- 25 4月, 2009 6 次提交
-
-
由 Chris Mason 提交于
After a transaction commit, the old root of the subvol btrees are sent through snapshot removal. This is what actually frees up any blocks replaced by COW, and anything the old blocks pointed to. Snapshot deletion will pause when a transaction commit has started, which helps to avoid a huge amount of delayed reference count updates piling up as the transaction is trying to close. But, this pause happens after the snapshot deletion process has asked other procs on the system to throttle back a bit so that it can make progress. We don't want to throttle everyone while we're waiting for the transaction commit, it leads to deadlocks in the user transaction ioctls used by Ceph and makes things slower in general. This patch changes things to avoid the throttling while we sleep. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
The btrfs fallocate call takes an extent lock on the entire range being fallocated, and then runs through insert_reserved_extent on each extent as they are allocated. The problem with this is that btrfs_drop_extents may decide to try and take the same extent lock fallocate was already holding. The solution used here is to push down knowledge of the range that is already locked going into btrfs_drop_extents. It turns out that at least one other caller had the same bug. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Christoph Hellwig 提交于
Just use kmem_cache_create directly. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Christoph Hellwig 提交于
Currently the extent_map code is only for btrfs so don't export it's symbols. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Christoph Hellwig 提交于
Get rid of the hacks for building out of tree, and always use += for assigning to the object lists. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Josef Bacik 提交于
This patch makes the chunk allocator keep a good ratio of metadata vs data block groups. By default for every 8 data block groups, we'll allocate 1 metadata chunk, or about 12% of the disk will be allocated for metadata. This can be changed by specifying the metadata_ratio mount option. This is simply the number of data block groups that have to be allocated to force a metadata chunk allocation. By making sure we allocate metadata chunks more often, we are less likely to get into situations where the whole disk has been allocated as data block groups. Signed-off-by: NJosef Bacik <jbacik@redhat.com> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 22 4月, 2009 1 次提交
-
-
由 Chris Mason 提交于
Btrfs fallocate was incorrectly starting a transaction with a lock held on the extent_io tree for the file, which could deadlock. Strictly speaking it was using join_transaction which would be safe, but it is better to move the transaction outside of the lock. When preallocated extents are overwritten, btrfs_mark_buffer_dirty was being called on an unlocked buffer. This was triggering an assertion and oops because the lock is supposed to be held. The bug was calling btrfs_mark_buffer_dirty on a leaf after btrfs_del_item had been run. btrfs_del_item takes care of dirtying things, so the solution is a to skip the btrfs_mark_buffer_dirty call in this case. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 21 4月, 2009 4 次提交
-
-
由 Chris Mason 提交于
reada_for_balance was using the wrong index into the path node array, so it wasn't reading the right blocks. We never directly used the results of the read done by this function because the btree search is started over at the end. This fixes reada_for_balance to reada in the correct node and to avoid searching past the last slot in the node. It also makes sure to hold the parent lock while we are finding the nodes to read. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
The extent_io writepage call updates the writepage index in the inode as it makes progress. But, it was doing the update after unlocking the page, which isn't legal because page->mapping can't be trusted once the page is unlocked. This lead to an oops, especially common with compression turned on. The fix here is to update the writeback index before unlocking the page. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Btrfs is using WRITE_SYNC_PLUG to send down synchronous IOs with a higher priority. But, the checksumming helper threads prevent it from being fully effective. There are two problems. First, a big queue of pending checksumming will delay the synchronous IO behind other lower priority writes. Second, the checksumming uses an ordered async work queue. The ordering makes sure that IOs are sent to the block layer in the same order they are sent to the checksumming threads. Usually this gives us less seeky IO. But, when we start mixing IO priorities, the lower priority IO can delay the higher priority IO. This patch solves both problems by adding a high priority list to the async helper threads, and a new btrfs_set_work_high_prio(), which is used to make put a new async work item onto the higher priority list. The ordering is still done on high priority IO, but all of the high priority bios are ordered separately from the low priority bios. This ordering is purely an IO optimization, it is not involved in data or metadata integrity. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Part of reducing fsync/O_SYNC/O_DIRECT latencies is using WRITE_SYNC for writes we plan on waiting on in the near future. This patch mirrors recent changes in other filesystems and the generic code to use WRITE_SYNC when WB_SYNC_ALL is passed and to use WRITE_SYNC for other latency critical writes. Btrfs uses async worker threads for checksumming before the write is done, and then again to actually submit the bios. The bio submission code just runs a per-device list of bios that need to be sent down the pipe. This list is split into low priority and high priority lists so the WRITE_SYNC IO happens first. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 03 4月, 2009 20 次提交
-
-
由 Stoyan Gaydarov 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Dan Carpenter 提交于
Remove an unneeded return statement and conditional Signed-off-by: NDan Carpenter <error27@gmail.com> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Dan Carpenter 提交于
merge is always NULL at this point. Signed-off-by: NDan Carpenter <error27@gmail.com> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Wu Fengguang 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Jim Owens 提交于
Signed-off-by: Njim owens <jowens@hp.com> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Heiko Carstens 提交于
We get this on 32 builds: fs/built-in.o: In function `extent_fiemap': (.text+0x1019f2): undefined reference to `__ucmpdi2' Happens because of a switch statement with a 64 bit argument. Convert this to an if statement to fix this. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Shen Feng 提交于
btrfs_new_inode doesn't call iput to free the inode when it fails. Signed-off-by: NShen Feng <shen@cn.fujitsu.com> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Amit Gud 提交于
Need to check kthread_should_stop after schedule_timeout() before calling schedule(). This causes threads to sleep with potentially no one to wake them up causing mount(2) to hang in btrfs_stop_workers waiting for threads to stop. Signed-off-by: NAmit Gud <gud@ksu.edu> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Sage Weil 提交于
The 'flushoncommit' mount option forces any data dirtied by a write in a prior transaction to commit as part of the current commit. This makes the committed state a fully consistent view of the file system from the application's perspective (i.e., it includes all completed file system operations). This was previously the behavior only when a snapshot is created. This is used by Ceph to ensure that completed writes make it to the platter along with the metadata operations they are bound to (by BTRFS_IOC_TRANS_{START,END}). Signed-off-by: NSage Weil <sage@newdream.net> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Sage Weil 提交于
Add a 'notreelog' mount option to disable the tree log (used by fsync, O_SYNC writes). This is much slower, but the tree logging produces inconsistent views into the FS for ceph. Signed-off-by: NSage Weil <sage@newdream.net> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Eric Paris 提交于
btrfs options can change at times other than mount, yet /proc/mounts shows the options string used when the fs was mounted (an example would be when btrfs determines that barriers aren't useful and turns them off.) This patch instead outputs the actual options in use by btrfs. Signed-off-by: NEric Paris <eparis@redhat.com> Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Because btrfs is copy-on-write, we end up picking new locations for blocks very often. This makes it fairly difficult to maintain perfect read patterns over time, but we can at least do some optimizations for writes. This is done today by remembering the last place we allocated and trying to find a free space hole big enough to hold more than just one allocation. The end result is that we tend to write sequentially to the drive. This happens all the time for metadata and it happens for data when mounted -o ssd. But, the way we record it is fairly racey and it tends to fragment the free space over time because we are trying to allocate fairly large areas at once. This commit gets rid of the races by adding a free space cluster object with dedicated locking to make sure that only one process at a time is out replacing the cluster. The free space fragmentation is somewhat solved by allowing a cluster to be comprised of smaller free space extents. This part definitely adds some CPU time to the cluster allocations, but it allows the allocator to consume the small holes left behind by cow. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
btrfs_next_leaf was using blocking locks when it could have been using faster spinning ones instead. This adds a few extra checks around the pieces that block and switches over to spinning locks. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
btrfs_search_slot was doing too many things at once. This breaks it up into more reasonable units. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Josef Bacik 提交于
This patch removes the pinned_mutex. The extent io map has an internal tree lock that protects the tree itself, and since we only copy the extent io map when we are committing the transaction we don't need it there. We also don't need it when caching the block group since searching through the tree is also protected by the internal map spin lock. Signed-off-by: NJosef Bacik <jbacik@redhat.com>
-
由 Josef Bacik 提交于
This patch removes the block group alloc mutex used to protect the free space tree for allocations and replaces it with a spin lock which is used only to protect the free space rb tree. This means we only take the lock when we are directly manipulating the tree, which makes us a touch faster with multi-threaded workloads. This patch also gets rid of btrfs_find_free_space and replaces it with btrfs_find_space_for_alloc, which takes the number of bytes you want to allocate, and empty_size, which is used to indicate how much free space should be at the end of the allocation. It will return an offset for the allocator to use. If we don't end up using it we _must_ call btrfs_add_free_space to put it back. This is the tradeoff to kill the alloc_mutex, since we need to make sure nobody else comes along and takes our space. Signed-off-by: NJosef Bacik <jbacik@redhat.com>
-
由 Josef Bacik 提交于
I've replaced the strange looping constructs with a list_for_each_entry on space_info->block_groups. If we have a hint we just jump into the loop with the block group and start looking for space. If we don't find anything we start at the beginning and start looking. We never come out of the loop with a ref on the block_group _unless_ we found space to use, then we drop it after we set the trans block_group. Signed-off-by: NJosef Bacik <jbacik@redhat.com>
-
由 Josef Bacik 提交于
This patch cleans up the free space cache code a bit. It better documents the idiosyncrasies of tree_search_offset and makes the code make a bit more sense. I took out the info allocation at the start of __btrfs_add_free_space and put it where it makes more sense. This was left over cruft from when alloc_mutex existed. Also all of the re-searches we do to make sure we inserted properly. Signed-off-by: NJosef Bacik <jbacik@redhat.com>
-
由 Chris Mason 提交于
Btrfs pages being written get set to writeback, and then may go through a number of steps before they hit the block layer. This includes compression, checksumming and async bio submission. The end result is that someone who writes a page and then does wait_on_page_writeback is likely to unplug the queue before the bio they cared about got there. We could fix this by marking bios sync, or by doing more frequent unplugs, but this commit just changes the async bio submission code to unplug after it has processed all the bios for a device. The async bio submission does a fair job of collection bios, so this shouldn't be a huge problem for reducing merging at the elevator. For streaming O_DIRECT writes on a 5 drive array, it boosts performance from 386MB/s to 460MB/s. Thanks to Hisashi Hifumi for helping with this work. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Btrfs uses async helper threads to submit write bios so the checksumming helper threads don't block on the disk. The submit bio threads may process bios for more than one block device, so when they find one device congested they try to move on to other devices instead of blocking in get_request_wait for one device. This does a pretty good job of keeping multiple devices busy, but the congested flag has a number of problems. A congested device may still give you a request, and other procs that aren't backing off the congested device may starve you out. This commit uses the io_context stored in current to decide if our process has been made a batching process by the block layer. If so, it keeps sending IO down for at least one batch. This helps make sure we do a good amount of work each time we visit a bdev, and avoids large IO stalls in multi-device workloads. It's also very ugly. A better solution is in the works with Jens Axboe. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 01 4月, 2009 5 次提交
-
-
由 Nick Piggin 提交于
page_mkwrite is called with neither the page lock nor the ptl held. This means a page can be concurrently truncated or invalidated out from underneath it. Callers are supposed to prevent truncate races themselves, however previously the only thing they can do in case they hit one is to raise a SIGBUS. A sigbus is wrong for the case that the page has been invalidated or truncated within i_size (eg. hole punched). Callers may also have to perform memory allocations in this path, where again, SIGBUS would be wrong. The previous patch ("mm: page_mkwrite change prototype to match fault") made it possible to properly specify errors. Convert the generic buffer.c code and btrfs to return sane error values (in the case of page removed from pagecache, VM_FAULT_NOPAGE will cause the fault handler to exit without doing anything, and the fault will be retried properly). This fixes core code, and converts btrfs as a template/example. All other filesystems defining their own page_mkwrite should be fixed in a similar manner. Acked-by: NChris Mason <chris.mason@oracle.com> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Nick Piggin 提交于
Change the page_mkwrite prototype to take a struct vm_fault, and return VM_FAULT_xxx flags. There should be no functional change. This makes it possible to return much more detailed error information to the VM (and also can provide more information eg. virtual_address to the driver, which might be important in some special cases). This is required for a subsequent fix. And will also make it easier to merge page_mkwrite() with fault() in future. Signed-off-by: NNick Piggin <npiggin@suse.de> Cc: Chris Mason <chris.mason@oracle.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <joel.becker@oracle.com> Cc: Artem Bityutskiy <dedekind@infradead.org> Cc: Felix Blyakher <felixb@sgi.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Al Viro 提交于
current->fs->umask is what most of fs_struct users are doing. Put that into a helper function. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Chris Mason 提交于
COW means we cycle though blocks fairly quickly, and once we free an extent on disk, it doesn't make much sense to keep the pages around. This commit tries to immediately free the page when we free the extent, which lowers our memory footprint significantly. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Renames and truncates are both common ways to replace old data with new data. The filesystem can make an effort to make sure the new data is on disk before actually replacing the old data. This is especially important for rename, which many application use as though it were atomic for both the data and the metadata involved. The current btrfs code will happily replace a file that is fully on disk with one that was just created and still has pending IO. If we crash after transaction commit but before the IO is done, we'll end up replacing a good file with a zero length file. The solution used here is to create a list of inodes that need special ordering and force them to disk before the commit is done. This is similar to the ext3 style data=ordering, except it is only done on selected files. Btrfs is able to get away with this because it does not wait on commits very often, even for fsync (which use a sub-commit). For renames, we order the file when it wasn't already on disk and when it is replacing an existing file. Larger files are sent to filemap_flush right away (before the transaction handle is opened). For truncates, we order if the file goes from non-zero size down to zero size. This is a little different, because at the time of the truncate the file has no dirty bytes to order. But, we flag the inode so that it is added to the ordered list on close (via release method). We also immediately add it to the ordered list of the current transaction so that we can try to flush down any writes the application sneaks in before commit. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 26 3月, 2009 1 次提交
-
-
由 Jens Axboe 提交于
Chris says it's safe to kill. Acked-by: NChris Mason <chris.mason@oracle.com> Signed-off-by: NJens Axboe <jens.axboe@oracle.com>
-
- 25 3月, 2009 3 次提交
-
-
由 Chris Mason 提交于
btrfs_update_delayed_ref is optimized to add and remove different references in one pass through the delayed ref tree. It is a zero sum on the total number of refs on a given extent. But, the code was recording an extra ref in the head node. This never made it down to the disk but was used when deciding if it was safe to free the extent while dropping snapshots. The fix used here is to make sure the ref_mod count is unchanged on the head ref when btrfs_update_delayed_ref is called. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
The fsync log has code to make sure all of the parents of a file are in the log along with the file. It uses a minimal log of the parent directory inodes, just enough to get the parent directory on disk. If the transaction that originally created a file is fully on disk, and the file hasn't been renamed or linked into other directories, we can safely skip the parent directory walk. We know the file is on disk somewhere and we can go ahead and just log that single file. This is more important now because unrelated unlinks in the parent directory might make us force a commit if we try to log the parent. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
The tree logging code allows individual files or directories to be logged without including operations on other files and directories in the FS. It tries to commit the minimal set of changes to disk in order to fsync the single file or directory that was sent to fsync or O_SYNC. The tree logging code was allowing files and directories to be unlinked if they were part of a rename operation where only one directory in the rename was in the fsync log. This patch adds a few new rules to the tree logging. 1) on rename or unlink, if the inode being unlinked isn't in the fsync log, we must force a full commit before doing an fsync of the directory where the unlink was done. The commit isn't done during the unlink, but it is forced the next time we try to log the parent directory. Solution: record transid of last unlink/rename per directory when the directory wasn't already logged. For renames this is only done when renaming to a different directory. mkdir foo/some_dir normal commit rename foo/some_dir foo2/some_dir mkdir foo/some_dir fsync foo/some_dir/some_file The fsync above will unlink the original some_dir without recording it in its new location (foo2). After a crash, some_dir will be gone unless the fsync of some_file forces a full commit 2) we must log any new names for any file or dir that is in the fsync log. This way we make sure not to lose files that are unlinked during the same transaction. 2a) we must log any new names for any file or dir during rename when the directory they are being removed from was logged. 2a is actually the more important variant. Without the extra logging a crash might unlink the old name without recreating the new one 3) after a crash, we must go through any directories with a link count of zero and redo the rm -rf mkdir f1/foo normal commit rm -rf f1/foo fsync(f1) The directory f1 was fully removed from the FS, but fsync was never called on f1, only its parent dir. After a crash the rm -rf must be replayed. This must be able to recurse down the entire directory tree. The inode link count fixup code takes care of the ugly details. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-