1. 13 4月, 2019 1 次提交
    • A
      bpf: Introduce ARG_PTR_TO_{INT,LONG} arg types · 57c3bb72
      Andrey Ignatov 提交于
      Currently the way to pass result from BPF helper to BPF program is to
      provide memory area defined by pointer and size: func(void *, size_t).
      
      It works great for generic use-case, but for simple types, such as int,
      it's overkill and consumes two arguments when it could use just one.
      
      Introduce new argument types ARG_PTR_TO_INT and ARG_PTR_TO_LONG to be
      able to pass result from helper to program via pointer to int and long
      correspondingly: func(int *) or func(long *).
      
      New argument types are similar to ARG_PTR_TO_MEM with the following
      differences:
      * they don't require corresponding ARG_CONST_SIZE argument, predefined
        access sizes are used instead (32bit for int, 64bit for long);
      * it's possible to use more than one such an argument in a helper;
      * provided pointers have to be aligned.
      
      It's easy to introduce similar ARG_PTR_TO_CHAR and ARG_PTR_TO_SHORT
      argument types. It's not done due to lack of use-case though.
      Signed-off-by: NAndrey Ignatov <rdna@fb.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      57c3bb72
  2. 12 4月, 2019 1 次提交
  3. 10 4月, 2019 3 次提交
    • D
      bpf: add syscall side map freeze support · 87df15de
      Daniel Borkmann 提交于
      This patch adds a new BPF_MAP_FREEZE command which allows to
      "freeze" the map globally as read-only / immutable from syscall
      side.
      
      Map permission handling has been refactored into map_get_sys_perms()
      and drops FMODE_CAN_WRITE in case of locked map. Main use case is
      to allow for setting up .rodata sections from the BPF ELF which
      are loaded into the kernel, meaning BPF loader first allocates
      map, sets up map value by copying .rodata section into it and once
      complete, it calls BPF_MAP_FREEZE on the map fd to prevent further
      modifications.
      
      Right now BPF_MAP_FREEZE only takes map fd as argument while remaining
      bpf_attr members are required to be zero. I didn't add write-only
      locking here as counterpart since I don't have a concrete use-case
      for it on my side, and I think it makes probably more sense to wait
      once there is actually one. In that case bpf_attr can be extended
      as usual with a flag field and/or others where flag 0 means that
      we lock the map read-only hence this doesn't prevent to add further
      extensions to BPF_MAP_FREEZE upon need.
      
      A map creation flag like BPF_F_WRONCE was not considered for couple
      of reasons: i) in case of a generic implementation, a map can consist
      of more than just one element, thus there could be multiple map
      updates needed to set the map into a state where it can then be
      made immutable, ii) WRONCE indicates exact one-time write before
      it is then set immutable. A generic implementation would set a bit
      atomically on map update entry (if unset), indicating that every
      subsequent update from then onwards will need to bail out there.
      However, map updates can fail, so upon failure that flag would need
      to be unset again and the update attempt would need to be repeated
      for it to be eventually made immutable. While this can be made
      race-free, this approach feels less clean and in combination with
      reason i), it's not generic enough. A dedicated BPF_MAP_FREEZE
      command directly sets the flag and caller has the guarantee that
      map is immutable from syscall side upon successful return for any
      future syscall invocations that would alter the map state, which
      is also more intuitive from an API point of view. A command name
      such as BPF_MAP_LOCK has been avoided as it's too close with BPF
      map spin locks (which already has BPF_F_LOCK flag). BPF_MAP_FREEZE
      is so far only enabled for privileged users.
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NMartin KaFai Lau <kafai@fb.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      87df15de
    • D
      bpf: add program side {rd, wr}only support for maps · 591fe988
      Daniel Borkmann 提交于
      This work adds two new map creation flags BPF_F_RDONLY_PROG
      and BPF_F_WRONLY_PROG in order to allow for read-only or
      write-only BPF maps from a BPF program side.
      
      Today we have BPF_F_RDONLY and BPF_F_WRONLY, but this only
      applies to system call side, meaning the BPF program has full
      read/write access to the map as usual while bpf(2) calls with
      map fd can either only read or write into the map depending
      on the flags. BPF_F_RDONLY_PROG and BPF_F_WRONLY_PROG allows
      for the exact opposite such that verifier is going to reject
      program loads if write into a read-only map or a read into a
      write-only map is detected. For read-only map case also some
      helpers are forbidden for programs that would alter the map
      state such as map deletion, update, etc. As opposed to the two
      BPF_F_RDONLY / BPF_F_WRONLY flags, BPF_F_RDONLY_PROG as well
      as BPF_F_WRONLY_PROG really do correspond to the map lifetime.
      
      We've enabled this generic map extension to various non-special
      maps holding normal user data: array, hash, lru, lpm, local
      storage, queue and stack. Further generic map types could be
      followed up in future depending on use-case. Main use case
      here is to forbid writes into .rodata map values from verifier
      side.
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NMartin KaFai Lau <kafai@fb.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      591fe988
    • D
      bpf: implement lookup-free direct value access for maps · d8eca5bb
      Daniel Borkmann 提交于
      This generic extension to BPF maps allows for directly loading
      an address residing inside a BPF map value as a single BPF
      ldimm64 instruction!
      
      The idea is similar to what BPF_PSEUDO_MAP_FD does today, which
      is a special src_reg flag for ldimm64 instruction that indicates
      that inside the first part of the double insns's imm field is a
      file descriptor which the verifier then replaces as a full 64bit
      address of the map into both imm parts. For the newly added
      BPF_PSEUDO_MAP_VALUE src_reg flag, the idea is the following:
      the first part of the double insns's imm field is again a file
      descriptor corresponding to the map, and the second part of the
      imm field is an offset into the value. The verifier will then
      replace both imm parts with an address that points into the BPF
      map value at the given value offset for maps that support this
      operation. Currently supported is array map with single entry.
      It is possible to support more than just single map element by
      reusing both 16bit off fields of the insns as a map index, so
      full array map lookup could be expressed that way. It hasn't
      been implemented here due to lack of concrete use case, but
      could easily be done so in future in a compatible way, since
      both off fields right now have to be 0 and would correctly
      denote a map index 0.
      
      The BPF_PSEUDO_MAP_VALUE is a distinct flag as otherwise with
      BPF_PSEUDO_MAP_FD we could not differ offset 0 between load of
      map pointer versus load of map's value at offset 0, and changing
      BPF_PSEUDO_MAP_FD's encoding into off by one to differ between
      regular map pointer and map value pointer would add unnecessary
      complexity and increases barrier for debugability thus less
      suitable. Using the second part of the imm field as an offset
      into the value does /not/ come with limitations since maximum
      possible value size is in u32 universe anyway.
      
      This optimization allows for efficiently retrieving an address
      to a map value memory area without having to issue a helper call
      which needs to prepare registers according to calling convention,
      etc, without needing the extra NULL test, and without having to
      add the offset in an additional instruction to the value base
      pointer. The verifier then treats the destination register as
      PTR_TO_MAP_VALUE with constant reg->off from the user passed
      offset from the second imm field, and guarantees that this is
      within bounds of the map value. Any subsequent operations are
      normally treated as typical map value handling without anything
      extra needed from verification side.
      
      The two map operations for direct value access have been added to
      array map for now. In future other types could be supported as
      well depending on the use case. The main use case for this commit
      is to allow for BPF loader support for global variables that
      reside in .data/.rodata/.bss sections such that we can directly
      load the address of them with minimal additional infrastructure
      required. Loader support has been added in subsequent commits for
      libbpf library.
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      d8eca5bb
  4. 04 4月, 2019 1 次提交
    • A
      bpf: increase complexity limit and maximum program size · c04c0d2b
      Alexei Starovoitov 提交于
      Large verifier speed improvements allow to increase
      verifier complexity limit.
      Now regardless of the program composition and its size it takes
      little time for the verifier to hit insn_processed limit.
      On typical x86 machine non-debug kernel processes 1M instructions
      in 1/10 of a second.
      (before these speed improvements specially crafted programs
      could be hitting multi-second verification times)
      Full kasan kernel with debug takes ~1 second for the same 1M insns.
      Hence bump the BPF_COMPLEXITY_LIMIT_INSNS limit to 1M.
      Also increase the number of instructions per program
      from 4k to internal BPF_COMPLEXITY_LIMIT_INSNS limit.
      4k limit was confusing to users, since small programs with hundreds
      of insns could be hitting BPF_COMPLEXITY_LIMIT_INSNS limit.
      Sometimes adding more insns and bpf_trace_printk debug statements
      would make the verifier accept the program while removing
      code would make the verifier reject it.
      Some user space application started to add #define MAX_FOO to
      their programs and do:
        MAX_FOO=100;
      again:
        compile with MAX_FOO;
        try to load;
        if (fails_to_load) { reduce MAX_FOO; goto again; }
      to be able to fit maximum amount of processing into single program.
      Other users artificially split their single program into a set of programs
      and use all 32 iterations of tail_calls to increase compute limits.
      And the most advanced folks used unlimited tc-bpf filter list
      to execute many bpf programs.
      Essentially the users managed to workaround 4k insn limit.
      This patch removes the limit for root programs from uapi.
      BPF_COMPLEXITY_LIMIT_INSNS is the kernel internal limit
      and success to load the program no longer depends on program size,
      but on 'smartness' of the verifier only.
      The verifier will continue to get smarter with every kernel release.
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      c04c0d2b
  5. 22 3月, 2019 1 次提交
  6. 14 3月, 2019 1 次提交
    • M
      bpf: Fix bpf_tcp_sock and bpf_sk_fullsock issue related to bpf_sk_release · 1b986589
      Martin KaFai Lau 提交于
      Lorenz Bauer [thanks!] reported that a ptr returned by bpf_tcp_sock(sk)
      can still be accessed after bpf_sk_release(sk).
      Both bpf_tcp_sock() and bpf_sk_fullsock() have the same issue.
      This patch addresses them together.
      
      A simple reproducer looks like this:
      
      	sk = bpf_sk_lookup_tcp();
      	/* if (!sk) ... */
      	tp = bpf_tcp_sock(sk);
      	/* if (!tp) ... */
      	bpf_sk_release(sk);
      	snd_cwnd = tp->snd_cwnd; /* oops! The verifier does not complain. */
      
      The problem is the verifier did not scrub the register's states of
      the tcp_sock ptr (tp) after bpf_sk_release(sk).
      
      [ Note that when calling bpf_tcp_sock(sk), the sk is not always
        refcount-acquired. e.g. bpf_tcp_sock(skb->sk). The verifier works
        fine for this case. ]
      
      Currently, the verifier does not track if a helper's return ptr (in REG_0)
      is "carry"-ing one of its argument's refcount status. To carry this info,
      the reg1->id needs to be stored in reg0.
      
      One approach was tried, like "reg0->id = reg1->id", when calling
      "bpf_tcp_sock()".  The main idea was to avoid adding another "ref_obj_id"
      for the same reg.  However, overlapping the NULL marking and ref
      tracking purpose in one "id" does not work well:
      
      	ref_sk = bpf_sk_lookup_tcp();
      	fullsock = bpf_sk_fullsock(ref_sk);
      	tp = bpf_tcp_sock(ref_sk);
      	if (!fullsock) {
      	     bpf_sk_release(ref_sk);
      	     return 0;
      	}
      	/* fullsock_reg->id is marked for NOT-NULL.
      	 * Same for tp_reg->id because they have the same id.
      	 */
      
      	/* oops. verifier did not complain about the missing !tp check */
      	snd_cwnd = tp->snd_cwnd;
      
      Hence, a new "ref_obj_id" is needed in "struct bpf_reg_state".
      With a new ref_obj_id, when bpf_sk_release(sk) is called, the verifier can
      scrub all reg states which has a ref_obj_id match.  It is done with the
      changes in release_reg_references() in this patch.
      
      While fixing it, sk_to_full_sk() is removed from bpf_tcp_sock() and
      bpf_sk_fullsock() to avoid these helpers from returning
      another ptr. It will make bpf_sk_release(tp) possible:
      
      	sk = bpf_sk_lookup_tcp();
      	/* if (!sk) ... */
      	tp = bpf_tcp_sock(sk);
      	/* if (!tp) ... */
      	bpf_sk_release(tp);
      
      A separate helper "bpf_get_listener_sock()" will be added in a later
      patch to do sk_to_full_sk().
      
      Misc change notes:
      - To allow bpf_sk_release(tp), the arg of bpf_sk_release() is changed
        from ARG_PTR_TO_SOCKET to ARG_PTR_TO_SOCK_COMMON.  ARG_PTR_TO_SOCKET
        is removed from bpf.h since no helper is using it.
      
      - arg_type_is_refcounted() is renamed to arg_type_may_be_refcounted()
        because ARG_PTR_TO_SOCK_COMMON is the only one and skb->sk is not
        refcounted.  All bpf_sk_release(), bpf_sk_fullsock() and bpf_tcp_sock()
        take ARG_PTR_TO_SOCK_COMMON.
      
      - check_refcount_ok() ensures is_acquire_function() cannot take
        arg_type_may_be_refcounted() as its argument.
      
      - The check_func_arg() can only allow one refcount-ed arg.  It is
        guaranteed by check_refcount_ok() which ensures at most one arg can be
        refcounted.  Hence, it is a verifier internal error if >1 refcount arg
        found in check_func_arg().
      
      - In release_reference(), release_reference_state() is called
        first to ensure a match on "reg->ref_obj_id" can be found before
        scrubbing the reg states with release_reg_references().
      
      - reg_is_refcounted() is no longer needed.
        1. In mark_ptr_or_null_regs(), its usage is replaced by
           "ref_obj_id && ref_obj_id == id" because,
           when is_null == true, release_reference_state() should only be
           called on the ref_obj_id obtained by a acquire helper (i.e.
           is_acquire_function() == true).  Otherwise, the following
           would happen:
      
      	sk = bpf_sk_lookup_tcp();
      	/* if (!sk) { ... } */
      	fullsock = bpf_sk_fullsock(sk);
      	if (!fullsock) {
      		/*
      		 * release_reference_state(fullsock_reg->ref_obj_id)
      		 * where fullsock_reg->ref_obj_id == sk_reg->ref_obj_id.
      		 *
      		 * Hence, the following bpf_sk_release(sk) will fail
      		 * because the ref state has already been released in the
      		 * earlier release_reference_state(fullsock_reg->ref_obj_id).
      		 */
      		bpf_sk_release(sk);
      	}
      
        2. In release_reg_references(), the current reg_is_refcounted() call
           is unnecessary because the id check is enough.
      
      - The type_is_refcounted() and type_is_refcounted_or_null()
        are no longer needed also because reg_is_refcounted() is removed.
      
      Fixes: 655a51e5 ("bpf: Add struct bpf_tcp_sock and BPF_FUNC_tcp_sock")
      Reported-by: NLorenz Bauer <lmb@cloudflare.com>
      Signed-off-by: NMartin KaFai Lau <kafai@fb.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      1b986589
  7. 28 2月, 2019 1 次提交
    • A
      bpf: enable program stats · 492ecee8
      Alexei Starovoitov 提交于
      JITed BPF programs are indistinguishable from kernel functions, but unlike
      kernel code BPF code can be changed often.
      Typical approach of "perf record" + "perf report" profiling and tuning of
      kernel code works just as well for BPF programs, but kernel code doesn't
      need to be monitored whereas BPF programs do.
      Users load and run large amount of BPF programs.
      These BPF stats allow tools monitor the usage of BPF on the server.
      The monitoring tools will turn sysctl kernel.bpf_stats_enabled
      on and off for few seconds to sample average cost of the programs.
      Aggregated data over hours and days will provide an insight into cost of BPF
      and alarms can trigger in case given program suddenly gets more expensive.
      
      The cost of two sched_clock() per program invocation adds ~20 nsec.
      Fast BPF progs (like selftests/bpf/progs/test_pkt_access.c) will slow down
      from ~10 nsec to ~30 nsec.
      static_key minimizes the cost of the stats collection.
      There is no measurable difference before/after this patch
      with kernel.bpf_stats_enabled=0
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      492ecee8
  8. 13 2月, 2019 1 次提交
  9. 11 2月, 2019 2 次提交
    • M
      bpf: Add struct bpf_tcp_sock and BPF_FUNC_tcp_sock · 655a51e5
      Martin KaFai Lau 提交于
      This patch adds a helper function BPF_FUNC_tcp_sock and it
      is currently available for cg_skb and sched_(cls|act):
      
      struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk);
      
      int cg_skb_foo(struct __sk_buff *skb) {
      	struct bpf_tcp_sock *tp;
      	struct bpf_sock *sk;
      	__u32 snd_cwnd;
      
      	sk = skb->sk;
      	if (!sk)
      		return 1;
      
      	tp = bpf_tcp_sock(sk);
      	if (!tp)
      		return 1;
      
      	snd_cwnd = tp->snd_cwnd;
      	/* ... */
      
      	return 1;
      }
      
      A 'struct bpf_tcp_sock' is also added to the uapi bpf.h to provide
      read-only access.  bpf_tcp_sock has all the existing tcp_sock's fields
      that has already been exposed by the bpf_sock_ops.
      i.e. no new tcp_sock's fields are exposed in bpf.h.
      
      This helper returns a pointer to the tcp_sock.  If it is not a tcp_sock
      or it cannot be traced back to a tcp_sock by sk_to_full_sk(), it
      returns NULL.  Hence, the caller needs to check for NULL before
      accessing it.
      
      The current use case is to expose members from tcp_sock
      to allow a cg_skb_bpf_prog to provide per cgroup traffic
      policing/shaping.
      Acked-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NMartin KaFai Lau <kafai@fb.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      655a51e5
    • M
      bpf: Add a bpf_sock pointer to __sk_buff and a bpf_sk_fullsock helper · 46f8bc92
      Martin KaFai Lau 提交于
      In kernel, it is common to check "skb->sk && sk_fullsock(skb->sk)"
      before accessing the fields in sock.  For example, in __netdev_pick_tx:
      
      static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
      			    struct net_device *sb_dev)
      {
      	/* ... */
      
      	struct sock *sk = skb->sk;
      
      		if (queue_index != new_index && sk &&
      		    sk_fullsock(sk) &&
      		    rcu_access_pointer(sk->sk_dst_cache))
      			sk_tx_queue_set(sk, new_index);
      
      	/* ... */
      
      	return queue_index;
      }
      
      This patch adds a "struct bpf_sock *sk" pointer to the "struct __sk_buff"
      where a few of the convert_ctx_access() in filter.c has already been
      accessing the skb->sk sock_common's fields,
      e.g. sock_ops_convert_ctx_access().
      
      "__sk_buff->sk" is a PTR_TO_SOCK_COMMON_OR_NULL in the verifier.
      Some of the fileds in "bpf_sock" will not be directly
      accessible through the "__sk_buff->sk" pointer.  It is limited
      by the new "bpf_sock_common_is_valid_access()".
      e.g. The existing "type", "protocol", "mark" and "priority" in bpf_sock
           are not allowed.
      
      The newly added "struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)"
      can be used to get a sk with all accessible fields in "bpf_sock".
      This helper is added to both cg_skb and sched_(cls|act).
      
      int cg_skb_foo(struct __sk_buff *skb) {
      	struct bpf_sock *sk;
      
      	sk = skb->sk;
      	if (!sk)
      		return 1;
      
      	sk = bpf_sk_fullsock(sk);
      	if (!sk)
      		return 1;
      
      	if (sk->family != AF_INET6 || sk->protocol != IPPROTO_TCP)
      		return 1;
      
      	/* some_traffic_shaping(); */
      
      	return 1;
      }
      
      (1) The sk is read only
      
      (2) There is no new "struct bpf_sock_common" introduced.
      
      (3) Future kernel sock's members could be added to bpf_sock only
          instead of repeatedly adding at multiple places like currently
          in bpf_sock_ops_md, bpf_sock_addr_md, sk_reuseport_md...etc.
      
      (4) After "sk = skb->sk", the reg holding sk is in type
          PTR_TO_SOCK_COMMON_OR_NULL.
      
      (5) After bpf_sk_fullsock(), the return type will be in type
          PTR_TO_SOCKET_OR_NULL which is the same as the return type of
          bpf_sk_lookup_xxx().
      
          However, bpf_sk_fullsock() does not take refcnt.  The
          acquire_reference_state() is only depending on the return type now.
          To avoid it, a new is_acquire_function() is checked before calling
          acquire_reference_state().
      
      (6) The WARN_ON in "release_reference_state()" is no longer an
          internal verifier bug.
      
          When reg->id is not found in state->refs[], it means the
          bpf_prog does something wrong like
          "bpf_sk_release(bpf_sk_fullsock(skb->sk))" where reference has
          never been acquired by calling "bpf_sk_fullsock(skb->sk)".
      
          A -EINVAL and a verbose are done instead of WARN_ON.  A test is
          added to the test_verifier in a later patch.
      
          Since the WARN_ON in "release_reference_state()" is no longer
          needed, "__release_reference_state()" is folded into
          "release_reference_state()" also.
      Acked-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NMartin KaFai Lau <kafai@fb.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      46f8bc92
  10. 02 2月, 2019 2 次提交
    • A
      bpf: introduce BPF_F_LOCK flag · 96049f3a
      Alexei Starovoitov 提交于
      Introduce BPF_F_LOCK flag for map_lookup and map_update syscall commands
      and for map_update() helper function.
      In all these cases take a lock of existing element (which was provided
      in BTF description) before copying (in or out) the rest of map value.
      
      Implementation details that are part of uapi:
      
      Array:
      The array map takes the element lock for lookup/update.
      
      Hash:
      hash map also takes the lock for lookup/update and tries to avoid the bucket lock.
      If old element exists it takes the element lock and updates the element in place.
      If element doesn't exist it allocates new one and inserts into hash table
      while holding the bucket lock.
      In rare case the hashmap has to take both the bucket lock and the element lock
      to update old value in place.
      
      Cgroup local storage:
      It is similar to array. update in place and lookup are done with lock taken.
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      96049f3a
    • A
      bpf: introduce bpf_spin_lock · d83525ca
      Alexei Starovoitov 提交于
      Introduce 'struct bpf_spin_lock' and bpf_spin_lock/unlock() helpers to let
      bpf program serialize access to other variables.
      
      Example:
      struct hash_elem {
          int cnt;
          struct bpf_spin_lock lock;
      };
      struct hash_elem * val = bpf_map_lookup_elem(&hash_map, &key);
      if (val) {
          bpf_spin_lock(&val->lock);
          val->cnt++;
          bpf_spin_unlock(&val->lock);
      }
      
      Restrictions and safety checks:
      - bpf_spin_lock is only allowed inside HASH and ARRAY maps.
      - BTF description of the map is mandatory for safety analysis.
      - bpf program can take one bpf_spin_lock at a time, since two or more can
        cause dead locks.
      - only one 'struct bpf_spin_lock' is allowed per map element.
        It drastically simplifies implementation yet allows bpf program to use
        any number of bpf_spin_locks.
      - when bpf_spin_lock is taken the calls (either bpf2bpf or helpers) are not allowed.
      - bpf program must bpf_spin_unlock() before return.
      - bpf program can access 'struct bpf_spin_lock' only via
        bpf_spin_lock()/bpf_spin_unlock() helpers.
      - load/store into 'struct bpf_spin_lock lock;' field is not allowed.
      - to use bpf_spin_lock() helper the BTF description of map value must be
        a struct and have 'struct bpf_spin_lock anyname;' field at the top level.
        Nested lock inside another struct is not allowed.
      - syscall map_lookup doesn't copy bpf_spin_lock field to user space.
      - syscall map_update and program map_update do not update bpf_spin_lock field.
      - bpf_spin_lock cannot be on the stack or inside networking packet.
        bpf_spin_lock can only be inside HASH or ARRAY map value.
      - bpf_spin_lock is available to root only and to all program types.
      - bpf_spin_lock is not allowed in inner maps of map-in-map.
      - ld_abs is not allowed inside spin_lock-ed region.
      - tracing progs and socket filter progs cannot use bpf_spin_lock due to
        insufficient preemption checks
      
      Implementation details:
      - cgroup-bpf class of programs can nest with xdp/tc programs.
        Hence bpf_spin_lock is equivalent to spin_lock_irqsave.
        Other solutions to avoid nested bpf_spin_lock are possible.
        Like making sure that all networking progs run with softirq disabled.
        spin_lock_irqsave is the simplest and doesn't add overhead to the
        programs that don't use it.
      - arch_spinlock_t is used when its implemented as queued_spin_lock
      - archs can force their own arch_spinlock_t
      - on architectures where queued_spin_lock is not available and
        sizeof(arch_spinlock_t) != sizeof(__u32) trivial lock is used.
      - presence of bpf_spin_lock inside map value could have been indicated via
        extra flag during map_create, but specifying it via BTF is cleaner.
        It provides introspection for map key/value and reduces user mistakes.
      
      Next steps:
      - allow bpf_spin_lock in other map types (like cgroup local storage)
      - introduce BPF_F_LOCK flag for bpf_map_update() syscall and helper
        to request kernel to grab bpf_spin_lock before rewriting the value.
        That will serialize access to map elements.
      Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      d83525ca
  11. 29 1月, 2019 1 次提交
  12. 24 1月, 2019 1 次提交
  13. 13 12月, 2018 1 次提交
  14. 10 12月, 2018 1 次提交
    • M
      bpf: Add bpf_line_info support · c454a46b
      Martin KaFai Lau 提交于
      This patch adds bpf_line_info support.
      
      It accepts an array of bpf_line_info objects during BPF_PROG_LOAD.
      The "line_info", "line_info_cnt" and "line_info_rec_size" are added
      to the "union bpf_attr".  The "line_info_rec_size" makes
      bpf_line_info extensible in the future.
      
      The new "check_btf_line()" ensures the userspace line_info is valid
      for the kernel to use.
      
      When the verifier is translating/patching the bpf_prog (through
      "bpf_patch_insn_single()"), the line_infos' insn_off is also
      adjusted by the newly added "bpf_adj_linfo()".
      
      If the bpf_prog is jited, this patch also provides the jited addrs (in
      aux->jited_linfo) for the corresponding line_info.insn_off.
      "bpf_prog_fill_jited_linfo()" is added to fill the aux->jited_linfo.
      It is currently called by the x86 jit.  Other jits can also use
      "bpf_prog_fill_jited_linfo()" and it will be done in the followup patches.
      In the future, if it deemed necessary, a particular jit could also provide
      its own "bpf_prog_fill_jited_linfo()" implementation.
      
      A few "*line_info*" fields are added to the bpf_prog_info such
      that the user can get the xlated line_info back (i.e. the line_info
      with its insn_off reflecting the translated prog).  The jited_line_info
      is available if the prog is jited.  It is an array of __u64.
      If the prog is not jited, jited_line_info_cnt is 0.
      
      The verifier's verbose log with line_info will be done in
      a follow up patch.
      Signed-off-by: NMartin KaFai Lau <kafai@fb.com>
      Acked-by: NYonghong Song <yhs@fb.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      c454a46b
  15. 27 11月, 2018 1 次提交
    • Y
      bpf: btf: support proper non-jit func info · ba64e7d8
      Yonghong Song 提交于
      Commit 838e9690 ("bpf: Introduce bpf_func_info")
      added bpf func info support. The userspace is able
      to get better ksym's for bpf programs with jit, and
      is able to print out func prototypes.
      
      For a program containing func-to-func calls, the existing
      implementation returns user specified number of function
      calls and BTF types if jit is enabled. If the jit is not
      enabled, it only returns the type for the main function.
      
      This is undesirable. Interpreter may still be used
      and we should keep feature identical regardless of
      whether jit is enabled or not.
      This patch fixed this discrepancy.
      
      Fixes: 838e9690 ("bpf: Introduce bpf_func_info")
      Signed-off-by: NYonghong Song <yhs@fb.com>
      Acked-by: NMartin KaFai Lau <kafai@fb.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      ba64e7d8
  16. 21 11月, 2018 1 次提交
    • Y
      bpf: Introduce bpf_func_info · 838e9690
      Yonghong Song 提交于
      This patch added interface to load a program with the following
      additional information:
         . prog_btf_fd
         . func_info, func_info_rec_size and func_info_cnt
      where func_info will provide function range and type_id
      corresponding to each function.
      
      The func_info_rec_size is introduced in the UAPI to specify
      struct bpf_func_info size passed from user space. This
      intends to make bpf_func_info structure growable in the future.
      If the kernel gets a different bpf_func_info size from userspace,
      it will try to handle user request with part of bpf_func_info
      it can understand. In this patch, kernel can understand
        struct bpf_func_info {
             __u32   insn_offset;
             __u32   type_id;
        };
      If user passed a bpf func_info record size of 16 bytes, the
      kernel can still handle part of records with the above definition.
      
      If verifier agrees with function range provided by the user,
      the bpf_prog ksym for each function will use the func name
      provided in the type_id, which is supposed to provide better
      encoding as it is not limited by 16 bytes program name
      limitation and this is better for bpf program which contains
      multiple subprograms.
      
      The bpf_prog_info interface is also extended to
      return btf_id, func_info, func_info_rec_size and func_info_cnt
      to userspace, so userspace can print out the function prototype
      for each xlated function. The insn_offset in the returned
      func_info corresponds to the insn offset for xlated functions.
      With other jit related fields in bpf_prog_info, userspace can also
      print out function prototypes for each jited function.
      Signed-off-by: NYonghong Song <yhs@fb.com>
      Signed-off-by: NMartin KaFai Lau <kafai@fb.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      838e9690
  17. 11 11月, 2018 7 次提交
  18. 09 11月, 2018 1 次提交
  19. 20 10月, 2018 2 次提交
    • M
      bpf: add queue and stack maps · f1a2e44a
      Mauricio Vasquez B 提交于
      Queue/stack maps implement a FIFO/LIFO data storage for ebpf programs.
      These maps support peek, pop and push operations that are exposed to eBPF
      programs through the new bpf_map[peek/pop/push] helpers.  Those operations
      are exposed to userspace applications through the already existing
      syscalls in the following way:
      
      BPF_MAP_LOOKUP_ELEM            -> peek
      BPF_MAP_LOOKUP_AND_DELETE_ELEM -> pop
      BPF_MAP_UPDATE_ELEM            -> push
      
      Queue/stack maps are implemented using a buffer, tail and head indexes,
      hence BPF_F_NO_PREALLOC is not supported.
      
      As opposite to other maps, queue and stack do not use RCU for protecting
      maps values, the bpf_map[peek/pop] have a ARG_PTR_TO_UNINIT_MAP_VALUE
      argument that is a pointer to a memory zone where to save the value of a
      map.  Basically the same as ARG_PTR_TO_UNINIT_MEM, but the size has not
      be passed as an extra argument.
      
      Our main motivation for implementing queue/stack maps was to keep track
      of a pool of elements, like network ports in a SNAT, however we forsee
      other use cases, like for exampling saving last N kernel events in a map
      and then analysing from userspace.
      Signed-off-by: NMauricio Vasquez B <mauricio.vasquez@polito.it>
      Acked-by: NSong Liu <songliubraving@fb.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      f1a2e44a
    • M
      bpf/verifier: add ARG_PTR_TO_UNINIT_MAP_VALUE · 2ea864c5
      Mauricio Vasquez B 提交于
      ARG_PTR_TO_UNINIT_MAP_VALUE argument is a pointer to a memory zone
      used to save the value of a map.  Basically the same as
      ARG_PTR_TO_UNINIT_MEM, but the size has not be passed as an extra
      argument.
      
      This will be used in the following patch that implements some new
      helpers that receive a pointer to be filled with a map value.
      Signed-off-by: NMauricio Vasquez B <mauricio.vasquez@polito.it>
      Acked-by: NSong Liu <songliubraving@fb.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      2ea864c5
  20. 16 10月, 2018 1 次提交
    • D
      bpf, sockmap: convert to generic sk_msg interface · 604326b4
      Daniel Borkmann 提交于
      Add a generic sk_msg layer, and convert current sockmap and later
      kTLS over to make use of it. While sk_buff handles network packet
      representation from netdevice up to socket, sk_msg handles data
      representation from application to socket layer.
      
      This means that sk_msg framework spans across ULP users in the
      kernel, and enables features such as introspection or filtering
      of data with the help of BPF programs that operate on this data
      structure.
      
      Latter becomes in particular useful for kTLS where data encryption
      is deferred into the kernel, and as such enabling the kernel to
      perform L7 introspection and policy based on BPF for TLS connections
      where the record is being encrypted after BPF has run and came to
      a verdict. In order to get there, first step is to transform open
      coding of scatter-gather list handling into a common core framework
      that subsystems can use.
      
      The code itself has been split and refactored into three bigger
      pieces: i) the generic sk_msg API which deals with managing the
      scatter gather ring, providing helpers for walking and mangling,
      transferring application data from user space into it, and preparing
      it for BPF pre/post-processing, ii) the plain sock map itself
      where sockets can be attached to or detached from; these bits
      are independent of i) which can now be used also without sock
      map, and iii) the integration with plain TCP as one protocol
      to be used for processing L7 application data (later this could
      e.g. also be extended to other protocols like UDP). The semantics
      are the same with the old sock map code and therefore no change
      of user facing behavior or APIs. While pursuing this work it
      also helped finding a number of bugs in the old sockmap code
      that we've fixed already in earlier commits. The test_sockmap
      kselftest suite passes through fine as well.
      
      Joint work with John.
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      604326b4
  21. 08 10月, 2018 1 次提交
  22. 03 10月, 2018 1 次提交
  23. 01 10月, 2018 2 次提交
    • R
      bpf: introduce per-cpu cgroup local storage · b741f163
      Roman Gushchin 提交于
      This commit introduced per-cpu cgroup local storage.
      
      Per-cpu cgroup local storage is very similar to simple cgroup storage
      (let's call it shared), except all the data is per-cpu.
      
      The main goal of per-cpu variant is to implement super fast
      counters (e.g. packet counters), which don't require neither
      lookups, neither atomic operations.
      
      >From userspace's point of view, accessing a per-cpu cgroup storage
      is similar to other per-cpu map types (e.g. per-cpu hashmaps and
      arrays).
      
      Writing to a per-cpu cgroup storage is not atomic, but is performed
      by copying longs, so some minimal atomicity is here, exactly
      as with other per-cpu maps.
      Signed-off-by: NRoman Gushchin <guro@fb.com>
      Cc: Daniel Borkmann <daniel@iogearbox.net>
      Cc: Alexei Starovoitov <ast@kernel.org>
      Acked-by: NSong Liu <songliubraving@fb.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      b741f163
    • R
      bpf: extend cgroup bpf core to allow multiple cgroup storage types · 8bad74f9
      Roman Gushchin 提交于
      In order to introduce per-cpu cgroup storage, let's generalize
      bpf cgroup core to support multiple cgroup storage types.
      Potentially, per-node cgroup storage can be added later.
      
      This commit is mostly a formal change that replaces
      cgroup_storage pointer with a array of cgroup_storage pointers.
      It doesn't actually introduce a new storage type,
      it will be done later.
      
      Each bpf program is now able to have one cgroup storage of each type.
      Signed-off-by: NRoman Gushchin <guro@fb.com>
      Acked-by: NSong Liu <songliubraving@fb.com>
      Cc: Daniel Borkmann <daniel@iogearbox.net>
      Cc: Alexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      8bad74f9
  24. 15 9月, 2018 1 次提交
  25. 13 8月, 2018 1 次提交
    • D
      bpf: decouple btf from seq bpf fs dump and enable more maps · e8d2bec0
      Daniel Borkmann 提交于
      Commit a26ca7c9 ("bpf: btf: Add pretty print support to
      the basic arraymap") and 699c86d6 ("bpf: btf: add pretty
      print for hash/lru_hash maps") enabled support for BTF and
      dumping via BPF fs for array and hash/lru map. However, both
      can be decoupled from each other such that regular BPF maps
      can be supported for attaching BTF key/value information,
      while not all maps necessarily need to dump via map_seq_show_elem()
      callback.
      
      The basic sanity check which is a prerequisite for all maps
      is that key/value size has to match in any case, and some maps
      can have extra checks via map_check_btf() callback, e.g.
      probing certain types or indicating no support in general. With
      that we can also enable retrieving BTF info for per-cpu map
      types and lpm.
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NAlexei Starovoitov <ast@kernel.org>
      Acked-by: NYonghong Song <yhs@fb.com>
      e8d2bec0
  26. 11 8月, 2018 1 次提交
    • M
      bpf: Introduce BPF_MAP_TYPE_REUSEPORT_SOCKARRAY · 5dc4c4b7
      Martin KaFai Lau 提交于
      This patch introduces a new map type BPF_MAP_TYPE_REUSEPORT_SOCKARRAY.
      
      To unleash the full potential of a bpf prog, it is essential for the
      userspace to be capable of directly setting up a bpf map which can then
      be consumed by the bpf prog to make decision.  In this case, decide which
      SO_REUSEPORT sk to serve the incoming request.
      
      By adding BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, the userspace has total control
      and visibility on where a SO_REUSEPORT sk should be located in a bpf map.
      The later patch will introduce BPF_PROG_TYPE_SK_REUSEPORT such that
      the bpf prog can directly select a sk from the bpf map.  That will
      raise the programmability of the bpf prog attached to a reuseport
      group (a group of sk serving the same IP:PORT).
      
      For example, in UDP, the bpf prog can peek into the payload (e.g.
      through the "data" pointer introduced in the later patch) to learn
      the application level's connection information and then decide which sk
      to pick from a bpf map.  The userspace can tightly couple the sk's location
      in a bpf map with the application logic in generating the UDP payload's
      connection information.  This connection info contact/API stays within the
      userspace.
      
      Also, when used with map-in-map, the userspace can switch the
      old-server-process's inner map to a new-server-process's inner map
      in one call "bpf_map_update_elem(outer_map, &index, &new_reuseport_array)".
      The bpf prog will then direct incoming requests to the new process instead
      of the old process.  The old process can finish draining the pending
      requests (e.g. by "accept()") before closing the old-fds.  [Note that
      deleting a fd from a bpf map does not necessary mean the fd is closed]
      
      During map_update_elem(),
      Only SO_REUSEPORT sk (i.e. which has already been added
      to a reuse->socks[]) can be used.  That means a SO_REUSEPORT sk that is
      "bind()" for UDP or "bind()+listen()" for TCP.  These conditions are
      ensured in "reuseport_array_update_check()".
      
      A SO_REUSEPORT sk can only be added once to a map (i.e. the
      same sk cannot be added twice even to the same map).  SO_REUSEPORT
      already allows another sk to be created for the same IP:PORT.
      There is no need to re-create a similar usage in the BPF side.
      
      When a SO_REUSEPORT is deleted from the "reuse->socks[]" (e.g. "close()"),
      it will notify the bpf map to remove it from the map also.  It is
      done through "bpf_sk_reuseport_detach()" and it will only be called
      if >=1 of the "reuse->sock[]" has ever been added to a bpf map.
      
      The map_update()/map_delete() has to be in-sync with the
      "reuse->socks[]".  Hence, the same "reuseport_lock" used
      by "reuse->socks[]" has to be used here also. Care has
      been taken to ensure the lock is only acquired when the
      adding sk passes some strict tests. and
      freeing the map does not require the reuseport_lock.
      
      The reuseport_array will also support lookup from the syscall
      side.  It will return a sock_gen_cookie().  The sock_gen_cookie()
      is on-demand (i.e. a sk's cookie is not generated until the very
      first map_lookup_elem()).
      
      The lookup cookie is 64bits but it goes against the logical userspace
      expectation on 32bits sizeof(fd) (and as other fd based bpf maps do also).
      It may catch user in surprise if we enforce value_size=8 while
      userspace still pass a 32bits fd during update.  Supporting different
      value_size between lookup and update seems unintuitive also.
      
      We also need to consider what if other existing fd based maps want
      to return 64bits value from syscall's lookup in the future.
      Hence, reuseport_array supports both value_size 4 and 8, and
      assuming user will usually use value_size=4.  The syscall's lookup
      will return ENOSPC on value_size=4.  It will will only
      return 64bits value from sock_gen_cookie() when user consciously
      choose value_size=8 (as a signal that lookup is desired) which then
      requires a 64bits value in both lookup and update.
      Signed-off-by: NMartin KaFai Lau <kafai@fb.com>
      Acked-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      5dc4c4b7
  27. 03 8月, 2018 2 次提交