- 09 10月, 2012 2 次提交
-
-
由 Jan Schmidt 提交于
Moved part of the code into a sub function and replaced most of the gotos by ifs, hoping that it will be easier to read now. Signed-off-by: NJan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: NMark Fasheh <mfasheh@suse.de>
-
由 Josef Bacik 提交于
I started hitting warnings when running xfstest 68 in a loop because there were EM's that were not lined up properly with the physical extents. This is ok, if we do something like punch a hole or write to a preallocated space or something like that we can have an EM that doesn't cover the entire physical extent. So fix the tree logging stuff to cope with this case so we don't just commit the transaction. With this patch I no longer see the warnings from the tree logging code. Thanks, Signed-off-by: NJosef Bacik <jbacik@fusionio.com>
-
- 04 10月, 2012 1 次提交
-
-
由 Josef Bacik 提交于
Dave Sterba pointed out a sleeping while atomic bug while doing fsync. This is because I'm an idiot and didn't realize that rwlock's were spin locks, so we've been holding this thing while doing allocations and such which is not good. This patch fixes this by dropping the write lock before we do anything heavy and re-acquire it when it is done. We also need to take a ref on the em's in case their corresponding pages are evicted and mark them as being logged so that releasepage does not remove them and doesn't remove them from our local list. Thanks, Reported-by: NDave Sterba <dave@jikos.cz> Signed-off-by: NJosef Bacik <jbacik@fusionio.com>
-
- 02 10月, 2012 9 次提交
-
-
由 Miao Xie 提交于
We forget to protect ->log_batch when syncing a file, this patch fix this problem by atomic operation. And ->log_batch is used to check if there are parallel sync operations or not, so it is unnecessary to reset it to 0 after the sync operation of the current log tree complete. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com>
-
由 Josef Bacik 提交于
This patch adds hole punching via fallocate. Thanks, Signed-off-by: NJosef Bacik <jbacik@fusionio.com>
-
由 Josef Bacik 提交于
I audited all users of btrfs_drop_extents and found that nobody actually uses the hint_byte argument. I'm sure it was used for something at some point but it's not used now, and the way the pinning works the disk bytenr would never be immediately useful anyway so lets just remove it. Thanks, Signed-off-by: NJosef Bacik <jbacik@fusionio.com>
-
由 Liu Bo 提交于
This is based on Josef's "Btrfs: turbo charge fsync". If an inode is a BTRFS_INODE_NODATASUM one, we don't need to look for csum items any more. Signed-off-by: NLiu Bo <bo.li.liu@oracle.com>
-
由 Liu Bo 提交于
This is based on Josef's "Btrfs: turbo charge fsync". The current btrfs checks if an inode is in log by comparing root's last_log_commit to inode's last_sub_trans[2]. But the problem is that this root->last_log_commit is shared among inodes. Say we have N inodes to be logged, after the first inode, root's last_log_commit is updated and the N-1 remained files will be skipped. This fixes the bug by keeping a local copy of root's last_log_commit inside each inode and this local copy will be maintained itself. [1]: we regard each log transaction as a subset of btrfs's transaction, i.e. sub_trans Signed-off-by: NLiu Bo <bo.li.liu@oracle.com>
-
由 Liu Bo 提交于
This is based on Josef's "Btrfs: turbo charge fsync". The above Josef's patch performs very good in random sync write test, because we won't have too much extents to merge. However, it does not performs good on the test: dd if=/dev/zero of=foobar bs=4k count=12500 oflag=sync The reason is when we do sequencial sync write, we need to merge the current extent just with the previous one, so that we can get accumulated extents to log: A(4k) --> AA(8k) --> AAA(12k) --> AAAA(16k) ... So we'll have to flush more and more checksum into log tree, which is the bottleneck according to my tests. But we can avoid this by telling fsync the real extents that are needed to be logged. With this, I did the above dd sync write test (size=50m), w/o (orig) w/ (josef's) w/ (this) SATA 104KB/s 109KB/s 121KB/s ramdisk 1.5MB/s 1.5MB/s 10.7MB/s (613%) Signed-off-by: NLiu Bo <bo.li.liu@oracle.com>
-
由 Liu Bo 提交于
This is based on Josef's "Btrfs: turbo charge fsync". We should cleanup those extents after we've finished logging inode, otherwise we may do redundant work on them. Signed-off-by: NLiu Bo <bo.li.liu@oracle.com>
-
由 Josef Bacik 提交于
I hit this a couple times while working on my fsync patch (all my bugs, not normal operation), but with my new stuff we could have new errors from cases I have not encountered, so instead of BUG()'ing we should be WARN()'ing so that we are notified there is a problem but the user doesn't lose their data. We can easily commit the transaction in the case that the tree logging fails and still be fine, so let's try and be as nice to the user as possible. Thanks, Signed-off-by: NJosef Bacik <jbacik@fusionio.com>
-
由 Josef Bacik 提交于
At least for the vm workload. Currently on fsync we will 1) Truncate all items in the log tree for the given inode if they exist and 2) Copy all items for a given inode into the log The problem with this is that for things like VMs you can have lots of extents from the fragmented writing behavior, and worst yet you may have only modified a few extents, not the entire thing. This patch fixes this problem by tracking which transid modified our extent, and then when we do the tree logging we find all of the extents we've modified in our current transaction, sort them and commit them. We also only truncate up to the xattrs of the inode and copy that stuff in normally, and then just drop any extents in the range we have that exist in the log already. Here are some numbers of a 50 meg fio job that does random writes and fsync()s after every write Original Patched SATA drive 82KB/s 140KB/s Fusion drive 431KB/s 2532KB/s So around 2-6 times faster depending on your hardware. There are a few corner cases, for example if you truncate at all we have to do it the old way since there is no way to be sure what is in the log is ok. This probably could be done smarter, but if you write-fsync-truncate-write-fsync you deserve what you get. All this work is in RAM of course so if your inode gets evicted from cache and you read it in and fsync it we'll do it the slow way if we are still in the same transaction that we last modified the inode in. The biggest cool part of this is that it requires no changes to the recovery code, so if you fsync with this patch and crash and load an old kernel, it will run the recovery and be a-ok. I have tested this pretty thoroughly with an fsync tester and everything comes back fine, as well as xfstests. Thanks, Signed-off-by: NJosef Bacik <jbacik@fusionio.com>
-
- 24 7月, 2012 1 次提交
-
-
由 Tsutomu Itoh 提交于
We didn't check error of btrfs_update_inode(), but that error looks easy to bubble back up. Reviewed-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NTsutomu Itoh <t-itoh@jp.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fusionio.com>
-
- 03 7月, 2012 1 次提交
-
-
由 Chris Mason 提交于
While we are resolving directory modifications in the tree log, we are triggering delayed metadata updates to the filesystem btrees. This commit forces the delayed updates to run so the replay code can find any modifications done. It stops us from crashing because the directory deleltion replay expects items to be removed immediately from the tree. Signed-off-by: NChris Mason <chris.mason@fusionio.com> cc: stable@kernel.org
-
- 30 5月, 2012 3 次提交
-
-
由 Josef Bacik 提交于
So dpkg fsync()'s the file and the directory containing the file whenever it writes to a file which is really slow in btrfs. This is partly because fsync()'ing a directory _always_ committed the transaction instead of just going to the tree log. This is because drop_objectid_items() would return 1 since it does a btrfs_search_slot() which returns 1. In tree-log jargon this means that we have to commit the transaction to be safe. So just check if ret is greater than 0 and set it to 0 if it does. With this patch we now use the tree-log instead of committing the entire transaction, which is twice as fast on my box. Thanks, Signed-off-by: NJosef Bacik <josef@redhat.com>
-
由 Josef Bacik 提交于
We have this check down in the actual logging code, but this is after we start a transaction and all that good stuff. So move the helper inode_in_log() out so we can call it in fsync() and avoid starting a transaction altogether and just exit if we've already fsync()'ed this file recently. You would notice this issue if you fsync()'ed a file over and over again until the transaction committed. Thanks, Signed-off-by: NJosef Bacik <josef@redhat.com>
-
由 Tsutomu Itoh 提交于
btrfs_read_buffer() has the possibility of returning the error. Therefore, I add the code in which the return value of btrfs_read_buffer() is checked. Signed-off-by: NTsutomu Itoh <t-itoh@jp.fujitsu.com>
-
- 06 5月, 2012 1 次提交
-
-
由 Chris Mason 提交于
verify_parent_transid needs to lock the extent range to make sure no IO is underway, and so it can safely clear the uptodate bits if our checks fail. But, a few callers are using it with spinlocks held. Most of the time, the generation numbers are going to match, and we don't want to switch to a blocking lock just for the error case. This adds an atomic flag to verify_parent_transid, and changes it to return EAGAIN if it needs to block to properly verifiy things. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 22 3月, 2012 2 次提交
-
-
由 Jeff Mahoney 提交于
btrfs currently handles most errors with BUG_ON. This patch is a work-in- progress but aims to handle most errors other than internal logic errors and ENOMEM more gracefully. This iteration prevents most crashes but can run into lockups with the page lock on occasion when the timing "works out." Signed-off-by: NJeff Mahoney <jeffm@suse.com>
-
由 Jeff Mahoney 提交于
Signed-off-by: NJeff Mahoney <jeffm@suse.com>
-
- 27 1月, 2012 1 次提交
-
-
由 Jan Kara 提交于
wait_log_commit() and wait_for_writer() were using slightly different conditions for deciding whether they should call schedule() and whether they should continue in the wait loop. Thus it could happen that we busylooped when the first condition was not true while the second one was. That is burning CPU cycles needlessly and is deadly on UP machines... Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 22 12月, 2011 1 次提交
-
-
由 Arne Jansen 提交于
Add a for_cow parameter to add_delayed_*_ref and pass the appropriate value from every call site. The for_cow parameter will later on be used to determine if a ref will change anything with respect to qgroups. Delayed refs coming from relocation are always counted as for_cow, as they don't change subvol quota. Also pass in the fs_info for later use. btrfs_find_all_roots() will use this as an optimization, as changes that are for_cow will not change anything with respect to which root points to a certain leaf. Thus, we don't need to add the current sequence number to those delayed refs. Signed-off-by: NArne Jansen <sensille@gmx.net> Signed-off-by: NJan Schmidt <list.btrfs@jan-o-sch.net>
-
- 06 11月, 2011 3 次提交
-
-
由 David Sterba 提交于
fs_info has now ~9kb, more than fits into one page. This will cause mount failure when memory is too fragmented. Top space consumers are super block structures super_copy and super_for_commit, ~2.8kb each. Allocate them dynamically. fs_info will be ~3.5kb. (measured on x86_64) Add a wrapper for freeing fs_info and all of it's dynamically allocated members. Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
由 Chris Mason 提交于
The tree log had two important bugs that could cause corruptions after a crash. Sometimes we were allowing tree log blocks to be reused after the tree log was committed but before the transaction commit was done. This allowed a future metadata write to overwrite the tree log data. It is fixed by adding a new variant of freeing reserved extents that always pins them. Credit goes to Stefan Behrens and Arne Jansen for many many hours spent tracking this bug down. During tree log replay, we do a pass through the tree log and pin all the extents we find. This makes sure the replay code won't go in and use any of those blocks for new allocations during replay. The problem is the free space cache isn't honoring these pinned extents. So the allocator can end up handing them out, leading to all kinds of problems during replay. The fix here is to force any free space cache to load while we pin the extents, and then to make sure we remove the pinned extents from the free space rbtree. Signed-off-by: NChris Mason <chris.mason@oracle.com> Reported-by: NStefan Behrens <sbehrens@giantdisaster.de>
-
由 Chris Mason 提交于
When we're doing log commits, we try to wait for more writers to come in and make the commit bigger. This helps improve performance on rotating disks, but on SSDs it adds latencies. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 02 11月, 2011 1 次提交
-
-
由 Miklos Szeredi 提交于
Replace remaining direct i_nlink updates with a new set_nlink() updater function. Signed-off-by: NMiklos Szeredi <mszeredi@suse.cz> Tested-by: NToshiyuki Okajima <toshi.okajima@jp.fujitsu.com> Signed-off-by: NChristoph Hellwig <hch@lst.de>
-
- 17 8月, 2011 1 次提交
-
-
由 liubo 提交于
When btrfs recovers from a crash, it may hit the oops below: ------------[ cut here ]------------ kernel BUG at fs/btrfs/inode.c:4580! [...] RIP: 0010:[<ffffffffa03df251>] [<ffffffffa03df251>] btrfs_add_link+0x161/0x1c0 [btrfs] [...] Call Trace: [<ffffffffa03e7b31>] ? btrfs_inode_ref_index+0x31/0x80 [btrfs] [<ffffffffa04054e9>] add_inode_ref+0x319/0x3f0 [btrfs] [<ffffffffa0407087>] replay_one_buffer+0x2c7/0x390 [btrfs] [<ffffffffa040444a>] walk_down_log_tree+0x32a/0x480 [btrfs] [<ffffffffa0404695>] walk_log_tree+0xf5/0x240 [btrfs] [<ffffffffa0406cc0>] btrfs_recover_log_trees+0x250/0x350 [btrfs] [<ffffffffa0406dc0>] ? btrfs_recover_log_trees+0x350/0x350 [btrfs] [<ffffffffa03d18b2>] open_ctree+0x1442/0x17d0 [btrfs] [...] This comes from that while replaying an inode ref item, we forget to check those old conflicting DIR_ITEM and DIR_INDEX items in fs/file tree, then we will come to conflict corners which lead to BUG_ON(). Signed-off-by: NLiu Bo <liubo2009@cn.fujitsu.com> Tested-by: NAndy Lutomirski <luto@mit.edu> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 28 7月, 2011 1 次提交
-
-
由 Chris Mason 提交于
The btrfs metadata btree is the source of significant lock contention, especially in the root node. This commit changes our locking to use a reader/writer lock. The lock is built on top of rw spinlocks, and it extends the lock tracking to remember if we have a read lock or a write lock when we go to blocking. Atomics count the number of blocking readers or writers at any given time. It removes all of the adaptive spinning from the old code and uses only the spinning/blocking hints inside of btrfs to decide when it should continue spinning. In read heavy workloads this is dramatically faster. In write heavy workloads we're still faster because of less contention on the root node lock. We suffer slightly in dbench because we schedule more often during write locks, but all other benchmarks so far are improved. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 15 7月, 2011 1 次提交
-
-
由 Mark Fasheh 提交于
The two ->process_func call sites in tree-log.c which were ignoring a return code have also been updated to gracefully exit as well. Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
- 18 6月, 2011 1 次提交
-
-
由 David Sterba 提交于
smatch reports: btrfs_recover_log_trees error: 'wc.replay_dest' dereferencing possible ERR_PTR() Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 24 5月, 2011 4 次提交
-
-
由 Tsutomu Itoh 提交于
If return value of btrfs_inc_extent_ref() is not 0, BUG() is called. Signed-off-by: NTsutomu Itoh <t-itoh@jp.fujitsu.com> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Tsutomu Itoh 提交于
When read_one_inode() fails, error code is returned to caller instead of BUG_ON(). Signed-off-by: NTsutomu Itoh <t-itoh@jp.fujitsu.com> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Tsutomu Itoh 提交于
Currently, btrfs_truncate_item and btrfs_extend_item returns only 0. So, the check by BUG_ON in the caller is unnecessary. Signed-off-by: NTsutomu Itoh <t-itoh@jp.fujitsu.com> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Tsutomu Itoh 提交于
The error code is returned instead of calling BUG_ON when btrfs_del_item returns the error. Signed-off-by: NTsutomu Itoh <t-itoh@jp.fujitsu.com> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 23 5月, 2011 1 次提交
-
-
由 liubo 提交于
The current code relogs the entire inode every time during fsync log, and it is much better suited to small files rather than large ones. During my performance test, the fsync performace of large files sucks, and we can ascribe this to the tremendous amount of csum infos of the large ones, cause we have to flush all of these csum infos into log trees even when there are only _one_ change in the whole file data. Apparently, to optimize fsync, we need to create a filter to skip the unnecessary csum ones, that is, the corresponding file data remains unchanged before this fsync. Here I have some test results to show, I use sysbench to do "random write + fsync". === sysbench --test=fileio --num-threads=1 --file-num=2 --file-block-size=4K --file-total-size=8G --file-test-mode=rndwr --file-io-mode=sync --file-extra-flags= [prepare, run] === Sysbench args: - Number of threads: 1 - Extra file open flags: 0 - 2 files, 4Gb each - Block size 4Kb - Number of random requests for random IO: 10000 - Read/Write ratio for combined random IO test: 1.50 - Periodic FSYNC enabled, calling fsync() each 100 requests. - Calling fsync() at the end of test, Enabled. - Using synchronous I/O mode - Doing random write test Sysbench results: === Operations performed: 0 Read, 10000 Write, 200 Other = 10200 Total Read 0b Written 39.062Mb Total transferred 39.062Mb === a) without patch: (*SPEED* : 451.01Kb/sec) 112.75 Requests/sec executed b) with patch: (*SPEED* : 4.7533Mb/sec) 1216.84 Requests/sec executed PS: I've made a _sub transid_ stuff patch, but it does not perform as effectively as this patch, and I'm wanderring where the problem is and trying to improve it more. Signed-off-by: NLiu Bo <liubo2009@cn.fujitsu.com> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 21 5月, 2011 1 次提交
-
-
由 Miao Xie 提交于
Changelog V5 -> V6: - Fix oom when the memory load is high, by storing the delayed nodes into the root's radix tree, and letting btrfs inodes go. Changelog V4 -> V5: - Fix the race on adding the delayed node to the inode, which is spotted by Chris Mason. - Merge Chris Mason's incremental patch into this patch. - Fix deadlock between readdir() and memory fault, which is reported by Itaru Kitayama. Changelog V3 -> V4: - Fix nested lock, which is reported by Itaru Kitayama, by updating space cache inode in time. Changelog V2 -> V3: - Fix the race between the delayed worker and the task which does delayed items balance, which is reported by Tsutomu Itoh. - Modify the patch address David Sterba's comment. - Fix the bug of the cpu recursion spinlock, reported by Chris Mason Changelog V1 -> V2: - break up the global rb-tree, use a list to manage the delayed nodes, which is created for every directory and file, and used to manage the delayed directory name index items and the delayed inode item. - introduce a worker to deal with the delayed nodes. Compare with Ext3/4, the performance of file creation and deletion on btrfs is very poor. the reason is that btrfs must do a lot of b+ tree insertions, such as inode item, directory name item, directory name index and so on. If we can do some delayed b+ tree insertion or deletion, we can improve the performance, so we made this patch which implemented delayed directory name index insertion/deletion and delayed inode update. Implementation: - introduce a delayed root object into the filesystem, that use two lists to manage the delayed nodes which are created for every file/directory. One is used to manage all the delayed nodes that have delayed items. And the other is used to manage the delayed nodes which is waiting to be dealt with by the work thread. - Every delayed node has two rb-tree, one is used to manage the directory name index which is going to be inserted into b+ tree, and the other is used to manage the directory name index which is going to be deleted from b+ tree. - introduce a worker to deal with the delayed operation. This worker is used to deal with the works of the delayed directory name index items insertion and deletion and the delayed inode update. When the delayed items is beyond the lower limit, we create works for some delayed nodes and insert them into the work queue of the worker, and then go back. When the delayed items is beyond the upper bound, we create works for all the delayed nodes that haven't been dealt with, and insert them into the work queue of the worker, and then wait for that the untreated items is below some threshold value. - When we want to insert a directory name index into b+ tree, we just add the information into the delayed inserting rb-tree. And then we check the number of the delayed items and do delayed items balance. (The balance policy is above.) - When we want to delete a directory name index from the b+ tree, we search it in the inserting rb-tree at first. If we look it up, just drop it. If not, add the key of it into the delayed deleting rb-tree. Similar to the delayed inserting rb-tree, we also check the number of the delayed items and do delayed items balance. (The same to inserting manipulation) - When we want to update the metadata of some inode, we cached the data of the inode into the delayed node. the worker will flush it into the b+ tree after dealing with the delayed insertion and deletion. - We will move the delayed node to the tail of the list after we access the delayed node, By this way, we can cache more delayed items and merge more inode updates. - If we want to commit transaction, we will deal with all the delayed node. - the delayed node will be freed when we free the btrfs inode. - Before we log the inode items, we commit all the directory name index items and the delayed inode update. I did a quick test by the benchmark tool[1] and found we can improve the performance of file creation by ~15%, and file deletion by ~20%. Before applying this patch: Create files: Total files: 50000 Total time: 1.096108 Average time: 0.000022 Delete files: Total files: 50000 Total time: 1.510403 Average time: 0.000030 After applying this patch: Create files: Total files: 50000 Total time: 0.932899 Average time: 0.000019 Delete files: Total files: 50000 Total time: 1.215732 Average time: 0.000024 [1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3 Many thanks for Kitayama-san's help! Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Reviewed-by: NDavid Sterba <dave@jikos.cz> Tested-by: NTsutomu Itoh <t-itoh@jp.fujitsu.com> Tested-by: NItaru Kitayama <kitayama@cl.bb4u.ne.jp> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 12 5月, 2011 1 次提交
-
-
由 Arne Jansen 提交于
This adds an initial implementation for scrub. It works quite straightforward. The usermode issues an ioctl for each device in the fs. For each device, it enumerates the allocated device chunks. For each chunk, the contained extents are enumerated and the data checksums fetched. The extents are read sequentially and the checksums verified. If an error occurs (checksum or EIO), a good copy is searched for. If one is found, the bad copy will be rewritten. All enumerations happen from the commit roots. During a transaction commit, the scrubs get paused and afterwards continue from the new roots. This commit is based on the series originally posted to linux-btrfs with some improvements that resulted from comments from David Sterba, Ilya Dryomov and Jan Schmidt. Signed-off-by: NArne Jansen <sensille@gmx.net>
-
- 02 5月, 2011 2 次提交
-
-
由 David Sterba 提交于
parameter tree root it's not used since commit 5f39d397 ("Btrfs: Create extent_buffer interface for large blocksizes") Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
由 David Sterba 提交于
use IS_ERR_OR_NULL when possible, done by this coccinelle script: @ match @ identifier id; @@ ( - BUG_ON(IS_ERR(id) || !id); + BUG_ON(IS_ERR_OR_NULL(id)); | - IS_ERR(id) || !id + IS_ERR_OR_NULL(id) | - !id || IS_ERR(id) + IS_ERR_OR_NULL(id) ) Signed-off-by: NDavid Sterba <dsterba@suse.cz>
-
- 26 4月, 2011 1 次提交
-
-
由 Tsutomu Itoh 提交于
It is necessary to unlock mutex_lock before it return an error when btrfs_alloc_path() fails. Signed-off-by: NTsutomu Itoh <t-itoh@jp.fujitsu.com> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-