- 20 9月, 2016 3 次提交
-
-
由 Chuck Lever 提交于
Currently there's a hidden and indirect mechanism for finding the rpcrdma_req that goes with an rpc_rqst. It depends on getting from the rq_buffer pointer in struct rpc_rqst to the struct rpcrdma_regbuf that controls that buffer, and then to the struct rpcrdma_req it goes with. This was done back in the day to avoid the need to add a per-rqst pointer or to alter the buf_free API when support for RPC-over-RDMA was introduced. I'm about to change the way regbuf's work to support larger inline thresholds. Now is a good time to replace this indirect mechanism with something that is more straightforward. I guess this should be considered a clean up. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
xprtrdma needs to allocate the Call and Reply buffers separately. TBH, the reliance on using a single buffer for the pair of XDR buffers is transport implementation-specific. Instead of passing just the rq_buffer into the buf_free method, pass the task structure and let buf_free take care of freeing both XDR buffers at once. There's a micro-optimization here. In the common case, both xprt_release and the transport's buf_free method were checking if rq_buffer was NULL. Now the check is done only once per RPC. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: r_xprt is already available everywhere these macros are invoked, so just dereference that directly. RPCRDMA_INLINE_PAD_VALUE is no longer used, so it can simply be removed. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 07 9月, 2016 1 次提交
-
-
由 Chuck Lever 提交于
An RPC can terminate before its reply arrives, if a credential problem or a soft timeout occurs. After this happens, xprtrdma reports it is out of Receive buffers. A Receive buffer is posted before each RPC is sent, and returned to the buffer pool when a reply is received. If no reply is received for an RPC, that Receive buffer remains posted. But xprtrdma tries to post another when the next RPC is sent. If this happens a few dozen times, there are no receive buffers left to be posted at send time. I don't see a way for a transport connection to recover at that point, and it will spit warnings and unnecessarily delay RPCs on occasion for its remaining lifetime. Commit 1e465fd4 ("xprtrdma: Replace send and receive arrays") removed a little bit of logic to detect this case and not provide a Receive buffer so no more buffers are posted, and then transport operation continues correctly. We didn't understand what that logic did, and it wasn't commented, so it was removed as part of the overhaul to support backchannel requests. Restore it, but be wary of the need to keep extra Receives posted to deal with backchannel requests. Fixes: 1e465fd4 ("xprtrdma: Replace send and receive arrays") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NAnna Schumaker <Anna.Schumaker@Netapp.com> Signed-off-by: NTrond Myklebust <trond.myklebust@primarydata.com>
-
- 12 7月, 2016 9 次提交
-
-
由 Chuck Lever 提交于
Currently, all three chunk list encoders each use a portion of the one rl_segments array in rpcrdma_req. This is because the MWs for each chunk list were preserved in rl_segments so that ro_unmap could find and invalidate them after the RPC was complete. However, now that MWs are placed on a per-req linked list as they are registered, there is no longer any information in rpcrdma_mr_seg that is shared between ro_map and ro_unmap_{sync,safe}, and thus nothing in rl_segments needs to be preserved after rpcrdma_marshal_req is complete. Thus the rl_segments array can be used now just for the needs of each rpcrdma_convert_iovs call. Once each chunk list is encoded, the next chunk list encoder is free to re-use all of rl_segments. This means all three chunk lists in one RPC request can now each encode a full size data payload with no increase in the size of rl_segments. This is a key requirement for Kerberos support, since both the Call and Reply for a single RPC transaction are conveyed via Long messages (RDMA Read/Write). Both can be large. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Instead of placing registered MWs sparsely into the rl_segments array, place these MWs on a per-req list. ro_unmap_{sync,safe} can then simply pull those MWs off the list instead of walking through the array. This change significantly reduces the size of struct rpcrdma_req by removing nsegs and rl_mw from every array element. As an additional clean-up, chunk co-ordinates are returned in the "*mw" output argument so they are no longer needed in every array element. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Frequent MR list exhaustion can impact I/O throughput, so enough MRs are always created during transport set-up to prevent running out. This means more MRs are created than most workloads need. Commit 94f58c58 ("xprtrdma: Allow Read list and Reply chunk simultaneously") introduced support for sending two chunk lists per RPC, which consumes more MRs per RPC. Instead of trying to provision more MRs, introduce a mechanism for allocating MRs on demand. A few MRs are allocated during transport set-up to kick things off. This significantly reduces the average number of MRs per transport while allowing the MR count to grow for workloads or devices that need more MRs. FRWR with mlx4 allocated almost 400 MRs per transport before this patch. Now it starts with 32. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: Move device capability detection into memreg-specific source files. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: ALLPHYSICAL is gone and FMR has been converted to use scatterlists. There are no more users of these functions. This patch shrinks the size of struct rpcrdma_req by about 3500 bytes on x86_64. There is one of these structs for each RPC credit (128 credits per transport connection). Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
No HCA or RNIC in the kernel tree requires the use of ALLPHYSICAL. ALLPHYSICAL advertises in the clear on the network fabric an R_key that is good for all of the client's memory. No known exploit exists, but theoretically any user on the server can use that R_key on the client's QP to read or update any part of the client's memory. ALLPHYSICAL exposes the client to server bugs, including: o base/bounds errors causing data outside the i/o buffer to be accessed o RDMA access after reply causing data corruption and/or integrity fail ALLPHYSICAL can't protect application memory regions from server update after a local signal or soft timeout has terminated an RPC. ALLPHYSICAL chunks are no larger than a page. Special cases to handle small chunks and long chunk lists have been a source of implementation complexity and bugs. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
I found that commit ead3f26e ("xprtrdma: Add ro_unmap_safe memreg method"), which introduces ro_unmap_safe, never wired up the FMR recovery worker. The FMR and FRWR recovery work queues both do the same thing. Instead of setting up separate individual work queues for this, schedule a delayed worker to deal with them, since recovering MRs is not performance-critical. Fixes: ead3f26e ("xprtrdma: Add ro_unmap_safe memreg method") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: Use the same naming convention used in other RPC/RDMA-related data structures. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: FMR is about to replace the rpcrdma_map_one code with scatterlists. Move the scatterlist fields out of the FRWR-specific union and into the generic part of rpcrdma_mw. One minor change: -EIO is now returned if FRWR registration fails. The RPC is terminated immediately, since the problem is likely due to a software bug, thus retrying likely won't help. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 18 5月, 2016 10 次提交
-
-
由 Chuck Lever 提交于
Clean up. After "xprtrdma: Remove ro_unmap() from all registration modes", there are no longer any sites that take rpcrdma_ia::qplock for read. The one site that takes it for write is always single-threaded. It is safe to remove it. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: The ro_unmap method is no longer used. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Reviewed-by: NSagi Grimberg <sagi@grimberg.me> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
There needs to be a safe method of releasing registered memory resources when an RPC terminates. Safe can mean a number of things: + Doesn't have to sleep + Doesn't rely on having a QP in RTS ro_unmap_safe will be that safe method. It can be used in cases where synchronous memory invalidation can deadlock, or needs to have an active QP. The important case is fencing an RPC's memory regions after it is signaled (^C) and before it exits. If this is not done, there is a window where the server can write an RPC reply into memory that the client has released and re-used for some other purpose. Note that this is a full solution for FRWR, but FMR and physical still have some gaps where a particularly bad server can wreak some havoc on the client. These gaps are not made worse by this patch and are expected to be exceptionally rare and timing-based. They are noted in documenting comments. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
In a subsequent patch, the fr_xprt and fr_worker fields will be needed by another memory registration mode. Move them into the generic rpcrdma_mw structure that wraps struct rpcrdma_frmr. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Reviewed-by: NSagi Grimberg <sagi@grimberg.me> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Move the the I/O direction field from rpcrdma_mr_seg into the rpcrdma_frmr. This makes it possible to DMA-unmap the frwr long after an RPC has exited and its rpcrdma_mr_seg array has been released and re-used. This might occur if an RPC times out while waiting for a new connection to be established. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: Follow same naming convention as other fields in struct rpcrdma_frwr. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Reviewed-by: NSagi Grimberg <sagi@grimberg.me> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
rpcrdma_marshal_req() makes a simplifying assumption: that NFS operations with large Call messages have small Reply messages, and vice versa. Therefore with RPC-over-RDMA, only one chunk type is ever needed for each Call/Reply pair, because one direction needs chunks, the other direction will always fit inline. In fact, this assumption is asserted in the code: if (rtype != rpcrdma_noch && wtype != rpcrdma_noch) { dprintk("RPC: %s: cannot marshal multiple chunk lists\n", __func__); return -EIO; } But RPCGSS_SEC breaks this assumption. Because krb5i and krb5p perform data transformation on RPC messages before they are transmitted, direct data placement techniques cannot be used, thus RPC messages must be sent via a Long call in both directions. All such calls are sent with a Position Zero Read chunk, and all such replies are handled with a Reply chunk. Thus the client must provide every Call/Reply pair with both a Read list and a Reply chunk. Without any special security in effect, NFSv4 WRITEs may now also use the Read list and provide a Reply chunk. The marshal_req logic was preventing that, meaning an NFSv4 WRITE with a large payload that included a GETATTR result larger than the inline threshold would fail. The code that encodes each chunk list is now completely contained in its own function. There is some code duplication, but the trade-off is that the overall logic should be more clear. Note that all three chunk lists now share the rl_segments array. Some additional per-req accounting is necessary to track this usage. For the same reasons that the above simplifying assumption has held true for so long, I don't expect more array elements are needed at this time. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Reviewed-by: NSagi Grimberg <sagi@grimberg.me> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
When deciding whether to send a Call inline, rpcrdma_marshal_req doesn't take into account header bytes consumed by chunk lists. This results in Call messages on the wire that are sometimes larger than the inline threshold. Likewise, when a Write list or Reply chunk is in play, the server's reply has to emit an RDMA Send that includes a larger-than-minimal RPC-over-RDMA header. The actual size of a Call message cannot be estimated until after the chunk lists have been registered. Thus the size of each RPC-over-RDMA header can be estimated only after chunks are registered; but the decision to register chunks is based on the size of that header. Chicken, meet egg. The best a client can do is estimate header size based on the largest header that might occur, and then ensure that inline content is always smaller than that. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Send buffer space is shared between the RPC-over-RDMA header and an RPC message. A large RPC-over-RDMA header means less space is available for the associated RPC message, which then has to be moved via an RDMA Read or Write. As more segments are added to the chunk lists, the header increases in size. Typical modern hardware needs only a few segments to convey the maximum payload size, but some devices and registration modes may need a lot of segments to convey data payload. Sometimes so many are needed that the remaining space in the Send buffer is not enough for the RPC message. Sending such a message usually fails. To ensure a transport can always make forward progress, cap the number of RDMA segments that are allowed in chunk lists. This prevents less-capable devices and memory registrations from consuming a large portion of the Send buffer by reducing the maximum data payload that can be conveyed with such devices. For now I choose an arbitrary maximum of 8 RDMA segments. This allows a maximum size RPC-over-RDMA header to fit nicely in the current 1024 byte inline threshold with over 700 bytes remaining for an inline RPC message. The current maximum data payload of NFS READ or WRITE requests is one megabyte. To convey that payload on a client with 4KB pages, each chunk segment would need to handle 32 or more data pages. This is well within the capabilities of FMR. For physical registration, the maximum payload size on platforms with 4KB pages is reduced to 32KB. For FRWR, a device's maximum page list depth would need to be at least 34 to support the maximum 1MB payload. A device with a smaller maximum page list depth means the maximum data payload is reduced when using that device. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Reviewed-by: NSagi Grimberg <sagi@grimberg.me> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
RPC-over-RDMA transports have a limit on how large a backward direction (backchannel) RPC message can be. Ensure that the NFSv4.x CREATE_SESSION operation advertises this limit to servers. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NSteve Wise <swise@opengridcomputing.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 15 3月, 2016 4 次提交
-
-
由 Chuck Lever 提交于
Calling ib_poll_cq() to sort through WCs during a completion is a common pattern amongst RDMA consumers. Since commit 14d3a3b2 ("IB: add a proper completion queue abstraction"), WC sorting can be handled by the IB core. By converting to this new API, xprtrdma is made a better neighbor to other RDMA consumers, as it allows the core to schedule the delivery of completions more fairly amongst all active consumers. Because each ib_cqe carries a pointer to a completion method, the core can now post its own operations on a consumer's QP, and handle the completions itself, without changes to the consumer. Send completions were previously handled entirely in the completion upcall handler (ie, deferring to a process context is unneeded). Thus IB_POLL_SOFTIRQ is a direct replacement for the current xprtrdma send code path. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NDevesh Sharma <devesh.sharma@broadcom.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Clean up: Make code more readable. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NDevesh Sharma <devesh.sharma@broadcom.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Calling ib_poll_cq() to sort through WCs during a completion is a common pattern amongst RDMA consumers. Since commit 14d3a3b2 ("IB: add a proper completion queue abstraction"), WC sorting can be handled by the IB core. By converting to this new API, xprtrdma is made a better neighbor to other RDMA consumers, as it allows the core to schedule the delivery of completions more fairly amongst all active consumers. Because each ib_cqe carries a pointer to a completion method, the core can now post its own operations on a consumer's QP, and handle the completions itself, without changes to the consumer. xprtrdma's reply processing is already handled in a work queue, but there is some initial order-dependent processing that is done in the soft IRQ context before a work item is scheduled. IB_POLL_SOFTIRQ is a direct replacement for the current xprtrdma receive code path. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NDevesh Sharma <devesh.sharma@broadcom.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Commit fe97b47c ("xprtrdma: Use workqueue to process RPC/RDMA replies") replaced the reply tasklet with a workqueue that allows RPC replies to be processed in parallel. Thus the credit values in RPC-over-RDMA replies can be applied in a different order than in which the server sent them. To fix this, revert commit eba8ff66 ("xprtrdma: Move credit update to RPC reply handler"). Reverting is done by hand to accommodate code changes that have occurred since then. Fixes: fe97b47c ("xprtrdma: Use workqueue to process . . .") Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 20 1月, 2016 2 次提交
-
-
由 Chuck Lever 提交于
To support the server-side of an NFSv4.1 backchannel on RDMA connections, add a transport class that enables backward direction messages on an existing forward channel connection. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Acked-by: NBruce Fields <bfields@fieldses.org> Signed-off-by: NDoug Ledford <dledford@redhat.com>
-
由 Chuck Lever 提交于
Clean up. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Acked-by: NBruce Fields <bfields@fieldses.org> Signed-off-by: NDoug Ledford <dledford@redhat.com>
-
- 23 12月, 2015 1 次提交
-
-
由 Or Gerlitz 提交于
Instead, use the cached copy of the attributes present on the device. Signed-off-by: NOr Gerlitz <ogerlitz@mellanox.com> Signed-off-by: NDoug Ledford <dledford@redhat.com>
-
- 19 12月, 2015 4 次提交
-
-
由 Chuck Lever 提交于
The root of the problem was that sends (especially unsignalled FASTREG and LOCAL_INV Work Requests) were not properly flow- controlled, which allowed a send queue overrun. Now that the RPC/RDMA reply handler waits for invalidation to complete, the send queue is properly flow-controlled. Thus this limit is no longer necessary. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
FRWR's ro_unmap is asynchronous. The new ro_unmap_sync posts LOCAL_INV Work Requests and waits for them to complete before returning. Note also, DMA unmapping is now done _after_ invalidation. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
In the current xprtrdma implementation, some memreg strategies implement ro_unmap synchronously (the MR is knocked down before the method returns) and some asynchonously (the MR will be knocked down and returned to the pool in the background). To guarantee the MR is truly invalid before the RPC consumer is allowed to resume execution, we need an unmap method that is always synchronous, invoked from the RPC/RDMA reply handler. The new method unmaps all MRs for an RPC. The existing ro_unmap method unmaps only one MR at a time. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
For FRWR FASTREG and LOCAL_INV, move the ib_*_wr structure off the stack. This allows frwr_op_map and frwr_op_unmap to chain WRs together without limit to register or invalidate a set of MRs with a single ib_post_send(). (This will be for chaining LOCAL_INV requests). Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Tested-by: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
- 03 11月, 2015 6 次提交
-
-
由 Chuck Lever 提交于
Forechannel transports get their own "bc_up" method to create an endpoint for the backchannel service. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> [Anna Schumaker: Add forward declaration of struct net to xprt.h] Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Introduce a code path in the rpcrdma_reply_handler() to catch incoming backward direction RPC calls and route them to the ULP's backchannel server. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Tested-By: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Backward direction RPC replies are sent via the client transport's send_request method, the same way forward direction RPC calls are sent. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Tested-By: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
Pre-allocate extra send and receive Work Requests needed to handle backchannel receives and sends. The transport doesn't know how many extra WRs to pre-allocate until the xprt_setup_backchannel() call, but that's long after the WRs are allocated during forechannel setup. So, use a fixed value for now. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Tested-By: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
xprtrdma's backward direction send and receive buffers are the same size as the forechannel's inline threshold, and must be pre- registered. The consumer has no control over which receive buffer the adapter chooses to catch an incoming backwards-direction call. Any receive buffer can be used for either a forward reply or a backward call. Thus both types of RPC message must all be the same size. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Tested-By: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-
由 Chuck Lever 提交于
The reply tasklet is fast, but it's single threaded. After reply traffic saturates a single CPU, there's no more reply processing capacity. Replace the tasklet with a workqueue to spread reply handling across all CPUs. This also moves RPC/RDMA reply handling out of the soft IRQ context and into a context that allows sleeps. Signed-off-by: NChuck Lever <chuck.lever@oracle.com> Reviewed-by: NSagi Grimberg <sagig@mellanox.com> Tested-By: NDevesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
-