1. 11 12月, 2017 1 次提交
  2. 04 12月, 2017 4 次提交
  3. 22 11月, 2017 3 次提交
    • M
      powerpc/perf: Fix IMC_MAX_PMU macro · 73ce9aec
      Madhavan Srinivasan 提交于
      IMC_MAX_PMU is used for static storage (per_nest_pmu_arr) which holds
      nest pmu information. Current value for the macro is 32 based on
      the initial number of nest pmu units supported by the nest microcode.
      But going forward, microcode could support more nest units. Instead
      of static storage, patch to fix the code to dynamically allocate an
      array based on the number of nest imc units found in the device tree.
      
      Fixes:8f95faaa ('powerpc/powernv: Detect and create IMC device')
      Signed-off-by: NMadhavan Srinivasan <maddy@linux.vnet.ibm.com>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      73ce9aec
    • M
      powerpc/perf: Fix pmu_count to count only nest imc pmus · de34787f
      Madhavan Srinivasan 提交于
      "pmu_count" in opal_imc_counters_probe() is intended to hold
      the number of successful nest imc pmu registerations. But
      current code also counts other imc units like core_imc and
      thread_imc. Patch add a check to count only nest imc pmus.
      Signed-off-by: NMadhavan Srinivasan <maddy@linux.vnet.ibm.com>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      de34787f
    • K
      treewide: setup_timer() -> timer_setup() · e99e88a9
      Kees Cook 提交于
      This converts all remaining cases of the old setup_timer() API into using
      timer_setup(), where the callback argument is the structure already
      holding the struct timer_list. These should have no behavioral changes,
      since they just change which pointer is passed into the callback with
      the same available pointers after conversion. It handles the following
      examples, in addition to some other variations.
      
      Casting from unsigned long:
      
          void my_callback(unsigned long data)
          {
              struct something *ptr = (struct something *)data;
          ...
          }
          ...
          setup_timer(&ptr->my_timer, my_callback, ptr);
      
      and forced object casts:
      
          void my_callback(struct something *ptr)
          {
          ...
          }
          ...
          setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr);
      
      become:
      
          void my_callback(struct timer_list *t)
          {
              struct something *ptr = from_timer(ptr, t, my_timer);
          ...
          }
          ...
          timer_setup(&ptr->my_timer, my_callback, 0);
      
      Direct function assignments:
      
          void my_callback(unsigned long data)
          {
              struct something *ptr = (struct something *)data;
          ...
          }
          ...
          ptr->my_timer.function = my_callback;
      
      have a temporary cast added, along with converting the args:
      
          void my_callback(struct timer_list *t)
          {
              struct something *ptr = from_timer(ptr, t, my_timer);
          ...
          }
          ...
          ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback;
      
      And finally, callbacks without a data assignment:
      
          void my_callback(unsigned long data)
          {
          ...
          }
          ...
          setup_timer(&ptr->my_timer, my_callback, 0);
      
      have their argument renamed to verify they're unused during conversion:
      
          void my_callback(struct timer_list *unused)
          {
          ...
          }
          ...
          timer_setup(&ptr->my_timer, my_callback, 0);
      
      The conversion is done with the following Coccinelle script:
      
      spatch --very-quiet --all-includes --include-headers \
      	-I ./arch/x86/include -I ./arch/x86/include/generated \
      	-I ./include -I ./arch/x86/include/uapi \
      	-I ./arch/x86/include/generated/uapi -I ./include/uapi \
      	-I ./include/generated/uapi --include ./include/linux/kconfig.h \
      	--dir . \
      	--cocci-file ~/src/data/timer_setup.cocci
      
      @fix_address_of@
      expression e;
      @@
      
       setup_timer(
      -&(e)
      +&e
       , ...)
      
      // Update any raw setup_timer() usages that have a NULL callback, but
      // would otherwise match change_timer_function_usage, since the latter
      // will update all function assignments done in the face of a NULL
      // function initialization in setup_timer().
      @change_timer_function_usage_NULL@
      expression _E;
      identifier _timer;
      type _cast_data;
      @@
      
      (
      -setup_timer(&_E->_timer, NULL, _E);
      +timer_setup(&_E->_timer, NULL, 0);
      |
      -setup_timer(&_E->_timer, NULL, (_cast_data)_E);
      +timer_setup(&_E->_timer, NULL, 0);
      |
      -setup_timer(&_E._timer, NULL, &_E);
      +timer_setup(&_E._timer, NULL, 0);
      |
      -setup_timer(&_E._timer, NULL, (_cast_data)&_E);
      +timer_setup(&_E._timer, NULL, 0);
      )
      
      @change_timer_function_usage@
      expression _E;
      identifier _timer;
      struct timer_list _stl;
      identifier _callback;
      type _cast_func, _cast_data;
      @@
      
      (
      -setup_timer(&_E->_timer, _callback, _E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, &_callback, _E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, _callback, (_cast_data)_E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, &_callback, (_cast_data)_E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, (_cast_func)_callback, _E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, (_cast_func)&_callback, _E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E._timer, _callback, (_cast_data)_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, _callback, (_cast_data)&_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, &_callback, (_cast_data)_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, &_callback, (_cast_data)&_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
       _E->_timer@_stl.function = _callback;
      |
       _E->_timer@_stl.function = &_callback;
      |
       _E->_timer@_stl.function = (_cast_func)_callback;
      |
       _E->_timer@_stl.function = (_cast_func)&_callback;
      |
       _E._timer@_stl.function = _callback;
      |
       _E._timer@_stl.function = &_callback;
      |
       _E._timer@_stl.function = (_cast_func)_callback;
      |
       _E._timer@_stl.function = (_cast_func)&_callback;
      )
      
      // callback(unsigned long arg)
      @change_callback_handle_cast
       depends on change_timer_function_usage@
      identifier change_timer_function_usage._callback;
      identifier change_timer_function_usage._timer;
      type _origtype;
      identifier _origarg;
      type _handletype;
      identifier _handle;
      @@
      
       void _callback(
      -_origtype _origarg
      +struct timer_list *t
       )
       {
      (
      	... when != _origarg
      	_handletype *_handle =
      -(_handletype *)_origarg;
      +from_timer(_handle, t, _timer);
      	... when != _origarg
      |
      	... when != _origarg
      	_handletype *_handle =
      -(void *)_origarg;
      +from_timer(_handle, t, _timer);
      	... when != _origarg
      |
      	... when != _origarg
      	_handletype *_handle;
      	... when != _handle
      	_handle =
      -(_handletype *)_origarg;
      +from_timer(_handle, t, _timer);
      	... when != _origarg
      |
      	... when != _origarg
      	_handletype *_handle;
      	... when != _handle
      	_handle =
      -(void *)_origarg;
      +from_timer(_handle, t, _timer);
      	... when != _origarg
      )
       }
      
      // callback(unsigned long arg) without existing variable
      @change_callback_handle_cast_no_arg
       depends on change_timer_function_usage &&
                           !change_callback_handle_cast@
      identifier change_timer_function_usage._callback;
      identifier change_timer_function_usage._timer;
      type _origtype;
      identifier _origarg;
      type _handletype;
      @@
      
       void _callback(
      -_origtype _origarg
      +struct timer_list *t
       )
       {
      +	_handletype *_origarg = from_timer(_origarg, t, _timer);
      +
      	... when != _origarg
      -	(_handletype *)_origarg
      +	_origarg
      	... when != _origarg
       }
      
      // Avoid already converted callbacks.
      @match_callback_converted
       depends on change_timer_function_usage &&
                  !change_callback_handle_cast &&
      	    !change_callback_handle_cast_no_arg@
      identifier change_timer_function_usage._callback;
      identifier t;
      @@
      
       void _callback(struct timer_list *t)
       { ... }
      
      // callback(struct something *handle)
      @change_callback_handle_arg
       depends on change_timer_function_usage &&
      	    !match_callback_converted &&
                  !change_callback_handle_cast &&
                  !change_callback_handle_cast_no_arg@
      identifier change_timer_function_usage._callback;
      identifier change_timer_function_usage._timer;
      type _handletype;
      identifier _handle;
      @@
      
       void _callback(
      -_handletype *_handle
      +struct timer_list *t
       )
       {
      +	_handletype *_handle = from_timer(_handle, t, _timer);
      	...
       }
      
      // If change_callback_handle_arg ran on an empty function, remove
      // the added handler.
      @unchange_callback_handle_arg
       depends on change_timer_function_usage &&
      	    change_callback_handle_arg@
      identifier change_timer_function_usage._callback;
      identifier change_timer_function_usage._timer;
      type _handletype;
      identifier _handle;
      identifier t;
      @@
      
       void _callback(struct timer_list *t)
       {
      -	_handletype *_handle = from_timer(_handle, t, _timer);
       }
      
      // We only want to refactor the setup_timer() data argument if we've found
      // the matching callback. This undoes changes in change_timer_function_usage.
      @unchange_timer_function_usage
       depends on change_timer_function_usage &&
                  !change_callback_handle_cast &&
                  !change_callback_handle_cast_no_arg &&
      	    !change_callback_handle_arg@
      expression change_timer_function_usage._E;
      identifier change_timer_function_usage._timer;
      identifier change_timer_function_usage._callback;
      type change_timer_function_usage._cast_data;
      @@
      
      (
      -timer_setup(&_E->_timer, _callback, 0);
      +setup_timer(&_E->_timer, _callback, (_cast_data)_E);
      |
      -timer_setup(&_E._timer, _callback, 0);
      +setup_timer(&_E._timer, _callback, (_cast_data)&_E);
      )
      
      // If we fixed a callback from a .function assignment, fix the
      // assignment cast now.
      @change_timer_function_assignment
       depends on change_timer_function_usage &&
                  (change_callback_handle_cast ||
                   change_callback_handle_cast_no_arg ||
                   change_callback_handle_arg)@
      expression change_timer_function_usage._E;
      identifier change_timer_function_usage._timer;
      identifier change_timer_function_usage._callback;
      type _cast_func;
      typedef TIMER_FUNC_TYPE;
      @@
      
      (
       _E->_timer.function =
      -_callback
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E->_timer.function =
      -&_callback
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E->_timer.function =
      -(_cast_func)_callback;
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E->_timer.function =
      -(_cast_func)&_callback
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E._timer.function =
      -_callback
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E._timer.function =
      -&_callback;
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E._timer.function =
      -(_cast_func)_callback
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E._timer.function =
      -(_cast_func)&_callback
      +(TIMER_FUNC_TYPE)_callback
       ;
      )
      
      // Sometimes timer functions are called directly. Replace matched args.
      @change_timer_function_calls
       depends on change_timer_function_usage &&
                  (change_callback_handle_cast ||
                   change_callback_handle_cast_no_arg ||
                   change_callback_handle_arg)@
      expression _E;
      identifier change_timer_function_usage._timer;
      identifier change_timer_function_usage._callback;
      type _cast_data;
      @@
      
       _callback(
      (
      -(_cast_data)_E
      +&_E->_timer
      |
      -(_cast_data)&_E
      +&_E._timer
      |
      -_E
      +&_E->_timer
      )
       )
      
      // If a timer has been configured without a data argument, it can be
      // converted without regard to the callback argument, since it is unused.
      @match_timer_function_unused_data@
      expression _E;
      identifier _timer;
      identifier _callback;
      @@
      
      (
      -setup_timer(&_E->_timer, _callback, 0);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, _callback, 0L);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, _callback, 0UL);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E._timer, _callback, 0);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, _callback, 0L);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, _callback, 0UL);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_timer, _callback, 0);
      +timer_setup(&_timer, _callback, 0);
      |
      -setup_timer(&_timer, _callback, 0L);
      +timer_setup(&_timer, _callback, 0);
      |
      -setup_timer(&_timer, _callback, 0UL);
      +timer_setup(&_timer, _callback, 0);
      |
      -setup_timer(_timer, _callback, 0);
      +timer_setup(_timer, _callback, 0);
      |
      -setup_timer(_timer, _callback, 0L);
      +timer_setup(_timer, _callback, 0);
      |
      -setup_timer(_timer, _callback, 0UL);
      +timer_setup(_timer, _callback, 0);
      )
      
      @change_callback_unused_data
       depends on match_timer_function_unused_data@
      identifier match_timer_function_unused_data._callback;
      type _origtype;
      identifier _origarg;
      @@
      
       void _callback(
      -_origtype _origarg
      +struct timer_list *unused
       )
       {
      	... when != _origarg
       }
      Signed-off-by: NKees Cook <keescook@chromium.org>
      e99e88a9
  4. 21 11月, 2017 1 次提交
  5. 18 11月, 2017 1 次提交
    • G
      pid: replace pid bitmap implementation with IDR API · 95846ecf
      Gargi Sharma 提交于
      Patch series "Replacing PID bitmap implementation with IDR API", v4.
      
      This series replaces kernel bitmap implementation of PID allocation with
      IDR API.  These patches are written to simplify the kernel by replacing
      custom code with calls to generic code.
      
      The following are the stats for pid and pid_namespace object files
      before and after the replacement.  There is a noteworthy change between
      the IDR and bitmap implementation.
      
      Before
         text       data        bss        dec        hex    filename
         8447       3894         64      12405       3075    kernel/pid.o
      After
         text       data        bss        dec        hex    filename
         3397        304          0       3701        e75    kernel/pid.o
      
      Before
         text       data        bss        dec        hex    filename
         5692       1842        192       7726       1e2e    kernel/pid_namespace.o
      After
         text       data        bss        dec        hex    filename
         2854        216         16       3086        c0e    kernel/pid_namespace.o
      
      The following are the stats for ps, pstree and calling readdir on /proc
      for 10,000 processes.
      
      ps:
              With IDR API    With bitmap
      real    0m1.479s        0m2.319s
      user    0m0.070s        0m0.060s
      sys     0m0.289s        0m0.516s
      
      pstree:
              With IDR API    With bitmap
      real    0m1.024s        0m1.794s
      user    0m0.348s        0m0.612s
      sys     0m0.184s        0m0.264s
      
      proc:
              With IDR API    With bitmap
      real    0m0.059s        0m0.074s
      user    0m0.000s        0m0.004s
      sys     0m0.016s        0m0.016s
      
      This patch (of 2):
      
      Replace the current bitmap implementation for Process ID allocation.
      Functions that are no longer required, for example, free_pidmap(),
      alloc_pidmap(), etc.  are removed.  The rest of the functions are
      modified to use the IDR API.  The change was made to make the PID
      allocation less complex by replacing custom code with calls to generic
      API.
      
      [gs051095@gmail.com: v6]
        Link: http://lkml.kernel.org/r/1507760379-21662-2-git-send-email-gs051095@gmail.com
      [avagin@openvz.org: restore the old behaviour of the ns_last_pid sysctl]
        Link: http://lkml.kernel.org/r/20171106183144.16368-1-avagin@openvz.org
      Link: http://lkml.kernel.org/r/1507583624-22146-2-git-send-email-gs051095@gmail.comSigned-off-by: NGargi Sharma <gs051095@gmail.com>
      Reviewed-by: NRik van Riel <riel@redhat.com>
      Acked-by: NOleg Nesterov <oleg@redhat.com>
      Cc: Julia Lawall <julia.lawall@lip6.fr>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
      Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
      Cc: Eric W. Biederman <ebiederm@xmission.com>
      Cc: Christoph Hellwig <hch@infradead.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      95846ecf
  6. 13 11月, 2017 2 次提交
  7. 12 11月, 2017 14 次提交
  8. 07 11月, 2017 2 次提交
  9. 06 11月, 2017 11 次提交
    • C
      powerpc/powernv: Add OPAL_BUSY to opal_error_code() · 77adbd22
      Cyril Bur 提交于
      Also export opal_error_code() so that it can be used in modules
      Signed-off-by: NCyril Bur <cyrilbur@gmail.com>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      77adbd22
    • C
      powerpc/opal: Add opal_async_wait_response_interruptible() to opal-async · 9aab2449
      Cyril Bur 提交于
      This patch adds an _interruptible version of opal_async_wait_response().
      This is useful when a long running OPAL call is performed on behalf of
      a userspace thread, for example, the opal_flash_{read,write,erase}
      functions performed by the powernv-flash MTD driver.
      
      It is foreseeable that these functions would take upwards of two
      minutes causing the wait_event() to block long enough to cause hung
      task warnings. Furthermore, wait_event_interruptible() is preferable
      as otherwise there is no way for signals to stop the process which is
      going to be confusing in userspace.
      Signed-off-by: NCyril Bur <cyrilbur@gmail.com>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      9aab2449
    • S
      powernv/opal-sensor: remove not needed lock · 95e1bc1d
      Stewart Smith 提交于
      Parallel sensor reads could run out of async tokens due to
      opal_get_sensor_data grabbing tokens but then doing the sensor
      read behind a mutex, essentially serializing the (possibly
      asynchronous and relatively slow) sensor read.
      
      It turns out that the mutex isn't needed at all, not only
      should the OPAL interface allow concurrent reads, the implementation
      is certainly safe for that, and if any sensor we were reading
      from somewhere isn't, doing the mutual exclusion in the kernel
      is the wrong place to do it, OPAL should be doing it for the kernel.
      
      So, remove the mutex.
      
      Additionally, we shouldn't be printing out an error when we don't
      get a token as the only way this should happen is if we've been
      interrupted in down_interruptible() on the semaphore.
      Reported-by: NRobert Lippert <rlippert@google.com>
      Signed-off-by: NStewart Smith <stewart@linux.vnet.ibm.com>
      Signed-off-by: NCyril Bur <cyrilbur@gmail.com>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      95e1bc1d
    • C
      powerpc/opal: Rework the opal-async interface · 86cd6d98
      Cyril Bur 提交于
      Future work will add an opal_async_wait_response_interruptible()
      which will call wait_event_interruptible(). This work requires extra
      token state to be tracked as wait_event_interruptible() can return and
      the caller could release the token before OPAL responds.
      
      Currently token state is tracked with two bitfields which are 64 bits
      big but may not need to be as OPAL informs Linux how many async tokens
      there are. It also uses an array indexed by token to store response
      messages for each token.
      
      The bitfields make it difficult to add more state and also provide a
      hard maximum as to how many tokens there can be - it is possible that
      OPAL will inform Linux that there are more than 64 tokens.
      
      Rather than add a bitfield to track the extra state, rework the
      internals slightly.
      Signed-off-by: NCyril Bur <cyrilbur@gmail.com>
      [mpe: Fix __opal_async_get_token() when no tokens are free]
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      86cd6d98
    • C
      powerpc/opal: Make __opal_async_{get, release}_token() static · 59cf9a1c
      Cyril Bur 提交于
      There are no callers of both __opal_async_get_token() and
      __opal_async_release_token().
      
      This patch also removes the possibility of "emergency through
      synchronous call to __opal_async_get_token()" as such it makes more
      sense to initialise opal_sync_sem for the maximum number of async
      tokens.
      Signed-off-by: NCyril Bur <cyrilbur@gmail.com>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      59cf9a1c
    • W
      powerpc/opal: Fix EBUSY bug in acquiring tokens · 71e24d77
      William A. Kennington III 提交于
      The current code checks the completion map to look for the first token
      that is complete. In some cases, a completion can come in but the
      token can still be on lease to the caller processing the completion.
      If this completed but unreleased token is the first token found in the
      bitmap by another tasks trying to acquire a token, then the
      __test_and_set_bit call will fail since the token will still be on
      lease. The acquisition will then fail with an EBUSY.
      
      This patch reorganizes the acquisition code to look at the
      opal_async_token_map for an unleased token. If the token has no lease
      it must have no outstanding completions so we should never see an
      EBUSY, unless we have leased out too many tokens. Since
      opal_async_get_token_inrerruptible is protected by a semaphore, we
      will practically never see EBUSY anymore.
      
      Fixes: 8d724823 ("powerpc/powernv: Infrastructure to support OPAL async completion")
      Signed-off-by: NWilliam A. Kennington III <wak@google.com>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      71e24d77
    • M
      powerpc/mm: Add a CONFIG option to choose if radix is used by default · 1fd6c022
      Michael Ellerman 提交于
      Currently if the hardware supports the radix MMU we will use
      it, *unless* "disable_radix" is passed on the kernel command line.
      
      However some users would like the reverse semantics. ie. The kernel
      uses the hash MMU by default, unless radix is explicitly requested on
      the command line.
      
      So add a CONFIG option to choose whether we use radix by default or
      not, and expand the disable_radix command line option to allow
      "disable_radix=no" which *enables* radix.
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      1fd6c022
    • M
      powerpc/64s: Replace CONFIG_PPC_STD_MMU_64 with CONFIG_PPC_BOOK3S_64 · 4e003747
      Michael Ellerman 提交于
      CONFIG_PPC_STD_MMU_64 indicates support for the "standard" powerpc MMU
      on 64-bit CPUs. The "standard" MMU refers to the hash page table MMU
      found in "server" processors, from IBM mainly.
      
      Currently CONFIG_PPC_STD_MMU_64 is == CONFIG_PPC_BOOK3S_64. While it's
      annoying to have two symbols that always have the same value, it's not
      quite annoying enough to bother removing one.
      
      However with the arrival of Power9, we now have the situation where
      CONFIG_PPC_STD_MMU_64 is enabled, but the kernel is running using the
      Radix MMU - *not* the "standard" MMU. So it is now actively confusing
      to use it, because it implies that code is disabled or inactive when
      the Radix MMU is in use, however that is not necessarily true.
      
      So s/CONFIG_PPC_STD_MMU_64/CONFIG_PPC_BOOK3S_64/, and do some minor
      formatting updates of some of the affected lines.
      
      This will be a pain for backports, but c'est la vie.
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      4e003747
    • A
      powerpc/powernv: Reserve a hole which appears after enabling IOV · d6f934fd
      Alexey Kardashevskiy 提交于
      In order to make generic IOV code work, the physical function IOV BAR
      should start from offset of the first VF. Since M64 segments share
      PE number space across PHB, and some PEs may be in use at the time
      when IOV is enabled, the existing code shifts the IOV BAR to the index
      of the first PE/VF. This creates a hole in IOMEM space which can be
      potentially taken by some other device.
      
      This reserves a temporary hole on a parent and releases it when IOV is
      disabled; the temporary resources are stored in pci_dn to avoid
      kmalloc/free.
      Signed-off-by: NAlexey Kardashevskiy <aik@ozlabs.ru>
      Acked-by: NBjorn Helgaas <bhelgaas@google.com>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      d6f934fd
    • T
      powerpc/pseries/vio: Dispose of virq mapping on vdevice unregister · b8f89fea
      Tyrel Datwyler 提交于
      When a vdevice is DLPAR removed from the system the vio subsystem
      doesn't bother unmapping the virq from the irq_domain. As a result we
      have a virq mapped to a hardware irq that is no longer valid for the
      irq_domain. A side effect is that we are left with /proc/irq/<irq#>
      affinity entries, and attempts to modify the smp_affinity of the irq
      will fail.
      
      In the following observed example the kernel log is spammed by
      ics_rtas_set_affinity errors after the removal of a VSCSI adapter.
      This is a result of irqbalance trying to adjust the affinity every 10
      seconds.
      
        rpadlpar_io: slot U8408.E8E.10A7ACV-V5-C25 removed
        ics_rtas_set_affinity: ibm,set-xive irq=655385 returns -3
        ics_rtas_set_affinity: ibm,set-xive irq=655385 returns -3
      
      This patch fixes the issue by calling irq_dispose_mapping() on the
      virq of the viodev on unregister.
      
      Fixes: f2ab6219 ("powerpc/pseries: Add PFO support to the VIO bus")
      Signed-off-by: NTyrel Datwyler <tyreld@linux.vnet.ibm.com>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      b8f89fea
    • N
      powerpc/powernv: Use FIXUP_ENDIAN_HV in OPAL return · 63c9d8a4
      Nicholas Piggin 提交于
      Close the recoverability gap for OPAL calls by using FIXUP_ENDIAN_HV
      in the return path.
      Signed-off-by: NNicholas Piggin <npiggin@gmail.com>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      63c9d8a4
  10. 02 11月, 2017 1 次提交
    • G
      License cleanup: add SPDX GPL-2.0 license identifier to files with no license · b2441318
      Greg Kroah-Hartman 提交于
      Many source files in the tree are missing licensing information, which
      makes it harder for compliance tools to determine the correct license.
      
      By default all files without license information are under the default
      license of the kernel, which is GPL version 2.
      
      Update the files which contain no license information with the 'GPL-2.0'
      SPDX license identifier.  The SPDX identifier is a legally binding
      shorthand, which can be used instead of the full boiler plate text.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.
      
      How this work was done:
      
      Patches were generated and checked against linux-4.14-rc6 for a subset of
      the use cases:
       - file had no licensing information it it.
       - file was a */uapi/* one with no licensing information in it,
       - file was a */uapi/* one with existing licensing information,
      
      Further patches will be generated in subsequent months to fix up cases
      where non-standard license headers were used, and references to license
      had to be inferred by heuristics based on keywords.
      
      The analysis to determine which SPDX License Identifier to be applied to
      a file was done in a spreadsheet of side by side results from of the
      output of two independent scanners (ScanCode & Windriver) producing SPDX
      tag:value files created by Philippe Ombredanne.  Philippe prepared the
      base worksheet, and did an initial spot review of a few 1000 files.
      
      The 4.13 kernel was the starting point of the analysis with 60,537 files
      assessed.  Kate Stewart did a file by file comparison of the scanner
      results in the spreadsheet to determine which SPDX license identifier(s)
      to be applied to the file. She confirmed any determination that was not
      immediately clear with lawyers working with the Linux Foundation.
      
      Criteria used to select files for SPDX license identifier tagging was:
       - Files considered eligible had to be source code files.
       - Make and config files were included as candidates if they contained >5
         lines of source
       - File already had some variant of a license header in it (even if <5
         lines).
      
      All documentation files were explicitly excluded.
      
      The following heuristics were used to determine which SPDX license
      identifiers to apply.
      
       - when both scanners couldn't find any license traces, file was
         considered to have no license information in it, and the top level
         COPYING file license applied.
      
         For non */uapi/* files that summary was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0                                              11139
      
         and resulted in the first patch in this series.
      
         If that file was a */uapi/* path one, it was "GPL-2.0 WITH
         Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0 WITH Linux-syscall-note                        930
      
         and resulted in the second patch in this series.
      
       - if a file had some form of licensing information in it, and was one
         of the */uapi/* ones, it was denoted with the Linux-syscall-note if
         any GPL family license was found in the file or had no licensing in
         it (per prior point).  Results summary:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|------
         GPL-2.0 WITH Linux-syscall-note                       270
         GPL-2.0+ WITH Linux-syscall-note                      169
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
         LGPL-2.1+ WITH Linux-syscall-note                      15
         GPL-1.0+ WITH Linux-syscall-note                       14
         ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
         LGPL-2.0+ WITH Linux-syscall-note                       4
         LGPL-2.1 WITH Linux-syscall-note                        3
         ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
         ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
      
         and that resulted in the third patch in this series.
      
       - when the two scanners agreed on the detected license(s), that became
         the concluded license(s).
      
       - when there was disagreement between the two scanners (one detected a
         license but the other didn't, or they both detected different
         licenses) a manual inspection of the file occurred.
      
       - In most cases a manual inspection of the information in the file
         resulted in a clear resolution of the license that should apply (and
         which scanner probably needed to revisit its heuristics).
      
       - When it was not immediately clear, the license identifier was
         confirmed with lawyers working with the Linux Foundation.
      
       - If there was any question as to the appropriate license identifier,
         the file was flagged for further research and to be revisited later
         in time.
      
      In total, over 70 hours of logged manual review was done on the
      spreadsheet to determine the SPDX license identifiers to apply to the
      source files by Kate, Philippe, Thomas and, in some cases, confirmation
      by lawyers working with the Linux Foundation.
      
      Kate also obtained a third independent scan of the 4.13 code base from
      FOSSology, and compared selected files where the other two scanners
      disagreed against that SPDX file, to see if there was new insights.  The
      Windriver scanner is based on an older version of FOSSology in part, so
      they are related.
      
      Thomas did random spot checks in about 500 files from the spreadsheets
      for the uapi headers and agreed with SPDX license identifier in the
      files he inspected. For the non-uapi files Thomas did random spot checks
      in about 15000 files.
      
      In initial set of patches against 4.14-rc6, 3 files were found to have
      copy/paste license identifier errors, and have been fixed to reflect the
      correct identifier.
      
      Additionally Philippe spent 10 hours this week doing a detailed manual
      inspection and review of the 12,461 patched files from the initial patch
      version early this week with:
       - a full scancode scan run, collecting the matched texts, detected
         license ids and scores
       - reviewing anything where there was a license detected (about 500+
         files) to ensure that the applied SPDX license was correct
       - reviewing anything where there was no detection but the patch license
         was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
         SPDX license was correct
      
      This produced a worksheet with 20 files needing minor correction.  This
      worksheet was then exported into 3 different .csv files for the
      different types of files to be modified.
      
      These .csv files were then reviewed by Greg.  Thomas wrote a script to
      parse the csv files and add the proper SPDX tag to the file, in the
      format that the file expected.  This script was further refined by Greg
      based on the output to detect more types of files automatically and to
      distinguish between header and source .c files (which need different
      comment types.)  Finally Greg ran the script using the .csv files to
      generate the patches.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      b2441318