- 23 10月, 2021 1 次提交
-
-
由 Jens Axboe 提交于
If CONFIG_BLOCK isn't set, then it's an empty struct anyway. Just make it generally available, so we don't break the compile: kernel/sched/core.c: In function ‘sched_submit_work’: kernel/sched/core.c:6346:35: error: ‘struct task_struct’ has no member named ‘plug’ 6346 | blk_flush_plug(tsk->plug, true); | ^~ kernel/sched/core.c: In function ‘io_schedule_prepare’: kernel/sched/core.c:8357:20: error: ‘struct task_struct’ has no member named ‘plug’ 8357 | if (current->plug) | ^~ kernel/sched/core.c:8358:39: error: ‘struct task_struct’ has no member named ‘plug’ 8358 | blk_flush_plug(current->plug, true); | ^~ Reported-by: NNathan Chancellor <nathan@kernel.org> Fixes: 008f75a2 ("block: cleanup the flush plug helpers") Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 01 10月, 2021 1 次提交
-
-
由 Peter Zijlstra 提交于
vmlinux.o: warning: objtool: check_preemption_disabled()+0x81: call to is_percpu_thread() leaves .noinstr.text section Reported-by: NStephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210928084218.063371959@infradead.org
-
- 14 9月, 2021 1 次提交
-
-
由 Tony Luck 提交于
There are two cases for machine check recovery: 1) The machine check was triggered by ring3 (application) code. This is the simpler case. The machine check handler simply queues work to be executed on return to user. That code unmaps the page from all users and arranges to send a SIGBUS to the task that triggered the poison. 2) The machine check was triggered in kernel code that is covered by an exception table entry. In this case the machine check handler still queues a work entry to unmap the page, etc. but this will not be called right away because the #MC handler returns to the fix up code address in the exception table entry. Problems occur if the kernel triggers another machine check before the return to user processes the first queued work item. Specifically, the work is queued using the ->mce_kill_me callback structure in the task struct for the current thread. Attempting to queue a second work item using this same callback results in a loop in the linked list of work functions to call. So when the kernel does return to user, it enters an infinite loop processing the same entry for ever. There are some legitimate scenarios where the kernel may take a second machine check before returning to the user. 1) Some code (e.g. futex) first tries a get_user() with page faults disabled. If this fails, the code retries with page faults enabled expecting that this will resolve the page fault. 2) Copy from user code retries a copy in byte-at-time mode to check whether any additional bytes can be copied. On the other side of the fence are some bad drivers that do not check the return value from individual get_user() calls and may access multiple user addresses without noticing that some/all calls have failed. Fix by adding a counter (current->mce_count) to keep track of repeated machine checks before task_work() is called. First machine check saves the address information and calls task_work_add(). Subsequent machine checks before that task_work call back is executed check that the address is in the same page as the first machine check (since the callback will offline exactly one page). Expected worst case is four machine checks before moving on (e.g. one user access with page faults disabled, then a repeat to the same address with page faults enabled ... repeat in copy tail bytes). Just in case there is some code that loops forever enforce a limit of 10. [ bp: Massage commit message, drop noinstr, fix typo, extend panic messages. ] Fixes: 5567d11c ("x86/mce: Send #MC singal from task work") Signed-off-by: NTony Luck <tony.luck@intel.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/YT/IJ9ziLqmtqEPu@agluck-desk2.amr.corp.intel.com
-
- 28 8月, 2021 1 次提交
-
-
由 Thomas Gleixner 提交于
The recursion protection for eventfd_signal() is based on a per CPU variable and relies on the !RT semantics of spin_lock_irqsave() for protecting this per CPU variable. On RT kernels spin_lock_irqsave() neither disables preemption nor interrupts which allows the spin lock held section to be preempted. If the preempting task invokes eventfd_signal() as well, then the recursion warning triggers. Paolo suggested to protect the per CPU variable with a local lock, but that's heavyweight and actually not necessary. The goal of this protection is to prevent the task stack from overflowing, which can be achieved with a per task recursion protection as well. Replace the per CPU variable with a per task bit similar to other recursion protection bits like task_struct::in_page_owner. This works on both !RT and RT kernels and removes as a side effect the extra per CPU storage. No functional change for !RT kernels. Reported-by: NDaniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NDaniel Bristot de Oliveira <bristot@redhat.com> Acked-by: NJason Wang <jasowang@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Link: https://lore.kernel.org/r/87wnp9idso.ffs@tglx
-
- 20 8月, 2021 3 次提交
-
-
由 Will Deacon 提交于
In preparation for restricting the affinity of a task during execve() on arm64, introduce a new dl_task_check_affinity() helper function to give an indication as to whether the restricted mask is admissible for a deadline task. Signed-off-by: NWill Deacon <will@kernel.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NDaniel Bristot de Oliveira <bristot@redhat.com> Link: https://lore.kernel.org/r/20210730112443.23245-10-will@kernel.org
-
由 Will Deacon 提交于
Asymmetric systems may not offer the same level of userspace ISA support across all CPUs, meaning that some applications cannot be executed by some CPUs. As a concrete example, upcoming arm64 big.LITTLE designs do not feature support for 32-bit applications on both clusters. Although userspace can carefully manage the affinity masks for such tasks, one place where it is particularly problematic is execve() because the CPU on which the execve() is occurring may be incompatible with the new application image. In such a situation, it is desirable to restrict the affinity mask of the task and ensure that the new image is entered on a compatible CPU. From userspace's point of view, this looks the same as if the incompatible CPUs have been hotplugged off in the task's affinity mask. Similarly, if a subsequent execve() reverts to a compatible image, then the old affinity is restored if it is still valid. In preparation for restricting the affinity mask for compat tasks on arm64 systems without uniform support for 32-bit applications, introduce {force,relax}_compatible_cpus_allowed_ptr(), which respectively restrict and restore the affinity mask for a task based on the compatible CPUs. Signed-off-by: NWill Deacon <will@kernel.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NValentin Schneider <valentin.schneider@arm.com> Reviewed-by: NQuentin Perret <qperret@google.com> Link: https://lore.kernel.org/r/20210730112443.23245-9-will@kernel.org
-
由 Will Deacon 提交于
In preparation for saving and restoring the user-requested CPU affinity mask of a task, add a new cpumask_t pointer to 'struct task_struct'. If the pointer is non-NULL, then the mask is copied across fork() and freed on task exit. Signed-off-by: NWill Deacon <will@kernel.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NValentin Schneider <Valentin.Schneider@arm.com> Link: https://lore.kernel.org/r/20210730112443.23245-7-will@kernel.org
-
- 17 8月, 2021 4 次提交
-
-
由 Thomas Gleixner 提交于
RT enabled kernels substitute spin/rwlocks with 'sleeping' variants based on rtmutexes. Blocking on such a lock is similar to preemption versus: - I/O scheduling and worker handling, because these functions might block on another substituted lock, or come from a lock contention within these functions. - RCU considers this like a preemption, because the task might be in a read side critical section. Add a separate scheduling point for this, and hand a new scheduling mode argument to __schedule() which allows, along with separate mode masks, to handle this gracefully from within the scheduler, without proliferating that to other subsystems like RCU. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NIngo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20210815211302.372319055@linutronix.de
-
由 Thomas Gleixner 提交于
Waiting for spinlocks and rwlocks on non RT enabled kernels is task::state preserving. Any wakeup which matches the state is valid. RT enabled kernels substitutes them with 'sleeping' spinlocks. This creates an issue vs. task::__state. In order to block on the lock, the task has to overwrite task::__state and a consecutive wakeup issued by the unlocker sets the state back to TASK_RUNNING. As a consequence the task loses the state which was set before the lock acquire and also any regular wakeup targeted at the task while it is blocked on the lock. To handle this gracefully, add a 'saved_state' member to task_struct which is used in the following way: 1) When a task blocks on a 'sleeping' spinlock, the current state is saved in task::saved_state before it is set to TASK_RTLOCK_WAIT. 2) When the task unblocks and after acquiring the lock, it restores the saved state. 3) When a regular wakeup happens for a task while it is blocked then the state change of that wakeup is redirected to operate on task::saved_state. This is also required when the task state is running because the task might have been woken up from the lock wait and has not yet restored the saved state. To make it complete, provide the necessary helpers to save and restore the saved state along with the necessary documentation how the RT lock blocking is supposed to work. For non-RT kernels there is no functional change. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NIngo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20210815211302.258751046@linutronix.de
-
由 Thomas Gleixner 提交于
In order to avoid more duplicate implementations for the debug and non-debug variants of the state change macros, split the debug portion out and make that conditional on CONFIG_DEBUG_ATOMIC_SLEEP=y. Suggested-by: NWaiman Long <longman@redhat.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NIngo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20210815211302.200898048@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Thomas Gleixner 提交于
RT kernels have an extra quirk for try_to_wake_up() to handle task state preservation across periods of blocking on a 'sleeping' spin/rwlock. For this to function correctly and under all circumstances try_to_wake_up() must be able to identify whether the wakeup is lock related or not and whether the task is waiting for a lock or not. The original approach was to use a special wake_flag argument for try_to_wake_up() and just use TASK_UNINTERRUPTIBLE for the tasks wait state and the try_to_wake_up() state argument. This works in principle, but due to the fact that try_to_wake_up() cannot determine whether the task is waiting for an RT lock wakeup or for a regular wakeup it's suboptimal. RT kernels save the original task state when blocking on an RT lock and restore it when the lock has been acquired. Any non lock related wakeup is checked against the saved state and if it matches the saved state is set to running so that the wakeup is not lost when the state is restored. While the necessary logic for the wake_flag based solution is trivial, the downside is that any regular wakeup with TASK_UNINTERRUPTIBLE in the state argument set will wake the task despite the fact that it is still blocked on the lock. That's not a fatal problem as the lock wait has do deal with spurious wakeups anyway, but it introduces unnecessary latencies. Introduce the TASK_RTLOCK_WAIT state bit which will be set when a task blocks on an RT lock. The lock wakeup will use wake_up_state(TASK_RTLOCK_WAIT), so both the waiting state and the wakeup state are distinguishable, which avoids spurious wakeups and allows better analysis. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NIngo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20210815211302.144989915@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 28 7月, 2021 1 次提交
-
-
由 Balbir Singh 提交于
The upcoming paranoid L1D flush infrastructure allows to conditionally (opt-in) flush L1D in switch_mm() as a defense against potential new side channels or for paranoia reasons. As the flush makes only sense when a task runs on a non-SMT enabled core, because SMT siblings share L1, the switch_mm() logic will kill a task which is flagged for L1D flush when it is running on a SMT thread. Add a taskwork callback so switch_mm() can queue a SIG_KILL command which is invoked when the task tries to return to user space. Signed-off-by: NBalbir Singh <sblbir@amazon.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210108121056.21940-1-sblbir@amazon.com
-
- 17 7月, 2021 1 次提交
-
-
由 Andrii Nakryiko 提交于
b910eaaa ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper") fixed the problem with cgroup-local storage use in BPF by pre-allocating per-CPU array of 8 cgroup storage pointers to accommodate possible BPF program preemptions and nested executions. While this seems to work good in practice, it introduces new and unnecessary failure mode in which not all BPF programs might be executed if we fail to find an unused slot for cgroup storage, however unlikely it is. It might also not be so unlikely when/if we allow sleepable cgroup BPF programs in the future. Further, the way that cgroup storage is implemented as ambiently-available property during entire BPF program execution is a convenient way to pass extra information to BPF program and helpers without requiring user code to pass around extra arguments explicitly. So it would be good to have a generic solution that can allow implementing this without arbitrary restrictions. Ideally, such solution would work for both preemptable and sleepable BPF programs in exactly the same way. This patch introduces such solution, bpf_run_ctx. It adds one pointer field (bpf_ctx) to task_struct. This field is maintained by BPF_PROG_RUN family of macros in such a way that it always stays valid throughout BPF program execution. BPF program preemption is handled by remembering previous current->bpf_ctx value locally while executing nested BPF program and restoring old value after nested BPF program finishes. This is handled by two helper functions, bpf_set_run_ctx() and bpf_reset_run_ctx(), which are supposed to be used before and after BPF program runs, respectively. Restoring old value of the pointer handles preemption, while bpf_run_ctx pointer being a property of current task_struct naturally solves this problem for sleepable BPF programs by "following" BPF program execution as it is scheduled in and out of CPU. It would even allow CPU migration of BPF programs, even though it's not currently allowed by BPF infra. This patch cleans up cgroup local storage handling as a first application. The design itself is generic, though, with bpf_run_ctx being an empty struct that is supposed to be embedded into a specific struct for a given BPF program type (bpf_cg_run_ctx in this case). Follow up patches are planned that will expand this mechanism for other uses within tracing BPF programs. To verify that this change doesn't revert the fix to the original cgroup storage issue, I ran the same repro as in the original report ([0]) and didn't get any problems. Replacing bpf_reset_run_ctx(old_run_ctx) with bpf_reset_run_ctx(NULL) triggers the issue pretty quickly (so repro does work). [0] https://lore.kernel.org/bpf/YEEvBUiJl2pJkxTd@krava/ Fixes: b910eaaa ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper") Signed-off-by: NAndrii Nakryiko <andrii@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NYonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210712230615.3525979-1-andrii@kernel.org
-
- 28 6月, 2021 1 次提交
-
-
由 Linus Torvalds 提交于
This reverts commits 4bad58eb (and 399f8dd9, which tried to fix it). I do not believe these are correct, and I'm about to release 5.13, so am reverting them out of an abundance of caution. The locking is odd, and appears broken. On the allocation side (in __sigqueue_alloc()), the locking is somewhat straightforward: it depends on sighand->siglock. Since one caller doesn't hold that lock, it further then tests 'sigqueue_flags' to avoid the case with no locks held. On the freeing side (in sigqueue_cache_or_free()), there is no locking at all, and the logic instead depends on 'current' being a single thread, and not able to race with itself. To make things more exciting, there's also the data race between freeing a signal and allocating one, which is handled by using WRITE_ONCE() and READ_ONCE(), and being mutually exclusive wrt the initial state (ie freeing will only free if the old state was NULL, while allocating will obviously only use the value if it was non-NULL, so only one or the other will actually act on the value). However, while the free->alloc paths do seem mutually exclusive thanks to just the data value dependency, it's not clear what the memory ordering constraints are on it. Could writes from the previous allocation possibly be delayed and seen by the new allocation later, causing logical inconsistencies? So it's all very exciting and unusual. And in particular, it seems that the freeing side is incorrect in depending on "current" being single-threaded. Yes, 'current' is a single thread, but in the presense of asynchronous events even a single thread can have data races. And such asynchronous events can and do happen, with interrupts causing signals to be flushed and thus free'd (for example - sending a SIGCONT/SIGSTOP can happen from interrupt context, and can flush previously queued process control signals). So regardless of all the other questions about the memory ordering and locking for this new cached allocation, the sigqueue_cache_or_free() assumptions seem to be fundamentally incorrect. It may be that people will show me the errors of my ways, and tell me why this is all safe after all. We can reinstate it if so. But my current belief is that the WRITE_ONCE() that sets the cached entry needs to be a smp_store_release(), and the READ_ONCE() that finds a cached entry needs to be a smp_load_acquire() to handle memory ordering correctly. And the sequence in sigqueue_cache_or_free() would need to either use a lock or at least be interrupt-safe some way (perhaps by using something like the percpu 'cmpxchg': it doesn't need to be SMP-safe, but like the percpu operations it needs to be interrupt-safe). Fixes: 399f8dd9 ("signal: Prevent sigqueue caching after task got released") Fixes: 4bad58eb ("signal: Allow tasks to cache one sigqueue struct") Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 18 6月, 2021 3 次提交
-
-
由 Peter Zijlstra 提交于
Change the type and name of task_struct::state. Drop the volatile and shrink it to an 'unsigned int'. Rename it in order to find all uses such that we can use READ_ONCE/WRITE_ONCE as appropriate. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NDaniel Bristot de Oliveira <bristot@redhat.com> Acked-by: NWill Deacon <will@kernel.org> Acked-by: NDaniel Thompson <daniel.thompson@linaro.org> Link: https://lore.kernel.org/r/20210611082838.550736351@infradead.org
-
由 Peter Zijlstra 提交于
Remove yet another few p->state accesses. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NWill Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20210611082838.347475156@infradead.org
-
由 Peter Zijlstra 提交于
Replace a bunch of 'p->state == TASK_RUNNING' with a new helper: task_is_running(p). Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NDavidlohr Bueso <dave@stgolabs.net> Acked-by: NGeert Uytterhoeven <geert@linux-m68k.org> Acked-by: NWill Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20210611082838.222401495@infradead.org
-
- 03 6月, 2021 1 次提交
-
-
由 Dietmar Eggemann 提交于
The util_est internal UTIL_AVG_UNCHANGED flag which is used to prevent unnecessary util_est updates uses the LSB of util_est.enqueued. It is exposed via _task_util_est() (and task_util_est()). Commit 92a801e5 ("sched/fair: Mask UTIL_AVG_UNCHANGED usages") mentions that the LSB is lost for util_est resolution but find_energy_efficient_cpu() checks if task_util_est() returns 0 to return prev_cpu early. _task_util_est() returns the max value of util_est.ewma and util_est.enqueued or'ed w/ UTIL_AVG_UNCHANGED. So task_util_est() returning the max of task_util() and _task_util_est() will never return 0 under the default SCHED_FEAT(UTIL_EST, true). To fix this use the MSB of util_est.enqueued instead and keep the flag util_est internal, i.e. don't export it via _task_util_est(). The maximal possible util_avg value for a task is 1024 so the MSB of 'unsigned int util_est.enqueued' isn't used to store a util value. As a caveat the code behind the util_est_se trace point has to filter UTIL_AVG_UNCHANGED to see the real util_est.enqueued value which should be easy to do. This also fixes an issue report by Xuewen Yan that util_est_update() only used UTIL_AVG_UNCHANGED for the subtrahend of the equation: last_enqueued_diff = ue.enqueued - (task_util() | UTIL_AVG_UNCHANGED) Fixes: b89997aa sched/pelt: Fix task util_est update filtering Signed-off-by: NDietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NXuewen Yan <xuewen.yan@unisoc.com> Reviewed-by: NVincent Donnefort <vincent.donnefort@arm.com> Reviewed-by: NVincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20210602145808.1562603-1-dietmar.eggemann@arm.com
-
- 13 5月, 2021 1 次提交
-
-
由 Marcelo Tosatti 提交于
When the tick dependency of a task is updated, we want it to aknowledge the new state and restart the tick if needed. If the task is not running, we don't need to kick it because it will observe the new dependency upon scheduling in. But if the task is running, we may need to send an IPI to it so that it gets notified. Unfortunately we don't have the means to check if a task is running in a race free way. Checking p->on_cpu in a synchronized way against p->tick_dep_mask would imply adding a full barrier between prepare_task_switch() and tick_nohz_task_switch(), which we want to avoid in this fast-path. Therefore we blindly fire an IPI to the task's CPU. Meanwhile we can check if the task is queued on the CPU rq because p->on_rq is always set to TASK_ON_RQ_QUEUED _before_ schedule() and its full barrier that precedes tick_nohz_task_switch(). And if the task is queued on a nohz_full CPU, it also has fair chances to be running as the isolation constraints prescribe running single tasks on full dynticks CPUs. So use this as a trick to check if we can spare an IPI toward a non-running task. NOTE: For the ordering to be correct, it is assumed that we never deactivate a task while it is running, the only exception being the task deactivating itself while scheduling out. Suggested-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com> Signed-off-by: NFrederic Weisbecker <frederic@kernel.org> Signed-off-by: NIngo Molnar <mingo@kernel.org> Acked-by: NPeter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20210512232924.150322-9-frederic@kernel.org
-
- 12 5月, 2021 5 次提交
-
-
由 Chris Hyser 提交于
This patch provides support for setting and copying core scheduling 'task cookies' between threads (PID), processes (TGID), and process groups (PGID). The value of core scheduling isn't that tasks don't share a core, 'nosmt' can do that. The value lies in exploiting all the sharing opportunities that exist to recover possible lost performance and that requires a degree of flexibility in the API. From a security perspective (and there are others), the thread, process and process group distinction is an existent hierarchal categorization of tasks that reflects many of the security concerns about 'data sharing'. For example, protecting against cache-snooping by a thread that can just read the memory directly isn't all that useful. With this in mind, subcommands to CREATE/SHARE (TO/FROM) provide a mechanism to create and share cookies. CREATE/SHARE_TO specify a target pid with enum pidtype used to specify the scope of the targeted tasks. For example, PIDTYPE_TGID will share the cookie with the process and all of it's threads as typically desired in a security scenario. API: prctl(PR_SCHED_CORE, PR_SCHED_CORE_GET, tgtpid, pidtype, &cookie) prctl(PR_SCHED_CORE, PR_SCHED_CORE_CREATE, tgtpid, pidtype, NULL) prctl(PR_SCHED_CORE, PR_SCHED_CORE_SHARE_TO, tgtpid, pidtype, NULL) prctl(PR_SCHED_CORE, PR_SCHED_CORE_SHARE_FROM, srcpid, pidtype, NULL) where 'tgtpid/srcpid == 0' implies the current process and pidtype is kernel enum pid_type {PIDTYPE_PID, PIDTYPE_TGID, PIDTYPE_PGID, ...}. For return values, EINVAL, ENOMEM are what they say. ESRCH means the tgtpid/srcpid was not found. EPERM indicates lack of PTRACE permission access to tgtpid/srcpid. ENODEV indicates your machines lacks SMT. [peterz: complete rewrite] Signed-off-by: NChris Hyser <chris.hyser@oracle.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Tested-by: NDon Hiatt <dhiatt@digitalocean.com> Tested-by: NHongyu Ning <hongyu.ning@linux.intel.com> Tested-by: NVincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210422123309.039845339@infradead.org
-
由 Peter Zijlstra 提交于
Note that sched_core_fork() is called from under tasklist_lock, and not from sched_fork() earlier. This avoids a few races later. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Tested-by: NDon Hiatt <dhiatt@digitalocean.com> Tested-by: NHongyu Ning <hongyu.ning@linux.intel.com> Tested-by: NVincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210422123308.980003687@infradead.org
-
由 Peter Zijlstra 提交于
In order to not have to use pid_struct, create a new, smaller, structure to manage task cookies for core scheduling. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Tested-by: NDon Hiatt <dhiatt@digitalocean.com> Tested-by: NHongyu Ning <hongyu.ning@linux.intel.com> Tested-by: NVincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210422123308.919768100@infradead.org
-
由 Peter Zijlstra 提交于
When a sibling is forced-idle to match the core-cookie; search for matching tasks to fill the core. rcu_read_unlock() can incur an infrequent deadlock in sched_core_balance(). Fix this by using the RCU-sched flavor instead. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Tested-by: NDon Hiatt <dhiatt@digitalocean.com> Tested-by: NHongyu Ning <hongyu.ning@linux.intel.com> Tested-by: NVincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210422123308.800048269@infradead.org
-
由 Peter Zijlstra 提交于
Introduce task_struct::core_cookie as an opaque identifier for core scheduling. When enabled; core scheduling will only allow matching task to be on the core; where idle matches everything. When task_struct::core_cookie is set (and core scheduling is enabled) these tasks are indexed in a second RB-tree, first on cookie value then on scheduling function, such that matching task selection always finds the most elegible match. NOTE: *shudder* at the overhead... NOTE: *sigh*, a 3rd copy of the scheduling function; the alternative is per class tracking of cookies and that just duplicates a lot of stuff for no raisin (the 2nd copy lives in the rt-mutex PI code). [Joel: folded fixes] Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NJoel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Tested-by: NDon Hiatt <dhiatt@digitalocean.com> Tested-by: NHongyu Ning <hongyu.ning@linux.intel.com> Tested-by: NVincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210422123308.496975854@infradead.org
-
- 06 5月, 2021 1 次提交
-
-
由 Pavel Tatashin 提交于
PF_MEMALLOC_NOCMA is used ot guarantee that the allocator will not return pages that might belong to CMA region. This is currently used for long term gup to make sure that such pins are not going to be done on any CMA pages. When PF_MEMALLOC_NOCMA has been introduced we haven't realized that it is focusing on CMA pages too much and that there is larger class of pages that need the same treatment. MOVABLE zone cannot contain any long term pins as well so it makes sense to reuse and redefine this flag for that usecase as well. Rename the flag to PF_MEMALLOC_PIN which defines an allocation context which can only get pages suitable for long-term pins. Also rename: memalloc_nocma_save()/memalloc_nocma_restore to memalloc_pin_save()/memalloc_pin_restore() and make the new functions common. [rppt@linux.ibm.com: fix renaming of PF_MEMALLOC_NOCMA to PF_MEMALLOC_PIN] Link: https://lkml.kernel.org/r/20210331163816.11517-1-rppt@kernel.org Link: https://lkml.kernel.org/r/20210215161349.246722-6-pasha.tatashin@soleen.comSigned-off-by: NPavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: NJohn Hubbard <jhubbard@nvidia.com> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NMike Rapoport <rppt@linux.ibm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: James Morris <jmorris@namei.org> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Tyler Hicks <tyhicks@linux.microsoft.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 5月, 2021 1 次提交
-
-
由 Sergei Trofimovich 提交于
Before the change page_owner recursion was detected via fetching backtrace and inspecting it for current instruction pointer. It has a few problems: - it is slightly slow as it requires extra backtrace and a linear stack scan of the result - it is too late to check if backtrace fetching required memory allocation itself (ia64's unwinder requires it). To simplify recursion tracking let's use page_owner recursion flag in 'struct task_struct'. The change make page_owner=on work on ia64 by avoiding infinite recursion in: kmalloc() -> __set_page_owner() -> save_stack() -> unwind() [ia64-specific] -> build_script() -> kmalloc() -> __set_page_owner() [we short-circuit here] -> save_stack() -> unwind() [recursion] Link: https://lkml.kernel.org/r/20210402115342.1463781-1-slyfox@gentoo.orgSigned-off-by: NSergei Trofimovich <slyfox@gentoo.org> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ben Segall <bsegall@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 4月, 2021 1 次提交
-
-
由 Thomas Gleixner 提交于
The idea for this originates from the real time tree to make signal delivery for realtime applications more efficient. In quite some of these application scenarios a control tasks signals workers to start their computations. There is usually only one signal per worker on flight. This works nicely as long as the kmem cache allocations do not hit the slow path and cause latencies. To cure this an optimistic caching was introduced (limited to RT tasks) which allows a task to cache a single sigqueue in a pointer in task_struct instead of handing it back to the kmem cache after consuming a signal. When the next signal is sent to the task then the cached sigqueue is used instead of allocating a new one. This solved the problem for this set of application scenarios nicely. The task cache is not preallocated so the first signal sent to a task goes always to the cache allocator. The cached sigqueue stays around until the task exits and is freed when task::sighand is dropped. After posting this solution for mainline the discussion came up whether this would be useful in general and should not be limited to realtime tasks: https://lore.kernel.org/r/m11rcu7nbr.fsf@fess.ebiederm.org One concern leading to the original limitation was to avoid a large amount of pointlessly cached sigqueues in alive tasks. The other concern was vs. RLIMIT_SIGPENDING as these cached sigqueues are not accounted for. The accounting problem is real, but on the other hand slightly academic. After gathering some statistics it turned out that after boot of a regular distro install there are less than 10 sigqueues cached in ~1500 tasks. In case of a 'mass fork and fire signal to child' scenario the extra 80 bytes of memory per task are well in the noise of the overall memory consumption of the fork bomb. If this should be limited then this would need an extra counter in struct user, more atomic instructions and a seperate rlimit. Yet another tunable which is mostly unused. The caching is actually used. After boot and a full kernel compile on a 64CPU machine with make -j128 the number of 'allocations' looks like this: From slab: 23996 From task cache: 52223 I.e. it reduces the number of slab cache operations by ~68%. A typical pattern there is: <...>-58490 __sigqueue_alloc: for 58488 from slab ffff8881132df460 <...>-58488 __sigqueue_free: cache ffff8881132df460 <...>-58488 __sigqueue_alloc: for 1149 from cache ffff8881103dc550 bash-1149 exit_task_sighand: free ffff8881132df460 bash-1149 __sigqueue_free: cache ffff8881103dc550 The interesting sequence is that the exiting task 58488 grabs the sigqueue from bash's task cache to signal exit and bash sticks it back into it's own cache. Lather, rinse and repeat. The caching is probably not noticable for the general use case, but the benefit for latency sensitive applications is clear. While kmem caches are usually just serving from the fast path the slab merging (default) can depending on the usage pattern of the merged slabs cause occasional slow path allocations. The time spared per cached entry is a few micro seconds per signal which is not relevant for e.g. a kernel build, but for signal heavy workloads it's measurable. As there is no real downside of this caching mechanism making it unconditionally available is preferred over more conditional code or new magic tunables. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NOleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/87sg4lbmxo.fsf@nanos.tec.linutronix.de
-
- 22 3月, 2021 1 次提交
-
-
由 Ingo Molnar 提交于
Fix ~42 single-word typos in scheduler code comments. We have accumulated a few fun ones over the years. :-) Signed-off-by: NIngo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ben Segall <bsegall@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: linux-kernel@vger.kernel.org
-
- 17 3月, 2021 1 次提交
-
-
由 Thomas Gleixner 提交于
RT requires the softirq processing and local bottomhalf disabled regions to be preemptible. Using the normal preempt count based serialization is therefore not possible because this implicitely disables preemption. RT kernels use a per CPU local lock to serialize bottomhalfs. As local_bh_disable() can nest the lock can only be acquired on the outermost invocation of local_bh_disable() and released when the nest count becomes zero. Tasks which hold the local lock can be preempted so its required to keep track of the nest count per task. Add a RT only counter to task struct and adjust the relevant macros in preempt.h. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Tested-by: NPaul E. McKenney <paulmck@kernel.org> Reviewed-by: NFrederic Weisbecker <frederic@kernel.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210309085726.983627589@linutronix.de
-
- 06 3月, 2021 1 次提交
-
-
The recent addition of in_serving_softirq() to kconv.h results in compile failure on PREEMPT_RT because it requires task_struct::softirq_disable_cnt. This is not available if kconv.h is included from sched.h. It is not needed to include kconv.h from sched.h. All but the net/ user already include the kconv header file. Move the include of the kconv.h header from sched.h it its users. Additionally include sched.h from kconv.h to ensure that everything task_struct related is available. Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NIngo Molnar <mingo@kernel.org> Acked-by: NJohannes Berg <johannes@sipsolutions.net> Acked-by: NAndrey Konovalov <andreyknvl@google.com> Link: https://lkml.kernel.org/r/20210218173124.iy5iyqv3a4oia4vv@linutronix.de
-
- 27 2月, 2021 1 次提交
-
-
由 Song Liu 提交于
To access per-task data, BPF programs usually creates a hash table with pid as the key. This is not ideal because: 1. The user need to estimate the proper size of the hash table, which may be inaccurate; 2. Big hash tables are slow; 3. To clean up the data properly during task terminations, the user need to write extra logic. Task local storage overcomes these issues and offers a better option for these per-task data. Task local storage is only available to BPF_LSM. Now enable it for tracing programs. Unlike LSM programs, tracing programs can be called in IRQ contexts. Helpers that access task local storage are updated to use raw_spin_lock_irqsave() instead of raw_spin_lock_bh(). Tracing programs can attach to functions on the task free path, e.g. exit_creds(). To avoid allocating task local storage after bpf_task_storage_free(). bpf_task_storage_get() is updated to not allocate new storage when the task is not refcounted (task->usage == 0). Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NKP Singh <kpsingh@kernel.org> Acked-by: NMartin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20210225234319.336131-2-songliubraving@fb.com
-
- 22 2月, 2021 1 次提交
-
-
由 Jens Axboe 提交于
Instead of using regular kthread kernel threads, create kernel threads that are like a real thread that the task would create. This ensures that we get all the context that we need, without having to carry that state around. This greatly reduces the code complexity, and the risk of missing state for a given request type. With the move away from kthread, we can also dump everything related to assigned state to the new threads. Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 17 2月, 2021 2 次提交
-
-
由 Peter Zijlstra 提交于
Use the new EXPORT_STATIC_CALL_TRAMP() / static_call_mod() to unexport the static_call_key for the PREEMPT_DYNAMIC calls such that modules can no longer update these calls. Having modules change/hi-jack the preemption calls would be horrible. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra (Intel) 提交于
Provide static calls to control cond_resched() (called in !CONFIG_PREEMPT) and might_resched() (called in CONFIG_PREEMPT_VOLUNTARY) to that we can override their behaviour when preempt= is overriden. Since the default behaviour is full preemption, both their calls are ignored when preempt= isn't passed. [fweisbec: branch might_resched() directly to __cond_resched(), only define static calls when PREEMPT_DYNAMIC] Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NFrederic Weisbecker <frederic@kernel.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NIngo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20210118141223.123667-6-frederic@kernel.org
-
- 04 2月, 2021 2 次提交
-
-
由 Ben Gardon 提交于
Safely rescheduling while holding a spin lock is essential for keeping long running kernel operations running smoothly. Add the facility to cond_resched rwlocks. CC: Ingo Molnar <mingo@redhat.com> CC: Will Deacon <will@kernel.org> Acked-by: NPeter Zijlstra <peterz@infradead.org> Acked-by: NDavidlohr Bueso <dbueso@suse.de> Acked-by: NWaiman Long <longman@redhat.com> Acked-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NBen Gardon <bgardon@google.com> Message-Id: <20210202185734.1680553-9-bgardon@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Ben Gardon 提交于
Contention awareness while holding a spin lock is essential for reducing latency when long running kernel operations can hold that lock. Add the same contention detection interface for read/write spin locks. CC: Ingo Molnar <mingo@redhat.com> CC: Will Deacon <will@kernel.org> Acked-by: NPeter Zijlstra <peterz@infradead.org> Acked-by: NDavidlohr Bueso <dbueso@suse.de> Acked-by: NWaiman Long <longman@redhat.com> Acked-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NBen Gardon <bgardon@google.com> Message-Id: <20210202185734.1680553-8-bgardon@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 28 1月, 2021 1 次提交
-
-
由 Peter Oskolkov 提交于
The comment says: /* task_struct member predeclarations (sorted alphabetically): */ So move io_uring_task where it belongs (alphabetically). Signed-off-by: NPeter Oskolkov <posk@google.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210126193449.487547-1-posk@google.com
-
- 14 1月, 2021 1 次提交
-
-
由 Viresh Kumar 提交于
There is nothing schedutil specific in schedutil_cpu_util(), rename it to effective_cpu_util(). Also create and expose another wrapper sched_cpu_util() which can be used by other parts of the kernel, like thermal core (that will be done in a later commit). Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lkml.kernel.org/r/db011961fb3bb8bef1c0eda5cd64564637d3ef31.1607400596.git.viresh.kumar@linaro.org
-
- 23 12月, 2020 1 次提交
-
-
由 Andrey Konovalov 提交于
This is a preparatory commit for the upcoming addition of a new hardware tag-based (MTE-based) KASAN mode. Hardware tag-based KASAN won't use kasan_depth. Only define and use it when one of the software KASAN modes are enabled. No functional changes for software modes. Link: https://lkml.kernel.org/r/e16f15aeda90bc7fb4dfc2e243a14b74cc5c8219.1606161801.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Signed-off-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NAlexander Potapenko <glider@google.com> Tested-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Marco Elver <elver@google.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 02 12月, 2020 1 次提交
-
-
由 Gabriel Krisman Bertazi 提交于
Introduce a mechanism to quickly disable/enable syscall handling for a specific process and redirect to userspace via SIGSYS. This is useful for processes with parts that require syscall redirection and parts that don't, but who need to perform this boundary crossing really fast, without paying the cost of a system call to reconfigure syscall handling on each boundary transition. This is particularly important for Windows games running over Wine. The proposed interface looks like this: prctl(PR_SET_SYSCALL_USER_DISPATCH, <op>, <off>, <length>, [selector]) The range [<offset>,<offset>+<length>) is a part of the process memory map that is allowed to by-pass the redirection code and dispatch syscalls directly, such that in fast paths a process doesn't need to disable the trap nor the kernel has to check the selector. This is essential to return from SIGSYS to a blocked area without triggering another SIGSYS from rt_sigreturn. selector is an optional pointer to a char-sized userspace memory region that has a key switch for the mechanism. This key switch is set to either PR_SYS_DISPATCH_ON, PR_SYS_DISPATCH_OFF to enable and disable the redirection without calling the kernel. The feature is meant to be set per-thread and it is disabled on fork/clone/execv. Internally, this doesn't add overhead to the syscall hot path, and it requires very little per-architecture support. I avoided using seccomp, even though it duplicates some functionality, due to previous feedback that maybe it shouldn't mix with seccomp since it is not a security mechanism. And obviously, this should never be considered a security mechanism, since any part of the program can by-pass it by using the syscall dispatcher. For the sysinfo benchmark, which measures the overhead added to executing a native syscall that doesn't require interception, the overhead using only the direct dispatcher region to issue syscalls is pretty much irrelevant. The overhead of using the selector goes around 40ns for a native (unredirected) syscall in my system, and it is (as expected) dominated by the supervisor-mode user-address access. In fact, with SMAP off, the overhead is consistently less than 5ns on my test box. Signed-off-by: NGabriel Krisman Bertazi <krisman@collabora.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NAndy Lutomirski <luto@kernel.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NKees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20201127193238.821364-4-krisman@collabora.com
-