- 09 9月, 2021 1 次提交
-
-
由 Arnd Bergmann 提交于
These are all handled correctly when calling the native system call entry point, so remove the special cases. Link: https://lkml.kernel.org/r/20210727144859.4150043-6-arnd@kernel.orgSigned-off-by: NArnd Bergmann <arnd@arndb.de> Reviewed-by: NChristoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 04 9月, 2021 1 次提交
-
-
由 Suren Baghdasaryan 提交于
Split off from prev patch in the series that implements the syscall. Link: https://lkml.kernel.org/r/20210809185259.405936-2-surenb@google.comSigned-off-by: NSuren Baghdasaryan <surenb@google.com> Acked-by: NGeert Uytterhoeven <geert@linux-m68k.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Christian Brauner <christian.brauner@ubuntu.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Florian Weimer <fweimer@redhat.com> Cc: Jan Engelhardt <jengelh@inai.de> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tim Murray <timmurray@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 7月, 2021 1 次提交
-
-
由 Mike Rapoport 提交于
Wire up memfd_secret system call on architectures that define ARCH_HAS_SET_DIRECT_MAP, namely arm64, risc-v and x86. Link: https://lkml.kernel.org/r/20210518072034.31572-7-rppt@kernel.orgSigned-off-by: NMike Rapoport <rppt@linux.ibm.com> Acked-by: NPalmer Dabbelt <palmerdabbelt@google.com> Acked-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Acked-by: NDavid Hildenbrand <david@redhat.com> Acked-by: NJames Bottomley <James.Bottomley@HansenPartnership.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Christopher Lameter <cl@linux.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Bottomley <jejb@linux.ibm.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tycho Andersen <tycho@tycho.ws> Cc: Will Deacon <will@kernel.org> Cc: kernel test robot <lkp@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 6月, 2021 1 次提交
-
-
由 Marcin Juszkiewicz 提交于
In commit 5b9fedb3 ("quota: Disable quotactl_path syscall") Jan Kara disabled quotactl_path syscall on several architectures. This commit disables it on all architectures using unified list of system calls: - arm64 - arc - csky - h8300 - hexagon - nds32 - nios2 - openrisc - riscv (32/64) CC: Jan Kara <jack@suse.cz> CC: Christian Brauner <christian.brauner@ubuntu.com> CC: Sascha Hauer <s.hauer@pengutronix.de> Link: https://lore.kernel.org/lkml/20210512153621.n5u43jsytbik4yze@wittgenstein Link: https://lore.kernel.org/r/20210614153712.313707-1-marcin@juszkiewicz.com.pl Fixes: 5b9fedb3 ("quota: Disable quotactl_path syscall") Acked-by: NChristian Brauner <christian.brauner@ubuntu.com> Signed-off-by: NMarcin Juszkiewicz <marcin@juszkiewicz.com.pl> Signed-off-by: NJan Kara <jack@suse.cz>
-
- 07 6月, 2021 1 次提交
-
-
由 Jan Kara 提交于
Some users have pointed out that path-based syscalls are problematic in some environments and at least directory fd argument and possibly also resolve flags are desirable for such syscalls. Rather than reimplementing all details of pathname lookup and following where it may eventually evolve, let's go for full file descriptor based syscall similar to how ioctl(2) works since the beginning. Managing of quotas isn't performance sensitive so the extra overhead of open does not matter and we are able to consume O_PATH descriptors as well which makes open cheap anyway. Also for frequent operations (such as retrieving usage information for all users) we can reuse single fd and in fact get even better performance as well as avoiding races with possible remounts etc. Tested-by: NSascha Hauer <s.hauer@pengutronix.de> Acked-by: NChristian Brauner <christian.brauner@ubuntu.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJan Kara <jack@suse.cz>
-
- 23 4月, 2021 1 次提交
-
-
由 Mickaël Salaün 提交于
Wire up the following system calls for all architectures: * landlock_create_ruleset(2) * landlock_add_rule(2) * landlock_restrict_self(2) Cc: Arnd Bergmann <arnd@arndb.de> Cc: James Morris <jmorris@namei.org> Cc: Jann Horn <jannh@google.com> Cc: Kees Cook <keescook@chromium.org> Cc: Serge E. Hallyn <serge@hallyn.com> Signed-off-by: NMickaël Salaün <mic@linux.microsoft.com> Link: https://lore.kernel.org/r/20210422154123.13086-10-mic@digikod.netSigned-off-by: NJames Morris <jamorris@linux.microsoft.com>
-
- 17 3月, 2021 1 次提交
-
-
由 Sascha Hauer 提交于
Wire up the quotactl_path syscall added in the previous patch. Link: https://lore.kernel.org/r/20210304123541.30749-3-s.hauer@pengutronix.deSigned-off-by: NSascha Hauer <s.hauer@pengutronix.de> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJan Kara <jack@suse.cz>
-
- 24 1月, 2021 1 次提交
-
-
由 Christian Brauner 提交于
This implements the missing mount_setattr() syscall. While the new mount api allows to change the properties of a superblock there is currently no way to change the properties of a mount or a mount tree using file descriptors which the new mount api is based on. In addition the old mount api has the restriction that mount options cannot be applied recursively. This hasn't changed since changing mount options on a per-mount basis was implemented in [1] and has been a frequent request not just for convenience but also for security reasons. The legacy mount syscall is unable to accommodate this behavior without introducing a whole new set of flags because MS_REC | MS_REMOUNT | MS_BIND | MS_RDONLY | MS_NOEXEC | [...] only apply the mount option to the topmost mount. Changing MS_REC to apply to the whole mount tree would mean introducing a significant uapi change and would likely cause significant regressions. The new mount_setattr() syscall allows to recursively clear and set mount options in one shot. Multiple calls to change mount options requesting the same changes are idempotent: int mount_setattr(int dfd, const char *path, unsigned flags, struct mount_attr *uattr, size_t usize); Flags to modify path resolution behavior are specified in the @flags argument. Currently, AT_EMPTY_PATH, AT_RECURSIVE, AT_SYMLINK_NOFOLLOW, and AT_NO_AUTOMOUNT are supported. If useful, additional lookup flags to restrict path resolution as introduced with openat2() might be supported in the future. The mount_setattr() syscall can be expected to grow over time and is designed with extensibility in mind. It follows the extensible syscall pattern we have used with other syscalls such as openat2(), clone3(), sched_{set,get}attr(), and others. The set of mount options is passed in the uapi struct mount_attr which currently has the following layout: struct mount_attr { __u64 attr_set; __u64 attr_clr; __u64 propagation; __u64 userns_fd; }; The @attr_set and @attr_clr members are used to clear and set mount options. This way a user can e.g. request that a set of flags is to be raised such as turning mounts readonly by raising MOUNT_ATTR_RDONLY in @attr_set while at the same time requesting that another set of flags is to be lowered such as removing noexec from a mount tree by specifying MOUNT_ATTR_NOEXEC in @attr_clr. Note, since the MOUNT_ATTR_<atime> values are an enum starting from 0, not a bitmap, users wanting to transition to a different atime setting cannot simply specify the atime setting in @attr_set, but must also specify MOUNT_ATTR__ATIME in the @attr_clr field. So we ensure that MOUNT_ATTR__ATIME can't be partially set in @attr_clr and that @attr_set can't have any atime bits set if MOUNT_ATTR__ATIME isn't set in @attr_clr. The @propagation field lets callers specify the propagation type of a mount tree. Propagation is a single property that has four different settings and as such is not really a flag argument but an enum. Specifically, it would be unclear what setting and clearing propagation settings in combination would amount to. The legacy mount() syscall thus forbids the combination of multiple propagation settings too. The goal is to keep the semantics of mount propagation somewhat simple as they are overly complex as it is. The @userns_fd field lets user specify a user namespace whose idmapping becomes the idmapping of the mount. This is implemented and explained in detail in the next patch. [1]: commit 2e4b7fcd ("[PATCH] r/o bind mounts: honor mount writer counts at remount") Link: https://lore.kernel.org/r/20210121131959.646623-35-christian.brauner@ubuntu.com Cc: David Howells <dhowells@redhat.com> Cc: Aleksa Sarai <cyphar@cyphar.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Cc: linux-api@vger.kernel.org Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NChristian Brauner <christian.brauner@ubuntu.com>
-
- 20 12月, 2020 1 次提交
-
-
由 Willem de Bruijn 提交于
Split off from prev patch in the series that implements the syscall. Link: https://lkml.kernel.org/r/20201121144401.3727659-4-willemdebruijn.kernel@gmail.comSigned-off-by: NWillem de Bruijn <willemb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 11月, 2020 1 次提交
-
-
由 Tal Zussman 提交于
The relevant syscalls were previously moved from kernel/timer.c to kernel/sys.c, but the comments weren't updated to reflect this change. Fixing these comments messes up the alphabetical ordering of syscalls by filename. This could be fixed by merging the two groups of kernel/sys.c syscalls, but that would require reordering the syscalls and renumbering them to maintain the numerical order in unistd.h. Signed-off-by: NTal Zussman <tz2294@columbia.edu> Link: https://lore.kernel.org/r/20201112215657.GA4539@charmander' Signed-off-by: NArnd Bergmann <arnd@arndb.de>
-
- 19 10月, 2020 1 次提交
-
-
由 Minchan Kim 提交于
There is usecase that System Management Software(SMS) want to give a memory hint like MADV_[COLD|PAGEEOUT] to other processes and in the case of Android, it is the ActivityManagerService. The information required to make the reclaim decision is not known to the app. Instead, it is known to the centralized userspace daemon(ActivityManagerService), and that daemon must be able to initiate reclaim on its own without any app involvement. To solve the issue, this patch introduces a new syscall process_madvise(2). It uses pidfd of an external process to give the hint. It also supports vector address range because Android app has thousands of vmas due to zygote so it's totally waste of CPU and power if we should call the syscall one by one for each vma.(With testing 2000-vma syscall vs 1-vector syscall, it showed 15% performance improvement. I think it would be bigger in real practice because the testing ran very cache friendly environment). Another potential use case for the vector range is to amortize the cost ofTLB shootdowns for multiple ranges when using MADV_DONTNEED; this could benefit users like TCP receive zerocopy and malloc implementations. In future, we could find more usecases for other advises so let's make it happens as API since we introduce a new syscall at this moment. With that, existing madvise(2) user could replace it with process_madvise(2) with their own pid if they want to have batch address ranges support feature. ince it could affect other process's address range, only privileged process(PTRACE_MODE_ATTACH_FSCREDS) or something else(e.g., being the same UID) gives it the right to ptrace the process could use it successfully. The flag argument is reserved for future use if we need to extend the API. I think supporting all hints madvise has/will supported/support to process_madvise is rather risky. Because we are not sure all hints make sense from external process and implementation for the hint may rely on the caller being in the current context so it could be error-prone. Thus, I just limited hints as MADV_[COLD|PAGEOUT] in this patch. If someone want to add other hints, we could hear the usecase and review it for each hint. It's safer for maintenance rather than introducing a buggy syscall but hard to fix it later. So finally, the API is as follows, ssize_t process_madvise(int pidfd, const struct iovec *iovec, unsigned long vlen, int advice, unsigned int flags); DESCRIPTION The process_madvise() system call is used to give advice or directions to the kernel about the address ranges from external process as well as local process. It provides the advice to address ranges of process described by iovec and vlen. The goal of such advice is to improve system or application performance. The pidfd selects the process referred to by the PID file descriptor specified in pidfd. (See pidofd_open(2) for further information) The pointer iovec points to an array of iovec structures, defined in <sys/uio.h> as: struct iovec { void *iov_base; /* starting address */ size_t iov_len; /* number of bytes to be advised */ }; The iovec describes address ranges beginning at address(iov_base) and with size length of bytes(iov_len). The vlen represents the number of elements in iovec. The advice is indicated in the advice argument, which is one of the following at this moment if the target process specified by pidfd is external. MADV_COLD MADV_PAGEOUT Permission to provide a hint to external process is governed by a ptrace access mode PTRACE_MODE_ATTACH_FSCREDS check; see ptrace(2). The process_madvise supports every advice madvise(2) has if target process is in same thread group with calling process so user could use process_madvise(2) to extend existing madvise(2) to support vector address ranges. RETURN VALUE On success, process_madvise() returns the number of bytes advised. This return value may be less than the total number of requested bytes, if an error occurred. The caller should check return value to determine whether a partial advice occurred. FAQ: Q.1 - Why does any external entity have better knowledge? Quote from Sandeep "For Android, every application (including the special SystemServer) are forked from Zygote. The reason of course is to share as many libraries and classes between the two as possible to benefit from the preloading during boot. After applications start, (almost) all of the APIs end up calling into this SystemServer process over IPC (binder) and back to the application. In a fully running system, the SystemServer monitors every single process periodically to calculate their PSS / RSS and also decides which process is "important" to the user for interactivity. So, because of how these processes start _and_ the fact that the SystemServer is looping to monitor each process, it does tend to *know* which address range of the application is not used / useful. Besides, we can never rely on applications to clean things up themselves. We've had the "hey app1, the system is low on memory, please trim your memory usage down" notifications for a long time[1]. They rely on applications honoring the broadcasts and very few do. So, if we want to avoid the inevitable killing of the application and restarting it, some way to be able to tell the OS about unimportant memory in these applications will be useful. - ssp Q.2 - How to guarantee the race(i.e., object validation) between when giving a hint from an external process and get the hint from the target process? process_madvise operates on the target process's address space as it exists at the instant that process_madvise is called. If the space target process can run between the time the process_madvise process inspects the target process address space and the time that process_madvise is actually called, process_madvise may operate on memory regions that the calling process does not expect. It's the responsibility of the process calling process_madvise to close this race condition. For example, the calling process can suspend the target process with ptrace, SIGSTOP, or the freezer cgroup so that it doesn't have an opportunity to change its own address space before process_madvise is called. Another option is to operate on memory regions that the caller knows a priori will be unchanged in the target process. Yet another option is to accept the race for certain process_madvise calls after reasoning that mistargeting will do no harm. The suggested API itself does not provide synchronization. It also apply other APIs like move_pages, process_vm_write. The race isn't really a problem though. Why is it so wrong to require that callers do their own synchronization in some manner? Nobody objects to write(2) merely because it's possible for two processes to open the same file and clobber each other's writes --- instead, we tell people to use flock or something. Think about mmap. It never guarantees newly allocated address space is still valid when the user tries to access it because other threads could unmap the memory right before. That's where we need synchronization by using other API or design from userside. It shouldn't be part of API itself. If someone needs more fine-grained synchronization rather than process level, there were two ideas suggested - cookie[2] and anon-fd[3]. Both are applicable via using last reserved argument of the API but I don't think it's necessary right now since we have already ways to prevent the race so don't want to add additional complexity with more fine-grained optimization model. To make the API extend, it reserved an unsigned long as last argument so we could support it in future if someone really needs it. Q.3 - Why doesn't ptrace work? Injecting an madvise in the target process using ptrace would not work for us because such injected madvise would have to be executed by the target process, which means that process would have to be runnable and that creates the risk of the abovementioned race and hinting a wrong VMA. Furthermore, we want to act the hint in caller's context, not the callee's, because the callee is usually limited in cpuset/cgroups or even freezed state so they can't act by themselves quick enough, which causes more thrashing/kill. It doesn't work if the target process are ptraced(e.g., strace, debugger, minidump) because a process can have at most one ptracer. [1] https://developer.android.com/topic/performance/memory" [2] process_getinfo for getting the cookie which is updated whenever vma of process address layout are changed - Daniel Colascione - https://lore.kernel.org/lkml/20190520035254.57579-1-minchan@kernel.org/T/#m7694416fd179b2066a2c62b5b139b14e3894e224 [3] anonymous fd which is used for the object(i.e., address range) validation - Michal Hocko - https://lore.kernel.org/lkml/20200120112722.GY18451@dhcp22.suse.cz/ [minchan@kernel.org: fix process_madvise build break for arm64] Link: http://lkml.kernel.org/r/20200303145756.GA219683@google.com [minchan@kernel.org: fix build error for mips of process_madvise] Link: http://lkml.kernel.org/r/20200508052517.GA197378@google.com [akpm@linux-foundation.org: fix patch ordering issue] [akpm@linux-foundation.org: fix arm64 whoops] [minchan@kernel.org: make process_madvise() vlen arg have type size_t, per Florian] [akpm@linux-foundation.org: fix i386 build] [sfr@canb.auug.org.au: fix syscall numbering] Link: https://lkml.kernel.org/r/20200905142639.49fc3f1a@canb.auug.org.au [sfr@canb.auug.org.au: madvise.c needs compat.h] Link: https://lkml.kernel.org/r/20200908204547.285646b4@canb.auug.org.au [minchan@kernel.org: fix mips build] Link: https://lkml.kernel.org/r/20200909173655.GC2435453@google.com [yuehaibing@huawei.com: remove duplicate header which is included twice] Link: https://lkml.kernel.org/r/20200915121550.30584-1-yuehaibing@huawei.com [minchan@kernel.org: do not use helper functions for process_madvise] Link: https://lkml.kernel.org/r/20200921175539.GB387368@google.com [akpm@linux-foundation.org: pidfd_get_pid() gained an argument] [sfr@canb.auug.org.au: fix up for "iov_iter: transparently handle compat iovecs in import_iovec"] Link: https://lkml.kernel.org/r/20200928212542.468e1fef@canb.auug.org.auSigned-off-by: NMinchan Kim <minchan@kernel.org> Signed-off-by: NYueHaibing <yuehaibing@huawei.com> Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NSuren Baghdasaryan <surenb@google.com> Reviewed-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NDavid Rientjes <rientjes@google.com> Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: Brian Geffon <bgeffon@google.com> Cc: Christian Brauner <christian@brauner.io> Cc: Daniel Colascione <dancol@google.com> Cc: Jann Horn <jannh@google.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Dias <joaodias@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Sandeep Patil <sspatil@google.com> Cc: SeongJae Park <sj38.park@gmail.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Tim Murray <timmurray@google.com> Cc: Christian Brauner <christian.brauner@ubuntu.com> Cc: Florian Weimer <fw@deneb.enyo.de> Cc: <linux-man@vger.kernel.org> Link: http://lkml.kernel.org/r/20200302193630.68771-3-minchan@kernel.org Link: http://lkml.kernel.org/r/20200508183320.GA125527@google.com Link: http://lkml.kernel.org/r/20200622192900.22757-4-minchan@kernel.org Link: https://lkml.kernel.org/r/20200901000633.1920247-4-minchan@kernel.orgSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 10月, 2020 3 次提交
-
-
由 Christoph Hellwig 提交于
Now that import_iovec handles compat iovecs, the native syscalls can be used for the compat case as well. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Christoph Hellwig 提交于
Now that import_iovec handles compat iovecs, the native vmsplice syscall can be used for the compat case as well. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Christoph Hellwig 提交于
Now that import_iovec handles compat iovecs, the native readv and writev syscalls can be used for the compat case as well. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 23 9月, 2020 1 次提交
-
-
由 Christoph Hellwig 提交于
compat_sys_mount is identical to the regular sys_mount now, so remove it and use the native version everywhere. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 20 7月, 2020 1 次提交
-
-
由 Christoph Hellwig 提交于
Now that the ->compat_{get,set}sockopt proto_ops methods are gone there is no good reason left to keep the compat syscalls separate. This fixes the odd use of unsigned int for the compat_setsockopt optlen and the missing sock_use_custom_sol_socket. It would also easily allow running the eBPF hooks for the compat syscalls, but such a large change in behavior does not belong into a consolidation patch like this one. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 17 6月, 2020 1 次提交
-
-
由 Christian Brauner 提交于
This wires up the close_range() syscall into all arches at once. Suggested-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NChristian Brauner <christian.brauner@ubuntu.com> Reviewed-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NArnd Bergmann <arnd@arndb.de> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Cc: Jann Horn <jannh@google.com> Cc: David Howells <dhowells@redhat.com> Cc: Dmitry V. Levin <ldv@altlinux.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Cc: linux-api@vger.kernel.org Cc: linux-alpha@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: linux-ia64@vger.kernel.org Cc: linux-m68k@lists.linux-m68k.org Cc: linux-mips@vger.kernel.org Cc: linux-parisc@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Cc: linux-s390@vger.kernel.org Cc: linux-sh@vger.kernel.org Cc: sparclinux@vger.kernel.org Cc: linux-xtensa@linux-xtensa.org Cc: linux-arch@vger.kernel.org Cc: x86@kernel.org
-
- 14 5月, 2020 1 次提交
-
-
由 Miklos Szeredi 提交于
POSIX defines faccessat() as having a fourth "flags" argument, while the linux syscall doesn't have it. Glibc tries to emulate AT_EACCESS and AT_SYMLINK_NOFOLLOW, but AT_EACCESS emulation is broken. Add a new faccessat(2) syscall with the added flags argument and implement both flags. The value of AT_EACCESS is defined in glibc headers to be the same as AT_REMOVEDIR. Use this value for the kernel interface as well, together with the explanatory comment. Also add AT_EMPTY_PATH support, which is not documented by POSIX, but can be useful and is trivial to implement. Signed-off-by: NMiklos Szeredi <mszeredi@redhat.com>
-
- 18 1月, 2020 1 次提交
-
-
由 Aleksa Sarai 提交于
/* Background. */ For a very long time, extending openat(2) with new features has been incredibly frustrating. This stems from the fact that openat(2) is possibly the most famous counter-example to the mantra "don't silently accept garbage from userspace" -- it doesn't check whether unknown flags are present[1]. This means that (generally) the addition of new flags to openat(2) has been fraught with backwards-compatibility issues (O_TMPFILE has to be defined as __O_TMPFILE|O_DIRECTORY|[O_RDWR or O_WRONLY] to ensure old kernels gave errors, since it's insecure to silently ignore the flag[2]). All new security-related flags therefore have a tough road to being added to openat(2). Userspace also has a hard time figuring out whether a particular flag is supported on a particular kernel. While it is now possible with contemporary kernels (thanks to [3]), older kernels will expose unknown flag bits through fcntl(F_GETFL). Giving a clear -EINVAL during openat(2) time matches modern syscall designs and is far more fool-proof. In addition, the newly-added path resolution restriction LOOKUP flags (which we would like to expose to user-space) don't feel related to the pre-existing O_* flag set -- they affect all components of path lookup. We'd therefore like to add a new flag argument. Adding a new syscall allows us to finally fix the flag-ignoring problem, and we can make it extensible enough so that we will hopefully never need an openat3(2). /* Syscall Prototype. */ /* * open_how is an extensible structure (similar in interface to * clone3(2) or sched_setattr(2)). The size parameter must be set to * sizeof(struct open_how), to allow for future extensions. All future * extensions will be appended to open_how, with their zero value * acting as a no-op default. */ struct open_how { /* ... */ }; int openat2(int dfd, const char *pathname, struct open_how *how, size_t size); /* Description. */ The initial version of 'struct open_how' contains the following fields: flags Used to specify openat(2)-style flags. However, any unknown flag bits or otherwise incorrect flag combinations (like O_PATH|O_RDWR) will result in -EINVAL. In addition, this field is 64-bits wide to allow for more O_ flags than currently permitted with openat(2). mode The file mode for O_CREAT or O_TMPFILE. Must be set to zero if flags does not contain O_CREAT or O_TMPFILE. resolve Restrict path resolution (in contrast to O_* flags they affect all path components). The current set of flags are as follows (at the moment, all of the RESOLVE_ flags are implemented as just passing the corresponding LOOKUP_ flag). RESOLVE_NO_XDEV => LOOKUP_NO_XDEV RESOLVE_NO_SYMLINKS => LOOKUP_NO_SYMLINKS RESOLVE_NO_MAGICLINKS => LOOKUP_NO_MAGICLINKS RESOLVE_BENEATH => LOOKUP_BENEATH RESOLVE_IN_ROOT => LOOKUP_IN_ROOT open_how does not contain an embedded size field, because it is of little benefit (userspace can figure out the kernel open_how size at runtime fairly easily without it). It also only contains u64s (even though ->mode arguably should be a u16) to avoid having padding fields which are never used in the future. Note that as a result of the new how->flags handling, O_PATH|O_TMPFILE is no longer permitted for openat(2). As far as I can tell, this has always been a bug and appears to not be used by userspace (and I've not seen any problems on my machines by disallowing it). If it turns out this breaks something, we can special-case it and only permit it for openat(2) but not openat2(2). After input from Florian Weimer, the new open_how and flag definitions are inside a separate header from uapi/linux/fcntl.h, to avoid problems that glibc has with importing that header. /* Testing. */ In a follow-up patch there are over 200 selftests which ensure that this syscall has the correct semantics and will correctly handle several attack scenarios. In addition, I've written a userspace library[4] which provides convenient wrappers around openat2(RESOLVE_IN_ROOT) (this is necessary because no other syscalls support RESOLVE_IN_ROOT, and thus lots of care must be taken when using RESOLVE_IN_ROOT'd file descriptors with other syscalls). During the development of this patch, I've run numerous verification tests using libpathrs (showing that the API is reasonably usable by userspace). /* Future Work. */ Additional RESOLVE_ flags have been suggested during the review period. These can be easily implemented separately (such as blocking auto-mount during resolution). Furthermore, there are some other proposed changes to the openat(2) interface (the most obvious example is magic-link hardening[5]) which would be a good opportunity to add a way for userspace to restrict how O_PATH file descriptors can be re-opened. Another possible avenue of future work would be some kind of CHECK_FIELDS[6] flag which causes the kernel to indicate to userspace which openat2(2) flags and fields are supported by the current kernel (to avoid userspace having to go through several guesses to figure it out). [1]: https://lwn.net/Articles/588444/ [2]: https://lore.kernel.org/lkml/CA+55aFyyxJL1LyXZeBsf2ypriraj5ut1XkNDsunRBqgVjZU_6Q@mail.gmail.com [3]: commit 629e014b ("fs: completely ignore unknown open flags") [4]: https://sourceware.org/bugzilla/show_bug.cgi?id=17523 [5]: https://lore.kernel.org/lkml/20190930183316.10190-2-cyphar@cyphar.com/ [6]: https://youtu.be/ggD-eb3yPVsSuggested-by: NChristian Brauner <christian.brauner@ubuntu.com> Signed-off-by: NAleksa Sarai <cyphar@cyphar.com> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 14 1月, 2020 1 次提交
-
-
由 Sargun Dhillon 提交于
This wires up the pidfd_getfd syscall for all architectures. Signed-off-by: NSargun Dhillon <sargun@sargun.me> Acked-by: NChristian Brauner <christian.brauner@ubuntu.com> Reviewed-by: NArnd Bergmann <arnd@arndb.de> Link: https://lore.kernel.org/r/20200107175927.4558-4-sargun@sargun.meSigned-off-by: NChristian Brauner <christian.brauner@ubuntu.com>
-
- 07 9月, 2019 1 次提交
-
-
由 Arnd Bergmann 提交于
As Vincent noticed, the y2038 conversion of semtimedop in linux-5.1 broke when commit 00bf25d6 ("y2038: use time32 syscall names on 32-bit") changed all system calls on all architectures that take a 32-bit time_t to point to the _time32 implementation, but left out semtimedop in the asm-generic header. This affects all 32-bit architectures using asm-generic/unistd.h: h8300, unicore32, openrisc, nios2, hexagon, c6x, arc, nds32 and csky. The notable exception is riscv32, which has dropped support for the time32 system calls entirely. Reported-by: NVincent Chen <deanbo422@gmail.com> Cc: stable@vger.kernel.org Cc: Vincent Chen <deanbo422@gmail.com> Cc: Greentime Hu <green.hu@gmail.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Stafford Horne <shorne@gmail.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> Cc: Ley Foon Tan <lftan@altera.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Mark Salter <msalter@redhat.com> Cc: Aurelien Jacquiot <jacquiot.aurelien@gmail.com> Cc: Guo Ren <guoren@kernel.org> Fixes: 00bf25d6 ("y2038: use time32 syscall names on 32-bit") Signed-off-by: NArnd Bergmann <arnd@arndb.de>
-
- 15 7月, 2019 1 次提交
-
-
由 Christian Brauner 提交于
This lets us catch new architectures that implicitly make use of clone3 without setting __ARCH_WANT_SYS_CLONE3. Failing on missing __ARCH_WANT_SYS_CLONE3 is a good indicator that they either did not really want this syscall or haven't really thought about whether it needs special treatment and just accidently included it in their entrypoints by e.g. generating their syscall table automatically via asm-generic/unistd.h This patch has been compile-tested for the h8300 architecture which is one of the architectures that does not yet implement clone3 and generates its syscall table via asm-generic/unistd.h. Signed-off-by: NChristian Brauner <christian@brauner.io> Suggested-by: NArnd Bergmann <arnd@arndb.de> Link: https://lore.kernel.org/r/20190714192205.27190-3-christian@brauner.ioReviewed-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NChristian Brauner <christian@brauner.io>
-
- 28 6月, 2019 1 次提交
-
-
由 Christian Brauner 提交于
This wires up the pidfd_open() syscall into all arches at once. Signed-off-by: NChristian Brauner <christian@brauner.io> Reviewed-by: NDavid Howells <dhowells@redhat.com> Reviewed-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NArnd Bergmann <arnd@arndb.de> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Kees Cook <keescook@chromium.org> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jann Horn <jannh@google.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Aleksa Sarai <cyphar@cyphar.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-api@vger.kernel.org Cc: linux-alpha@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: linux-ia64@vger.kernel.org Cc: linux-m68k@lists.linux-m68k.org Cc: linux-mips@vger.kernel.org Cc: linux-parisc@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Cc: linux-s390@vger.kernel.org Cc: linux-sh@vger.kernel.org Cc: sparclinux@vger.kernel.org Cc: linux-xtensa@linux-xtensa.org Cc: linux-arch@vger.kernel.org Cc: x86@kernel.org
-
- 09 6月, 2019 1 次提交
-
-
由 Christian Brauner 提交于
Wire up the clone3() call on all arches that don't require hand-rolled assembly. Some of the arches look like they need special assembly massaging and it is probably smarter if the appropriate arch maintainers would do the actual wiring. Arches that are wired-up are: - x86{_32,64} - arm{64} - xtensa Signed-off-by: NChristian Brauner <christian@brauner.io> Acked-by: NArnd Bergmann <arnd@arndb.de> Cc: Kees Cook <keescook@chromium.org> Cc: David Howells <dhowells@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Adrian Reber <adrian@lisas.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: x86@kernel.org
-
- 17 5月, 2019 1 次提交
-
-
由 David Howells 提交于
Wire up the mount API syscalls on non-x86 arches. Reported-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NDavid Howells <dhowells@redhat.com> Reviewed-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 06 3月, 2019 1 次提交
-
-
由 Christian Brauner 提交于
The kill() syscall operates on process identifiers (pid). After a process has exited its pid can be reused by another process. If a caller sends a signal to a reused pid it will end up signaling the wrong process. This issue has often surfaced and there has been a push to address this problem [1]. This patch uses file descriptors (fd) from proc/<pid> as stable handles on struct pid. Even if a pid is recycled the handle will not change. The fd can be used to send signals to the process it refers to. Thus, the new syscall pidfd_send_signal() is introduced to solve this problem. Instead of pids it operates on process fds (pidfd). /* prototype and argument /* long pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags); /* syscall number 424 */ The syscall number was chosen to be 424 to align with Arnd's rework in his y2038 to minimize merge conflicts (cf. [25]). In addition to the pidfd and signal argument it takes an additional siginfo_t and flags argument. If the siginfo_t argument is NULL then pidfd_send_signal() is equivalent to kill(<positive-pid>, <signal>). If it is not NULL pidfd_send_signal() is equivalent to rt_sigqueueinfo(). The flags argument is added to allow for future extensions of this syscall. It currently needs to be passed as 0. Failing to do so will cause EINVAL. /* pidfd_send_signal() replaces multiple pid-based syscalls */ The pidfd_send_signal() syscall currently takes on the job of rt_sigqueueinfo(2) and parts of the functionality of kill(2), Namely, when a positive pid is passed to kill(2). It will however be possible to also replace tgkill(2) and rt_tgsigqueueinfo(2) if this syscall is extended. /* sending signals to threads (tid) and process groups (pgid) */ Specifically, the pidfd_send_signal() syscall does currently not operate on process groups or threads. This is left for future extensions. In order to extend the syscall to allow sending signal to threads and process groups appropriately named flags (e.g. PIDFD_TYPE_PGID, and PIDFD_TYPE_TID) should be added. This implies that the flags argument will determine what is signaled and not the file descriptor itself. Put in other words, grouping in this api is a property of the flags argument not a property of the file descriptor (cf. [13]). Clarification for this has been requested by Eric (cf. [19]). When appropriate extensions through the flags argument are added then pidfd_send_signal() can additionally replace the part of kill(2) which operates on process groups as well as the tgkill(2) and rt_tgsigqueueinfo(2) syscalls. How such an extension could be implemented has been very roughly sketched in [14], [15], and [16]. However, this should not be taken as a commitment to a particular implementation. There might be better ways to do it. Right now this is intentionally left out to keep this patchset as simple as possible (cf. [4]). /* naming */ The syscall had various names throughout iterations of this patchset: - procfd_signal() - procfd_send_signal() - taskfd_send_signal() In the last round of reviews it was pointed out that given that if the flags argument decides the scope of the signal instead of different types of fds it might make sense to either settle for "procfd_" or "pidfd_" as prefix. The community was willing to accept either (cf. [17] and [18]). Given that one developer expressed strong preference for the "pidfd_" prefix (cf. [13]) and with other developers less opinionated about the name we should settle for "pidfd_" to avoid further bikeshedding. The "_send_signal" suffix was chosen to reflect the fact that the syscall takes on the job of multiple syscalls. It is therefore intentional that the name is not reminiscent of neither kill(2) nor rt_sigqueueinfo(2). Not the fomer because it might imply that pidfd_send_signal() is a replacement for kill(2), and not the latter because it is a hassle to remember the correct spelling - especially for non-native speakers - and because it is not descriptive enough of what the syscall actually does. The name "pidfd_send_signal" makes it very clear that its job is to send signals. /* zombies */ Zombies can be signaled just as any other process. No special error will be reported since a zombie state is an unreliable state (cf. [3]). However, this can be added as an extension through the @flags argument if the need ever arises. /* cross-namespace signals */ The patch currently enforces that the signaler and signalee either are in the same pid namespace or that the signaler's pid namespace is an ancestor of the signalee's pid namespace. This is done for the sake of simplicity and because it is unclear to what values certain members of struct siginfo_t would need to be set to (cf. [5], [6]). /* compat syscalls */ It became clear that we would like to avoid adding compat syscalls (cf. [7]). The compat syscall handling is now done in kernel/signal.c itself by adding __copy_siginfo_from_user_generic() which lets us avoid compat syscalls (cf. [8]). It should be noted that the addition of __copy_siginfo_from_user_any() is caused by a bug in the original implementation of rt_sigqueueinfo(2) (cf. 12). With upcoming rework for syscall handling things might improve significantly (cf. [11]) and __copy_siginfo_from_user_any() will not gain any additional callers. /* testing */ This patch was tested on x64 and x86. /* userspace usage */ An asciinema recording for the basic functionality can be found under [9]. With this patch a process can be killed via: #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> static inline int do_pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags) { #ifdef __NR_pidfd_send_signal return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags); #else return -ENOSYS; #endif } int main(int argc, char *argv[]) { int fd, ret, saved_errno, sig; if (argc < 3) exit(EXIT_FAILURE); fd = open(argv[1], O_DIRECTORY | O_CLOEXEC); if (fd < 0) { printf("%s - Failed to open \"%s\"\n", strerror(errno), argv[1]); exit(EXIT_FAILURE); } sig = atoi(argv[2]); printf("Sending signal %d to process %s\n", sig, argv[1]); ret = do_pidfd_send_signal(fd, sig, NULL, 0); saved_errno = errno; close(fd); errno = saved_errno; if (ret < 0) { printf("%s - Failed to send signal %d to process %s\n", strerror(errno), sig, argv[1]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); } /* Q&A * Given that it seems the same questions get asked again by people who are * late to the party it makes sense to add a Q&A section to the commit * message so it's hopefully easier to avoid duplicate threads. * * For the sake of progress please consider these arguments settled unless * there is a new point that desperately needs to be addressed. Please make * sure to check the links to the threads in this commit message whether * this has not already been covered. */ Q-01: (Florian Weimer [20], Andrew Morton [21]) What happens when the target process has exited? A-01: Sending the signal will fail with ESRCH (cf. [22]). Q-02: (Andrew Morton [21]) Is the task_struct pinned by the fd? A-02: No. A reference to struct pid is kept. struct pid - as far as I understand - was created exactly for the reason to not require to pin struct task_struct (cf. [22]). Q-03: (Andrew Morton [21]) Does the entire procfs directory remain visible? Just one entry within it? A-03: The same thing that happens right now when you hold a file descriptor to /proc/<pid> open (cf. [22]). Q-04: (Andrew Morton [21]) Does the pid remain reserved? A-04: No. This patchset guarantees a stable handle not that pids are not recycled (cf. [22]). Q-05: (Andrew Morton [21]) Do attempts to signal that fd return errors? A-05: See {Q,A}-01. Q-06: (Andrew Morton [22]) Is there a cleaner way of obtaining the fd? Another syscall perhaps. A-06: Userspace can already trivially retrieve file descriptors from procfs so this is something that we will need to support anyway. Hence, there's no immediate need to add another syscalls just to make pidfd_send_signal() not dependent on the presence of procfs. However, adding a syscalls to get such file descriptors is planned for a future patchset (cf. [22]). Q-07: (Andrew Morton [21] and others) This fd-for-a-process sounds like a handy thing and people may well think up other uses for it in the future, probably unrelated to signals. Are the code and the interface designed to permit such future applications? A-07: Yes (cf. [22]). Q-08: (Andrew Morton [21] and others) Now I think about it, why a new syscall? This thing is looking rather like an ioctl? A-08: This has been extensively discussed. It was agreed that a syscall is preferred for a variety or reasons. Here are just a few taken from prior threads. Syscalls are safer than ioctl()s especially when signaling to fds. Processes are a core kernel concept so a syscall seems more appropriate. The layout of the syscall with its four arguments would require the addition of a custom struct for the ioctl() thereby causing at least the same amount or even more complexity for userspace than a simple syscall. The new syscall will replace multiple other pid-based syscalls (see description above). The file-descriptors-for-processes concept introduced with this syscall will be extended with other syscalls in the future. See also [22], [23] and various other threads already linked in here. Q-09: (Florian Weimer [24]) What happens if you use the new interface with an O_PATH descriptor? A-09: pidfds opened as O_PATH fds cannot be used to send signals to a process (cf. [2]). Signaling processes through pidfds is the equivalent of writing to a file. Thus, this is not an operation that operates "purely at the file descriptor level" as required by the open(2) manpage. See also [4]. /* References */ [1]: https://lore.kernel.org/lkml/20181029221037.87724-1-dancol@google.com/ [2]: https://lore.kernel.org/lkml/874lbtjvtd.fsf@oldenburg2.str.redhat.com/ [3]: https://lore.kernel.org/lkml/20181204132604.aspfupwjgjx6fhva@brauner.io/ [4]: https://lore.kernel.org/lkml/20181203180224.fkvw4kajtbvru2ku@brauner.io/ [5]: https://lore.kernel.org/lkml/20181121213946.GA10795@mail.hallyn.com/ [6]: https://lore.kernel.org/lkml/20181120103111.etlqp7zop34v6nv4@brauner.io/ [7]: https://lore.kernel.org/lkml/36323361-90BD-41AF-AB5B-EE0D7BA02C21@amacapital.net/ [8]: https://lore.kernel.org/lkml/87tvjxp8pc.fsf@xmission.com/ [9]: https://asciinema.org/a/IQjuCHew6bnq1cr78yuMv16cy [11]: https://lore.kernel.org/lkml/F53D6D38-3521-4C20-9034-5AF447DF62FF@amacapital.net/ [12]: https://lore.kernel.org/lkml/87zhtjn8ck.fsf@xmission.com/ [13]: https://lore.kernel.org/lkml/871s6u9z6u.fsf@xmission.com/ [14]: https://lore.kernel.org/lkml/20181206231742.xxi4ghn24z4h2qki@brauner.io/ [15]: https://lore.kernel.org/lkml/20181207003124.GA11160@mail.hallyn.com/ [16]: https://lore.kernel.org/lkml/20181207015423.4miorx43l3qhppfz@brauner.io/ [17]: https://lore.kernel.org/lkml/CAGXu5jL8PciZAXvOvCeCU3wKUEB_dU-O3q0tDw4uB_ojMvDEew@mail.gmail.com/ [18]: https://lore.kernel.org/lkml/20181206222746.GB9224@mail.hallyn.com/ [19]: https://lore.kernel.org/lkml/20181208054059.19813-1-christian@brauner.io/ [20]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [21]: https://lore.kernel.org/lkml/20181228152012.dbf0508c2508138efc5f2bbe@linux-foundation.org/ [22]: https://lore.kernel.org/lkml/20181228233725.722tdfgijxcssg76@brauner.io/ [23]: https://lwn.net/Articles/773459/ [24]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [25]: https://lore.kernel.org/lkml/CAK8P3a0ej9NcJM8wXNPbcGUyOUZYX+VLoDFdbenW3s3114oQZw@mail.gmail.com/ Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Jann Horn <jannh@google.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Signed-off-by: NChristian Brauner <christian@brauner.io> Reviewed-by: NTycho Andersen <tycho@tycho.ws> Reviewed-by: NKees Cook <keescook@chromium.org> Reviewed-by: NDavid Howells <dhowells@redhat.com> Acked-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NSerge Hallyn <serge@hallyn.com> Acked-by: NAleksa Sarai <cyphar@cyphar.com>
-
- 28 2月, 2019 2 次提交
-
-
由 Jens Axboe 提交于
If we have fixed user buffers, we can map them into the kernel when we setup the io_uring. That avoids the need to do get_user_pages() for each and every IO. To utilize this feature, the application must call io_uring_register() after having setup an io_uring instance, passing in IORING_REGISTER_BUFFERS as the opcode. The argument must be a pointer to an iovec array, and the nr_args should contain how many iovecs the application wishes to map. If successful, these buffers are now mapped into the kernel, eligible for IO. To use these fixed buffers, the application must use the IORING_OP_READ_FIXED and IORING_OP_WRITE_FIXED opcodes, and then set sqe->index to the desired buffer index. sqe->addr..sqe->addr+seq->len must point to somewhere inside the indexed buffer. The application may register buffers throughout the lifetime of the io_uring instance. It can call io_uring_register() with IORING_UNREGISTER_BUFFERS as the opcode to unregister the current set of buffers, and then register a new set. The application need not unregister buffers explicitly before shutting down the io_uring instance. It's perfectly valid to setup a larger buffer, and then sometimes only use parts of it for an IO. As long as the range is within the originally mapped region, it will work just fine. For now, buffers must not be file backed. If file backed buffers are passed in, the registration will fail with -1/EOPNOTSUPP. This restriction may be relaxed in the future. RLIMIT_MEMLOCK is used to check how much memory we can pin. A somewhat arbitrary 1G per buffer size is also imposed. Reviewed-by: NHannes Reinecke <hare@suse.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Jens Axboe 提交于
The submission queue (SQ) and completion queue (CQ) rings are shared between the application and the kernel. This eliminates the need to copy data back and forth to submit and complete IO. IO submissions use the io_uring_sqe data structure, and completions are generated in the form of io_uring_cqe data structures. The SQ ring is an index into the io_uring_sqe array, which makes it possible to submit a batch of IOs without them being contiguous in the ring. The CQ ring is always contiguous, as completion events are inherently unordered, and hence any io_uring_cqe entry can point back to an arbitrary submission. Two new system calls are added for this: io_uring_setup(entries, params) Sets up an io_uring instance for doing async IO. On success, returns a file descriptor that the application can mmap to gain access to the SQ ring, CQ ring, and io_uring_sqes. io_uring_enter(fd, to_submit, min_complete, flags, sigset, sigsetsize) Initiates IO against the rings mapped to this fd, or waits for them to complete, or both. The behavior is controlled by the parameters passed in. If 'to_submit' is non-zero, then we'll try and submit new IO. If IORING_ENTER_GETEVENTS is set, the kernel will wait for 'min_complete' events, if they aren't already available. It's valid to set IORING_ENTER_GETEVENTS and 'min_complete' == 0 at the same time, this allows the kernel to return already completed events without waiting for them. This is useful only for polling, as for IRQ driven IO, the application can just check the CQ ring without entering the kernel. With this setup, it's possible to do async IO with a single system call. Future developments will enable polled IO with this interface, and polled submission as well. The latter will enable an application to do IO without doing ANY system calls at all. For IRQ driven IO, an application only needs to enter the kernel for completions if it wants to wait for them to occur. Each io_uring is backed by a workqueue, to support buffered async IO as well. We will only punt to an async context if the command would need to wait for IO on the device side. Any data that can be accessed directly in the page cache is done inline. This avoids the slowness issue of usual threadpools, since cached data is accessed as quickly as a sync interface. Sample application: http://git.kernel.dk/cgit/fio/plain/t/io_uring.cReviewed-by: NHannes Reinecke <hare@suse.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 20 2月, 2019 1 次提交
-
-
由 Arnd Bergmann 提交于
We don't want new architectures to even provide the old 32-bit time_t based system calls any more, or define the syscall number macros. Add a new __ARCH_WANT_TIME32_SYSCALLS macro that gets enabled for all existing 32-bit architectures using the generic system call table, so we don't change any current behavior. Since this symbol is evaluated in user space as well, we cannot use a Kconfig CONFIG_* macro but have to define it in uapi/asm/unistd.h. On 64-bit architectures, the same system call numbers mostly refer to the system calls we want to keep, as they already pass 64-bit time_t. As new architectures no longer provide these, we need new exceptions in checksyscalls.sh. Signed-off-by: NArnd Bergmann <arnd@arndb.de>
-
- 19 2月, 2019 1 次提交
-
-
由 Yury Norov 提交于
The newer prlimit64 syscall provides all the functionality of getrlimit and setrlimit syscalls and adds the pid of target process, so future architectures won't need to include getrlimit and setrlimit. Therefore drop getrlimit and setrlimit syscalls from the generic syscall list unless __ARCH_WANT_SET_GET_RLIMIT is defined by the architecture's unistd.h prior to including asm-generic/unistd.h, and adjust all architectures using the generic syscall list to define it so that no in-tree architectures are affected. Cc: Arnd Bergmann <arnd@arndb.de> Cc: linux-arch@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: linux-hexagon@vger.kernel.org Cc: uclinux-h8-devel@lists.sourceforge.jp Signed-off-by: NYury Norov <ynorov@caviumnetworks.com> Acked-by: NArnd Bergmann <arnd@arndb.de> Acked-by: Mark Salter <msalter@redhat.com> [c6x] Acked-by: James Hogan <james.hogan@imgtec.com> [metag] Acked-by: Ley Foon Tan <lftan@altera.com> [nios2] Acked-by: Stafford Horne <shorne@gmail.com> [openrisc] Acked-by: Will Deacon <will.deacon@arm.com> [arm64] Acked-by: Vineet Gupta <vgupta@synopsys.com> #arch/arc bits Signed-off-by: NYury Norov <ynorov@marvell.com> Signed-off-by: NArnd Bergmann <arnd@arndb.de>
-
- 18 2月, 2019 1 次提交
-
-
由 Yury Norov 提交于
The only difference between native and compat openat and open_by_handle_at is that non-compat version forces O_LARGEFILE, and it should be the default behaviour for all architectures, as we are going to drop the support of 32-bit userspace off_t. Signed-off-by: NYury Norov <ynorov@caviumnetworks.com> Signed-off-by: NYury Norov <ynorov@marvell.com> Signed-off-by: NArnd Bergmann <arnd@arndb.de>
-
- 07 2月, 2019 3 次提交
-
-
由 Arnd Bergmann 提交于
This adds 21 new system calls on each ABI that has 32-bit time_t today. All of these have the exact same semantics as their existing counterparts, and the new ones all have macro names that end in 'time64' for clarification. This gets us to the point of being able to safely use a C library that has 64-bit time_t in user space. There are still a couple of loose ends to tie up in various areas of the code, but this is the big one, and should be entirely uncontroversial at this point. In particular, there are four system calls (getitimer, setitimer, waitid, and getrusage) that don't have a 64-bit counterpart yet, but these can all be safely implemented in the C library by wrapping around the existing system calls because the 32-bit time_t they pass only counts elapsed time, not time since the epoch. They will be dealt with later. Signed-off-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Acked-by: NGeert Uytterhoeven <geert@linux-m68k.org> Acked-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Arnd Bergmann 提交于
This is the big flip, where all 32-bit architectures set COMPAT_32BIT_TIME and use the _time32 system calls from the former compat layer instead of the system calls that take __kernel_timespec and similar arguments. The temporary redirects for __kernel_timespec, __kernel_itimerspec and __kernel_timex can get removed with this. It would be easy to split this commit by architecture, but with the new generated system call tables, it's easy enough to do it all at once, which makes it a little easier to check that the changes are the same in each table. Acked-by: NGeert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: NArnd Bergmann <arnd@arndb.de>
-
由 Arnd Bergmann 提交于
A lot of system calls that pass a time_t somewhere have an implementation using a COMPAT_SYSCALL_DEFINEx() on 64-bit architectures, and have been reworked so that this implementation can now be used on 32-bit architectures as well. The missing step is to redefine them using the regular SYSCALL_DEFINEx() to get them out of the compat namespace and make it possible to build them on 32-bit architectures. Any system call that ends in 'time' gets a '32' suffix on its name for that version, while the others get a '_time32' suffix, to distinguish them from the normal version, which takes a 64-bit time argument in the future. In this step, only 64-bit architectures are changed, doing this rename first lets us avoid touching the 32-bit architectures twice. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NArnd Bergmann <arnd@arndb.de>
-
- 26 1月, 2019 1 次提交
-
-
由 Arnd Bergmann 提交于
The IPC system call handling is highly inconsistent across architectures, some use sys_ipc, some use separate calls, and some use both. We also have some architectures that require passing IPC_64 in the flags, and others that set it implicitly. For the addition of a y2038 safe semtimedop() system call, I chose to only support the separate entry points, but that requires first supporting the regular ones with their own syscall numbers. The IPC_64 is now implied by the new semctl/shmctl/msgctl system calls even on the architectures that require passing it with the ipc() multiplexer. I'm not adding the new semtimedop() or semop() on 32-bit architectures, those will get implemented using the new semtimedop_time64() version that gets added along with the other time64 calls. Three 64-bit architectures (powerpc, s390 and sparc) get semtimedop(). Signed-off-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NGeert Uytterhoeven <geert@linux-m68k.org> Acked-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
- 06 12月, 2018 2 次提交
-
-
由 Guo Ren 提交于
The broken macros make the glibc compile error. If there is no __NR3264_fstat*, we should also removed related definitions. Reported-by: NMarcin Juszkiewicz <marcin.juszkiewicz@linaro.org> Fixes: bf4b6a7d ("y2038: Remove stat64 family from default syscall set") [arnd: Both Marcin and Guo provided this patch to fix up my clearly broken commit, I applied the version with the better changelog.] Signed-off-by: NGuo Ren <ren_guo@c-sky.com> Signed-off-by: NMao Han <han_mao@c-sky.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: NArnd Bergmann <arnd@arndb.de>
-
由 AKASHI Takahiro 提交于
The initial user of this system call number is arm64. Signed-off-by: NAKASHI Takahiro <takahiro.akashi@linaro.org> Acked-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 29 8月, 2018 1 次提交
-
-
由 Arnd Bergmann 提交于
New architectures should no longer need stat64, which is not y2038 safe and has been replaced by statx(). This removes the 'select __ARCH_WANT_STAT64' statement from asm-generic/unistd.h and instead moves it into the respective asm/unistd.h UAPI header files for each architecture that uses it today. In the generic file, the system call number and entry points are now made conditional, so newly added architectures (e.g. riscv32 or csky) will never need to carry backwards compatiblity for it. arm64 is the only 64-bit architecture using the asm-generic/unistd.h file, and it already sets __ARCH_WANT_NEW_STAT in its headers, and I use the same #ifdef here: future 64-bit architectures therefore won't see newstat or stat64 any more. They don't suffer from the y2038 time_t overflow, but for consistency it seems best to also let them use statx(). Signed-off-by: NArnd Bergmann <arnd@arndb.de>
-
- 11 7月, 2018 1 次提交
-
-
由 Will Deacon 提交于
The new rseq call arrived in 4.18-rc1, so provide it in the asm-generic unistd.h for architectures such as arm64. Acked-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 03 5月, 2018 1 次提交
-
-
由 Christoph Hellwig 提交于
This is the io_getevents equivalent of ppoll/pselect and allows to properly mix signals and aio completions (especially with IOCB_CMD_POLL) and atomically executes the following sequence: sigset_t origmask; pthread_sigmask(SIG_SETMASK, &sigmask, &origmask); ret = io_getevents(ctx, min_nr, nr, events, timeout); pthread_sigmask(SIG_SETMASK, &origmask, NULL); Note that unlike many other signal related calls we do not pass a sigmask size, as that would get us to 7 arguments, which aren't easily supported by the syscall infrastructure. It seems a lot less painful to just add a new syscall variant in the unlikely case we're going to increase the sigset size. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com>
-