14d
  18. 11 4月, 2019 1 次提交
    • I
      mlxsw: spectrum_switchdev: Add MDB entries in prepare phase · d4d0e409
      Ido Schimmel 提交于
      The driver cannot guarantee in the prepare phase that it will be able to
      write an MDB entry to the device. In case the driver returned success
      during the prepare phase, but then failed to add the entry in the commit
      phase, a WARNING [1] will be generated by the switchdev core.
      
      Fix this by doing the work in the prepare phase instead.
      
      [1]
      [  358.544486] swp12s0: Commit of object (id=2) failed.
      [  358.550061] WARNING: CPU: 0 PID: 30 at net/switchdev/switchdev.c:281 switchdev_port_obj_add_now+0x9b/0xe0
      [  358.560754] CPU: 0 PID: 30 Comm: kworker/0:1 Not tainted 5.0.0-custom-13382-gf2449babf221 #1350
      [  358.570472] Hardware name: Mellanox Technologies Ltd. MSN2100-CB2FO/SA001017, BIOS 5.6.5 06/07/2016
      [  358.580582] Workqueue: events switchdev_deferred_process_work
      [  358.587001] RIP: 0010:switchdev_port_obj_add_now+0x9b/0xe0
      ...
      [  358.614109] RSP: 0018:ffffa6b900d6fe18 EFLAGS: 00010286
      [  358.619943] RAX: 0000000000000000 RBX: ffff8b00797ff000 RCX: 0000000000000000
      [  358.627912] RDX: ffff8b00b7a1d4c0 RSI: ffff8b00b7a152e8 RDI: ffff8b00b7a152e8
      [  358.635881] RBP: ffff8b005c3f5bc0 R08: 000000000000022b R09: 0000000000000000
      [  358.643850] R10: 0000000000000000 R11: ffffa6b900d6fcc8 R12: 0000000000000000
      [  358.651819] R13: dead000000000100 R14: ffff8b00b65a23c0 R15: 0ffff8b00b7a2200
      [  358.659790] FS:  0000000000000000(0000) GS:ffff8b00b7a00000(0000) knlGS:0000000000000000
      [  358.668820] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
      [  358.675228] CR2: 00007f00aad90de0 CR3: 00000001ca80d000 CR4: 00000000001006f0
      [  358.683188] Call Trace:
      [  358.685918]  switchdev_port_obj_add_deferred+0x13/0x60
      [  358.691655]  switchdev_deferred_process+0x6b/0xf0
      [  358.696907]  switchdev_deferred_process_work+0xa/0x10
      [  358.702548]  process_one_work+0x1f5/0x3f0
      [  358.707022]  worker_thread+0x28/0x3c0
      [  358.711099]  ? process_one_work+0x3f0/0x3f0
      [  358.715768]  kthread+0x10d/0x130
      [  358.719369]  ? __kthread_create_on_node+0x180/0x180
      [  358.724815]  ret_from_fork+0x35/0x40
      
      Fixes: 3a49b4fd ("mlxsw: Adding layer 2 multicast support")
      Signed-off-by: NIdo Schimmel <idosch@mellanox.com>
      Reported-by: NAlex Kushnarov <alexanderk@mellanox.com>
      Tested-by: NAlex Kushnarov <alexanderk@mellanox.com>
      Acked-by: NJiri Pirko <jiri@mellanox.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      d4d0e409
  19. 28 2月, 2019 2 次提交
  20. 22 2月, 2019 3 次提交
  21. 13 2月, 2019 1 次提交