- 05 11月, 2019 2 次提交
-
-
由 Aneesh Kumar K.V 提交于
With commit 22a61c3c ("asm-generic/tlb: Track freeing of page-table directories in struct mmu_gather") we now track whether we freed page table in mmu_gather. Use that to decide whether to flush Page Walk Cache. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20191024075801.22434-2-aneesh.kumar@linux.ibm.com
-
由 Aneesh Kumar K.V 提交于
mm_tlb_flush_nested change was added in the mmu gather tlb flush to handle the case of parallel pte invalidate happening with mmap_sem held in read mode. This fix was done by commit 02390f66 ("powerpc/64s/radix: Fix MADV_[FREE|DONTNEED] TLB flush miss problem with THP") and the problem is explained in detail in commit 99baac21 ("mm: fix MADV_[FREE|DONTNEED] TLB flush miss problem") This was later updated by commit 7a30df49 ("mm: mmu_gather: remove __tlb_reset_range() for force flush") to do a full mm flush rather than a range flush. By commit dd2283f2 ("mm: mmap: zap pages with read mmap_sem in munmap") we are also now allowing a page table free in mmap_sem read mode which means we should do a PWC flush too. Our current full mm flush imply a PWC flush. With all the above change the mm_tlb_flush_nested(mm) branch in radix__tlb_flush will never be taken because for the nested case we would have taken the if (tlb->fullmm) branch. This patch removes the unused code. Also, remove the gflush change in __radix__flush_tlb_range that was added to handle the range tlb flush code. We only check for THP there because hugetlb is flushed via a different code path where page size is explicitly specified. This is a partial revert of commit 02390f66 ("powerpc/64s/radix: Fix MADV_[FREE|DONTNEED] TLB flush miss problem with THP") Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20191024075801.22434-1-aneesh.kumar@linux.ibm.com
-
- 24 9月, 2019 2 次提交
-
-
由 Aneesh Kumar K.V 提交于
On POWER9, under some circumstances, a broadcast TLB invalidation will fail to invalidate the ERAT cache on some threads when there are parallel mtpidr/mtlpidr happening on other threads of the same core. This can cause stores to continue to go to a page after it's unmapped. The workaround is to force an ERAT flush using PID=0 or LPID=0 tlbie flush. This additional TLB flush will cause the ERAT cache invalidation. Since we are using PID=0 or LPID=0, we don't get filtered out by the TLB snoop filtering logic. We need to still follow this up with another tlbie to take care of store vs tlbie ordering issue explained in commit: a5d4b589 ("powerpc/mm: Fixup tlbie vs store ordering issue on POWER9"). The presence of ERAT cache implies we can still get new stores and they may miss store queue marking flush. Cc: stable@vger.kernel.org Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190924035254.24612-3-aneesh.kumar@linux.ibm.com
-
由 Aneesh Kumar K.V 提交于
Rename the #define to indicate this is related to store vs tlbie ordering issue. In the next patch, we will be adding another feature flag that is used to handles ERAT flush vs tlbie ordering issue. Fixes: a5d4b589 ("powerpc/mm: Fixup tlbie vs store ordering issue on POWER9") Cc: stable@vger.kernel.org # v4.16+ Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190924035254.24612-2-aneesh.kumar@linux.ibm.com
-
- 05 9月, 2019 3 次提交
-
-
由 Nicholas Piggin 提交于
Introduce two options to control the use of the tlbie instruction. A boot time option which completely disables the kernel using the instruction, this is currently incompatible with HASH MMU, KVM, and coherent accelerators. And a debugfs option can be switched at runtime and avoids using tlbie for invalidating CPU TLBs for normal process and kernel address mappings. Coherent accelerators are still managed with tlbie, as will KVM partition scope translations. Cross-CPU TLB flushing is implemented with IPIs and tlbiel. This is a basic implementation which does not attempt to make any optimisation beyond the tlbie implementation. This is useful for performance testing among other things. For example in certain situations on large systems, using IPIs may be faster than tlbie as they can be directed rather than broadcast. Later we may also take advantage of the IPIs to do more interesting things such as trim the mm cpumask more aggressively. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190902152931.17840-7-npiggin@gmail.com
-
由 Nicholas Piggin 提交于
Radix guests are responsible for managing their own translation caches, so make them match bare metal radix and hash, and make each CPU flush all its translations right before enabling its MMU. Radix guests may not flush partition scope translations, so in tlbiel_all, make these flushes conditional on CPU_FTR_HVMODE. Process scope translations are the only type visible to the guest. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190902152931.17840-5-npiggin@gmail.com
-
由 Nicholas Piggin 提交于
There should be no functional changes. - Use calls to existing radix_tlb.c functions in flush_partition. - Rename radix__flush_tlb_lpid to radix__flush_all_lpid and similar, because they flush everything, matching flush_all_mm rather than flush_tlb_mm for the lpid. - Remove some unused radix_tlb.c flush primitives. Signed-off: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190902152931.17840-3-npiggin@gmail.com
-
- 04 7月, 2019 1 次提交
-
-
由 Alastair D'Silva 提交于
If an OpenCAPI context is to be used directly by a kernel driver, there may not be a suitable mm to use. The patch makes the mm parameter to ocxl_context_attach optional. Signed-off-by: NAlastair D'Silva <alastair@d-silva.org> Acked-by: NAndrew Donnellan <ajd@linux.ibm.com> Acked-by: NFrederic Barrat <fbarrat@linux.ibm.com> Acked-by: NNicholas Piggin <npiggin@gmail.com> Link: https://lore.kernel.org/r/20190620041203.12274-1-alastair@au1.ibm.comSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 03 7月, 2019 3 次提交
-
-
由 Masahiro Yamada 提交于
With CONFIG_OPTIMIZE_INLINING enabled, Laura Abbott reported error with gcc 9.1.1: arch/powerpc/mm/book3s64/radix_tlb.c: In function '_tlbiel_pid': arch/powerpc/mm/book3s64/radix_tlb.c:104:2: warning: asm operand 3 probably doesn't match constraints 104 | asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) | ^~~ arch/powerpc/mm/book3s64/radix_tlb.c:104:2: error: impossible constraint in 'asm' Fixing _tlbiel_pid() is enough to address the warning above, but I inlined more functions to fix all potential issues. To meet the "i" (immediate) constraint for the asm operands, functions propagating "ric" must be always inlined. Fixes: 9012d011 ("compiler: allow all arches to enable CONFIG_OPTIMIZE_INLINING") Reported-by: NLaura Abbott <labbott@redhat.com> Signed-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com> Reviewed-by: NChristophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Nicholas Piggin 提交于
ISA v3.0 radix modes provide SLBIA variants which can invalidate ERAT for effPID!=0 or for effLPID!=0, which allows user and guest invalidations to retain kernel/host ERAT entries. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Nicholas Piggin 提交于
This makes it clear to the caller that it can only be used on POWER9 and later CPUs. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> [mpe: Use "ISA_3_0" rather than "ARCH_300"] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 31 5月, 2019 1 次提交
-
-
由 Thomas Gleixner 提交于
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 3029 file(s). Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NAllison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 15 5月, 2019 2 次提交
-
-
由 Masahiro Yamada 提交于
This prepares to move CONFIG_OPTIMIZE_INLINING from x86 to a common place. We need to eliminate potential issues beforehand. If it is enabled for powerpc, the following errors are reported: arch/powerpc/mm/tlb-radix.c: In function '__tlbie_lpid': arch/powerpc/mm/tlb-radix.c:148:2: warning: asm operand 3 probably doesn't match constraints asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) ^~~ arch/powerpc/mm/tlb-radix.c:148:2: error: impossible constraint in 'asm' arch/powerpc/mm/tlb-radix.c: In function '__tlbie_pid': arch/powerpc/mm/tlb-radix.c:118:2: warning: asm operand 3 probably doesn't match constraints asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) ^~~ arch/powerpc/mm/tlb-radix.c: In function '__tlbiel_pid': arch/powerpc/mm/tlb-radix.c:104:2: warning: asm operand 3 probably doesn't match constraints asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) ^~~ Link: http://lkml.kernel.org/r/20190423034959.13525-11-yamada.masahiro@socionext.comSigned-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boris Brezillon <bbrezillon@kernel.org> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Norris <computersforpeace@gmail.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Marek Vasut <marek.vasut@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: Miquel Raynal <miquel.raynal@bootlin.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Weinberger <richard@nod.at> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Stefan Agner <stefan@agner.ch> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Masahiro Yamada 提交于
This prepares to move CONFIG_OPTIMIZE_INLINING from x86 to a common place. We need to eliminate potential issues beforehand. If it is enabled for powerpc, the following error is reported: arch/powerpc/mm/tlb-radix.c: In function '__radix__flush_tlb_range_psize': arch/powerpc/mm/tlb-radix.c:104:2: error: asm operand 3 probably doesn't match constraints [-Werror] asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) ^~~ arch/powerpc/mm/tlb-radix.c:104:2: error: impossible constraint in 'asm' Link: http://lkml.kernel.org/r/20190423034959.13525-10-yamada.masahiro@socionext.comSigned-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boris Brezillon <bbrezillon@kernel.org> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Norris <computersforpeace@gmail.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Marek Vasut <marek.vasut@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: Miquel Raynal <miquel.raynal@bootlin.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Weinberger <richard@nod.at> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Stefan Agner <stefan@agner.ch> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 02 5月, 2019 1 次提交
-
-
由 Christophe Leroy 提交于
Many files in arch/powerpc/mm are only for book3S64. This patch creates a subdirectory for them. Signed-off-by: NChristophe Leroy <christophe.leroy@c-s.fr> [mpe: Update the selftest sym links, shorten new filenames, cleanup some whitespace and formatting in the new files.] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 20 10月, 2018 1 次提交
-
-
由 Nicholas Piggin 提交于
Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 09 10月, 2018 1 次提交
-
-
由 Suraj Jitindar Singh 提交于
Consider a normal (L1) guest running under the main hypervisor (L0), and then a nested guest (L2) running under the L1 guest which is acting as a nested hypervisor. L0 has page tables to map the address space for L1 providing the translation from L1 real address -> L0 real address; L1 | | (L1 -> L0) | ----> L0 There are also page tables in L1 used to map the address space for L2 providing the translation from L2 real address -> L1 read address. Since the hardware can only walk a single level of page table, we need to maintain in L0 a "shadow_pgtable" for L2 which provides the translation from L2 real address -> L0 real address. Which looks like; L2 L2 | | | (L2 -> L1) | | | ----> L1 | (L2 -> L0) | | | (L1 -> L0) | | | ----> L0 --------> L0 When a page fault occurs while running a nested (L2) guest we need to insert a pte into this "shadow_pgtable" for the L2 -> L0 mapping. To do this we need to: 1. Walk the pgtable in L1 memory to find the L2 -> L1 mapping, and provide a page fault to L1 if this mapping doesn't exist. 2. Use our L1 -> L0 pgtable to convert this L1 address to an L0 address, or try to insert a pte for that mapping if it doesn't exist. 3. Now we have a L2 -> L0 mapping, insert this into our shadow_pgtable Once this mapping exists we can take rc faults when hardware is unable to automatically set the reference and change bits in the pte. On these we need to: 1. Check the rc bits on the L2 -> L1 pte match, and otherwise reflect the fault down to L1. 2. Set the rc bits in the L1 -> L0 pte which corresponds to the same host page. 3. Set the rc bits in the L2 -> L0 pte. As we reuse a large number of functions in book3s_64_mmu_radix.c for this we also needed to refactor a number of these functions to take an lpid parameter so that the correct lpid is used for tlb invalidations. The functionality however has remained the same. Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 04 10月, 2018 1 次提交
-
-
由 Nicholas Piggin 提交于
Local radix TLB flush operations that operate on congruence classes have explicit ERAT flushes for POWER9. The process scoped LPID flush did not have a flush, so add it. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 16 7月, 2018 1 次提交
-
-
由 Nicholas Piggin 提交于
POWER9 DD1 was never a product. It is no longer supported by upstream firmware, and it is not effectively supported in Linux due to lack of testing. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Reviewed-by: NMichael Ellerman <mpe@ellerman.id.au> [mpe: Remove arch_make_huge_pte() entirely] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 20 6月, 2018 1 次提交
-
-
由 Nicholas Piggin 提交于
If possible CPUs are limited (e.g., by kexec), then the kvm prefetch workaround function can access the paca pointer for a !possible CPU. Fixes: d2e60075 ("powerpc/64: Use array of paca pointers and allocate pacas individually") Cc: stable@kernel.org Reported-by: NPridhiviraj Paidipeddi <ppaidipe@linux.vnet.ibm.com> Tested-by: NPridhiviraj Paidipeddi <ppaidipe@linux.vnet.ibm.com> Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 19 6月, 2018 1 次提交
-
-
由 Nicholas Piggin 提交于
The patch 99baac21 ("mm: fix MADV_[FREE|DONTNEED] TLB flush miss problem") added a force flush mode to the mmu_gather flush, which unconditionally flushes the entire address range being invalidated (even if actual ptes only covered a smaller range), to solve a problem with concurrent threads invalidating the same PTEs causing them to miss TLBs that need flushing. This does not work with powerpc that invalidates mmu_gather batches according to page size. Have powerpc flush all possible page sizes in the range if it encounters this concurrency condition. Patch 4647706e ("mm: always flush VMA ranges affected by zap_page_range") does add a TLB flush for all page sizes on powerpc for the zap_page_range case, but that is to be removed and replaced with the mmu_gather flush to avoid redundant flushing. It is also thought to not cover other obscure race conditions: https://lkml.kernel.org/r/BD3A0EBE-ECF4-41D4-87FA-C755EA9AB6BD@gmail.com Hash does not have a problem because it invalidates TLBs inside the page table locks. Reported-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 03 6月, 2018 2 次提交
-
-
由 Nicholas Piggin 提交于
When a single-threaded process has a non-local mm_cpumask, try to use that point to flush the TLBs out of other CPUs in the cpumask. An IPI is used for clearing remote CPUs for a few reasons: - An IPI can end lazy TLB use of the mm, which is required to prevent TLB entries being created on the remote CPU. The alternative is to drop lazy TLB switching completely, which costs 7.5% in a context switch ping-pong test betwee a process and kernel idle thread. - An IPI can have remote CPUs flush the entire PID, but the local CPU can flush a specific VA. tlbie would require over-flushing of the local CPU (where the process is running). - A single threaded process that is migrated to a different CPU is likely to have a relatively small mm_cpumask, so IPI is reasonable. No other thread can concurrently switch to this mm, because it must have been given a reference to mm_users by the current thread before it can use_mm. mm_users can be asynchronously incremented (by mm_activate or mmget_not_zero), but those users must use remote mm access and can't use_mm or access user address space. Existing code makes the this assumption already, for example sparc64 has reset mm_cpumask using this condition since the start of history, see arch/sparc/kernel/smp_64.c. This reduces tlbies for a kernel compile workload from 0.90M to 0.12M, tlbiels are increased significantly due to the PID flushing for the cleaning up remote CPUs, and increased local flushes (PID flushes take 128 tlbiels vs 1 tlbie). Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Nicholas Piggin 提交于
Implementing pte_update with pte_xchg (which uses cmpxchg) is inefficient. A single larx/stcx. works fine, no need for the less efficient cmpxchg sequence. Then remove the memory barriers from the operation. There is a requirement for TLB flushing to load mm_cpumask after the store that reduces pte permissions, which is moved into the TLB flush code. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 17 5月, 2018 1 次提交
-
-
由 Nicholas Piggin 提交于
Implement a local TLB flush for invalidating an LPID with variants for process or partition scope. And a global TLB flush for invalidating a partition scoped page of an LPID. These will be used by KVM in subsequent patches. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 12 4月, 2018 1 次提交
-
-
由 Michael Ellerman 提交于
In tlbiel_radix_set_isa300() we use the PPC_TLBIEL() macro to construct tlbiel instructions. The instruction takes 5 fields, two of which are registers, and the others are constants. But because it's constructed with inline asm the compiler doesn't know that. We got the constraint wrong on the 'r' field, using "r" tells the compiler to put the value in a register. The value we then get in the macro is the *register number*, not the value of the field. That means when we mask the register number with 0x1 we get 0 or 1 depending on which register the compiler happens to put the constant in, eg: li r10,1 tlbiel r8,r9,2,0,0 li r7,1 tlbiel r10,r6,0,0,1 If we're unlucky we might generate an invalid instruction form, for example RIC=0, PRS=1 and R=0, tlbiel r8,r7,0,1,0, this has been observed to cause machine checks: Oops: Machine check, sig: 7 [#1] CPU: 24 PID: 0 Comm: swapper NIP: 00000000000385f4 LR: 000000000100ed00 CTR: 000000000000007f REGS: c00000000110bb40 TRAP: 0200 MSR: 9000000000201003 <SF,HV,ME,RI,LE> CR: 48002222 XER: 20040000 CFAR: 00000000000385d0 DAR: 0000000000001c00 DSISR: 00000200 SOFTE: 1 If the machine check happens early in boot while we have MSR_ME=0 it will escalate into a checkstop and kill the box entirely. To fix it we could change the inline asm constraint to "i" which tells the compiler the value is a constant. But a better fix is to just pass a literal 1 into the macro, which bypasses any problems with inline asm constraints. Fixes: d4748276 ("powerpc/64s: Improve local TLB flush for boot and MCE on POWER9") Cc: stable@vger.kernel.org # v4.16+ Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Reviewed-by: NNicholas Piggin <npiggin@gmail.com>
-
- 01 4月, 2018 1 次提交
-
-
由 Mathieu Malaterre 提交于
In commit 9690c157 ("powerpc/mm/radix: Fix always false comparison against MMU_NO_CONTEXT") an issue was discovered where `mm->context.id` was being truncated to an `unsigned int`, while the PID is actually an `unsigned long`. Update the earlier patch by fixing one remaining occurrence. Discovered during a compilation with W=1: arch/powerpc/mm/tlb-radix.c:702:19: error: comparison is always false due to limited range of data type [-Werror=type-limits] Signed-off-by: NMathieu Malaterre <malat@debian.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 30 3月, 2018 1 次提交
-
-
由 Nicholas Piggin 提交于
Change the paca array into an array of pointers to pacas. Allocate pacas individually. This allows flexibility in where the PACAs are allocated. Future work will allocate them node-local. Platforms that don't have address limits on PACAs would be able to defer PACA allocations until later in boot rather than allocate all possible ones up-front then freeing unused. This is slightly more overhead (one additional indirection) for cross CPU paca references, but those aren't too common. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 27 3月, 2018 1 次提交
-
-
由 Alexey Kardashevskiy 提交于
Fixes: 912cc87a "powerpc/mm/radix: Add LPID based tlb flush helpers" Signed-off-by: NAlexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 23 3月, 2018 4 次提交
-
-
由 Aneesh Kumar K.V 提交于
On POWER9, under some circumstances, a broadcast TLB invalidation might complete before all previous stores have drained, potentially allowing stale stores from becoming visible after the invalidation. This works around it by doubling up those TLB invalidations which was verified by HW to be sufficient to close the risk window. This will be documented in a yet-to-be-published errata. Fixes: 1a472c9d ("powerpc/mm/radix: Add tlbflush routines") Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> [mpe: Enable the feature in the DT CPU features code for all Power9, rename the feature to CPU_FTR_P9_TLBIE_BUG per benh.] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Aneesh Kumar K.V 提交于
No functionality change. Just code movement to ease code changes later Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Aneesh Kumar K.V 提交于
These function are not used in the code. Remove them. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Benjamin Herrenschmidt 提交于
On POWER9 the Nest MMU may fail to invalidate some translations when doing a tlbie "by PID" or "by LPID" that is targeted at the TLB only and not the page walk cache. This works around it by forcing such invalidations to escalate to RIC=2 (full invalidation of TLB *and* PWC) when a coprocessor is in use for the context. Fixes: 03b8abed ("cxl: Enable global TLBIs for cxl contexts") Cc: stable@vger.kernel.org # v4.15+ Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NBalbir Singh <bsingharora@gmail.com> [balbirs: fixed spelling and coding style to quiesce checkpatch.pl] Tested-by: NBalbir Singh <bsingharora@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 22 1月, 2018 1 次提交
-
-
由 Mahesh Salgaonkar 提交于
radix__flush_tlb_all() is called only in kexec path in real mode and any tracepoints at this stage will make kexec to fail if enabled. To verify enable tlbie trace before kexec. $ echo 1 > /sys/kernel/debug/tracing/events/powerpc/tlbie/enable == kexec into new kernel and kexec fails. Fix this by not calling trace_tlbie from radix__flush_tlb_all(). Fixes: 0428491c ("powerpc/mm: Trace tlbie(l) instructions") Cc: stable@vger.kernel.org # v4.13+ Signed-off-by: NMahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Acked-by: NBalbir Singh <bsingharora@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 17 1月, 2018 1 次提交
-
-
由 Nicholas Piggin 提交于
There are several cases outside the normal address space management where a CPU's entire local TLB is to be flushed: 1. Booting the kernel, in case something has left stale entries in the TLB (e.g., kexec). 2. Machine check, to clean corrupted TLB entries. One other place where the TLB is flushed, is waking from deep idle states. The flush is a side-effect of calling ->cpu_restore with the intention of re-setting various SPRs. The flush itself is unnecessary because in the first case, the TLB should not acquire new corrupted TLB entries as part of sleep/wake (though they may be lost). This type of TLB flush is coded inflexibly, several times for each CPU type, and they have a number of problems with ISA v3.0B: - The current radix mode of the MMU is not taken into account, it is always done as a hash flushn For IS=2 (LPID-matching flush from host) and IS=3 with HV=0 (guest kernel flush), tlbie(l) is undefined if the R field does not match the current radix mode. - ISA v3.0B hash must flush the partition and process table caches as well. - ISA v3.0B radix must flush partition and process scoped translations, partition and process table caches, and also the page walk cache. So consolidate the flushing code and implement it in C and inline asm under the mm/ directory with the rest of the flush code. Add ISA v3.0B cases for radix and hash, and use the radix flush in radix environment. Provide a way for IS=2 (LPID flush) to specify the radix mode of the partition. Have KVM pass in the radix mode of the guest. Take out the flushes from early cputable/dt_cpu_ftrs detection hooks, and move it later in the boot process after, the MMU registers are set up and before relocation is first turned on. The TLB flush is no longer called when restoring from deep idle states. This was not be done as a separate step because booting secondaries uses the same cpu_restore as idle restore, which needs the TLB flush. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 10 11月, 2017 5 次提交
-
-
由 Nicholas Piggin 提交于
Unmaps that free page tables always flush the entire PID, which is sub-optimal. Provide TLB range flushing with an additional PWC flush that can be use for va range invalidations with PWC flush. Time to munmap N pages of memory including last level page table teardown (after mmap, touch), local invalidate: N 1 2 4 8 16 32 64 vanilla 3.2us 3.3us 3.4us 3.6us 4.1us 5.2us 7.2us patched 1.4us 1.5us 1.7us 1.9us 2.6us 3.7us 6.2us Global invalidate: N 1 2 4 8 16 32 64 vanilla 2.2us 2.3us 2.4us 2.6us 3.2us 4.1us 6.2us patched 2.1us 2.5us 3.4us 5.2us 8.7us 15.7us 6.2us Local invalidates get much better across the board. Global ones have the same issue where multiple tlbies for va flush do get slower than the single tlbie to invalidate the PID. None of this test captures the TLB benefits of avoiding killing everything. Global gets worse, but it is brought in to line with global invalidate for munmap()s that do not free page tables. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Nicholas Piggin 提交于
The single page flush ceiling is the cut-off point at which we switch from invalidating individual pages, to invalidating the entire process address space in response to a range flush. Introduce a local variant of this heuristic because local and global tlbie have significantly different properties: - Local tlbiel requires 128 instructions to invalidate a PID, global tlbie only 1 instruction. - Global tlbie instructions are expensive broadcast operations. The local ceiling has been made much higher, 2x the number of instructions required to invalidate the entire PID (i.e., 256 pages). Time to mprotect N pages of memory (after mmap, touch), local invalidate: N 32 34 64 128 256 512 vanilla 7.4us 9.0us 14.6us 26.4us 50.2us 98.3us patched 7.4us 7.8us 13.8us 26.4us 51.9us 98.3us The behaviour of both is identical at N=32 and N=512. Between there, the vanilla kernel does a PID invalidate and the patched kernel does a va range invalidate. At N=128, these require the same number of tlbiel instructions, so the patched version can be sen to be cheaper when < 128, and more expensive when > 128. However this does not well capture the cost of invalidated TLB. The additional cost at 256 pages does not seem prohibitive. It may be the case that increasing the limit further would continue to be beneficial to avoid invalidating all of the process's TLB entries. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Nicholas Piggin 提交于
Currently for radix, flush_tlb_range flushes the entire PID, because the Linux mm code does not tell us about page size here for THP vs regular pages. This is quite sub-optimal for small mremap / mprotect / change_protection. So implement va range flushes with two flush passes, one for each page size (regular and THP). The second flush has an order of matnitude fewer tlbie instructions than the first, so it is a relatively small additional cost. There is still room for improvement here with some changes to generic APIs, particularly if there are mostly THP pages to be invalidated, the small page flushes could be reduced. Time to mprotect 1 page of memory (after mmap, touch): vanilla 2.9us 1.8us patched 1.2us 1.6us Time to mprotect 30 pages of memory (after mmap, touch): vanilla 8.2us 7.2us patched 6.9us 17.9us Time to mprotect 34 pages of memory (after mmap, touch): vanilla 9.1us 8.0us patched 9.0us 8.0us 34 pages is the point at which the invalidation switches from va to entire PID, which tlbie can do in a single instruction. This is why in the case of 30 pages, the new code runs slower for this test. This is a deliberate tradeoff already present in the unmap and THP promotion code, the idea is that the benefit from avoiding flushing entire TLB for this PID on all threads in the system. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Nicholas Piggin 提交于
Move the barriers and range iteration down into the _tlbie* level, which improves readability. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Nicholas Piggin 提交于
Short range flushes issue a sequences of tlbie(l) instructions for individual effective addresses. These do not all require individual barrier sequences, only one covering all tlbie(l) instructions. Commit f7327e0b ("powerpc/mm/radix: Remove unnecessary ptesync") made a similar optimization for tlbiel for PID flushing. For tlbie, the ISA says: The tlbsync instruction provides an ordering function for the effects of all tlbie instructions executed by the thread executing the tlbsync instruction, with respect to the memory barrier created by a subsequent ptesync instruction executed by the same thread. Time to munmap 30 pages of memory (after mmap, touch): local global vanilla 10.9us 22.3us patched 3.4us 14.4us Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 06 11月, 2017 1 次提交
-
-
由 Nicholas Piggin 提交于
According to the architecture, the process table entry cache must be flushed with tlbie RIC=2. Currently the process table entry is set to invalid right before the PID is returned to the allocator, with no invalidation. This works on existing implementations that are known to not cache the process table entry for any except the current PIDR. It is architecturally correct and cleaner to invalidate with RIC=2 after clearing the process table entry and before the PID is returned to the allocator. This can be done in arch_exit_mmap that runs before the final flush, and to ensure the final flush (fullmm) is always a RIC=2 variant. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-